metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­azido­manganese(II)]bis­­[μ-1-(4-pyridylmeth­yl)-1H-benzimidazole]]

aZhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface and Interface Science, Henan, Zhengzhou 450002, People's Republic of China, and bDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: chunsenliu@mail.nankai.edu.cn

(Received 12 November 2007; accepted 23 November 2007; online 6 December 2007)

In the title polymeric compound, [Mn(N3)2(C13H11N3)2]n, each MnII centre is six-coordinated in an octahedral geometry by six N atoms from four 1-(4-pyridylmeth­yl)-1H-benzimidazole (L) ligands and two azide anions (N3). Each of the MnII ions lies on an inversion centre. The L ligands and N3 anions bridge adjacent MnII centres, generating a polymeric chain running along the [110] direction. Adjacent polymeric chains are arranged in a two-dimensional network parallel to the (001) plane, linked by C—H⋯N hydrogen bonds.

Related literature

For related literature, see: Chang et al. (2005[Chang, Q., Meng, X. R., Song, Y. L. & Hou, H. W. (2005). Inorg. Chim. Acta, 358, 2117-2124.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]); Fan et al. (2006[Fan, J., Yee, G. T., Wang, G. B. & Hanson, B. E. (2006). Inorg. Chem. 45, 599-608.]); Huang et al. (2006[Huang, M., Liu, P., Wang, J., Chen, Y., Liu, Z. & Liu, Q. (2006). Inorg. Chem. Commun. 9, 952-959.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Li et al. (2007[Li, L., Hu, T.-L., Li, J.-R., Wang, D.-Z., Zeng, Y.-F. & Bu, X.-H. (2007). CrystEngComm, 9, 412-420.]); Meng et al. (2004[Meng, X. R., Xiao, B., Fan, Y. T., Hou, H. W. & Li, G. (2004). Inorg. Chim. Acta, 357, 1471-1477.]); Steel (2005[Steel, P. J. (2005). Acc. Chem. Res. 38, 243-250.]); Su et al. (2001[Su, C. Y., Cai, Y. P., Chen, C. L. & Kang, B. S. (2001). Inorg. Chem. 40, 2210-2211.]); Xiao et al. (2004[Xiao, B., Han, H. Y., Meng, X. R., Song, Y. L., Fan, Y. T., Hou, H. W. & Zhu, Y. (2004). Inorg. Chem. Commun. 7, 378-381.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(N3)2(C13H11N3)2]

  • Mr = 557.50

  • Triclinic, [P \overline 1]

  • a = 8.4135 (17) Å

  • b = 8.5823 (17) Å

  • c = 10.399 (2) Å

  • α = 67.86 (3)°

  • β = 86.03 (3)°

  • γ = 69.80 (3)°

  • V = 651.1 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 294 (2) K

  • 0.36 × 0.32 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.827, Tmax = 0.853

  • 6780 measured reflections

  • 2954 independent reflections

  • 2828 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.081

  • S = 1.03

  • 2954 reflections

  • 179 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—N4 2.2049 (13)
Mn1—N1i 2.2869 (12)
Mn1—N1ii 2.2869 (12)
Mn1—N3 2.3358 (16)
N4—Mn1—N4iii 180
N4—Mn1—N1i 88.32 (5)
N4—Mn1—N1ii 91.68 (5)
N1i—Mn1—N1ii 180
N4—Mn1—N3iii 92.39 (5)
N1ii—Mn1—N3iii 90.37 (5)
N1i—Mn1—N3 90.37 (5)
N3iii—Mn1—N3 180
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x+1, y-1, z; (iii) -x+2, -y, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N6iv 0.93 2.48 3.319 (1) 150
C11—H11⋯N6v 0.93 2.58 3.305 (2) 135
Symmetry codes: (iv) x-1, y, z; (v) -x+2, -y+1, -z+2.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

N-containing heterocyclic aromatic compounds are extensively used as bridging ligands in coordination and metallosupramolecular chemistry (Steel, 2005). The most frequently used neutral bridging ligands are 4,4'-bipyridine and its derivatives (Kitagawa et al., 2004). In recent years, however, the benzimidazole groups also were used to link different alkyl or aromatic groups to form a series of bi- and multi-dentate flexible ligands, which can adopt different conformations according to the different geometric requirements of metal centers when forming metal complexes (Li et al., 2007). Many complexes with these ligands show unique structural topologies and interesting properties (Meng et al., 2004), such as three-dimensional and two-dimensional networks (Chang et al., 2005; Fan et al., 2006; Su et al., 2001) and one-dimensional helical chains (Xiao et al., 2004). Recently, we found that Liu and co-workers synthesized a flexible bridging ligand 1-(pyridin-4-ylmethyl)-1H-benzo[d]imidazole (L) as well as its chiral one-dimensional double helix polymer, [Ag(L)(NO3)]n (Huang et al., 2006). As such, we also used L as a µ2-bridging ligand to react with MnII salt, meanwhile together with azido anion as a co-ligand, to obtain a one-dimensional manganese coordination polymer [Mn(C13H11N3)2(N3)2] n (I). We report here the crystal structure of (I).

The title compound (I) consists of linear polymeric coordination chains containing only one kind of MnII coordination environment (Fig. 1). The asymmetric unit of (I) is composed of one MnII ion which lies on an inversion centre, one L ligand and one N3- anion (L is 1-(pyridin-4-ylmethyl)-1H-benzo[d]imidazole). The geometry around each MnII ion can be best described as a ideal octahedron (Fig. 1). The MnII center is six-coordinated by six N atoms from four different L ligands and two N3- anions, respectively (Table 1). In the crystal structure of (I), L adopts µ2-bridging 4,4'-bipyridine-like coordination mode and N3- serves as a mono-terminal coordination mode [Mn1—N4: 2.2049 (13) Å], which together link the adjacent MnII ions into a linear chain along the [1 1 0] direction, with the shortest intrachain non-bonding Mn···Mn separation being 9.725 (2) Å (Fig. 2).

In the crystal structure of (I), the adjacent one-dimensional chains [Mn(C13H11N3)2(N3)2]n are arranged into a two-dimensional network parallel to the (0 0 1) plane by interchain C–H···N hydrogen bonding interactions between the coordinated L ligands and N atoms of azido anions (see Fig. 3 and Table 2) (Desiraju et al., 1999).

Related literature top

For related literature, see: Chang et al. (2005); Desiraju & Steiner (1999); Fan et al. (2006); Huang et al. (2006); Kitagawa et al. (2004); Li et al. (2007); Meng et al. (2004); Steel (2005); Su et al. (2001); Xiao et al. (2004).

Experimental top

The ligand 1-(pyridin-4-ylmethyl)-1H-benzo[d]imidazole (L) was synthesized according to a method reported in the literature (Li et al., 2007). The reaction of L (58 mg, 0.2 mmol), NaN3 (13 mg, 0.2 mmol) with Mn(ClO4)2 (25 mg, 0.1 mmol) in a mixed solution of methanol and aqua (v/v = 1:1, 10 ml) for a few minutes afforded a yellow solid, which was then filtered. The resulting solution was kept at room temperature. Yellow single crystals of compound (I) suitable for X-ray analysis were obtained by slow evaporation of the solvent after several days (yield: 40%). Analysis calculated for C26H22MnN12: C 56.02, H 3.98, N 30.15%; found: C 55.88, H 3.79, N 30.37%.

Refinement top

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

N-containing heterocyclic aromatic compounds are extensively used as bridging ligands in coordination and metallosupramolecular chemistry (Steel, 2005). The most frequently used neutral bridging ligands are 4,4'-bipyridine and its derivatives (Kitagawa et al., 2004). In recent years, however, the benzimidazole groups also were used to link different alkyl or aromatic groups to form a series of bi- and multi-dentate flexible ligands, which can adopt different conformations according to the different geometric requirements of metal centers when forming metal complexes (Li et al., 2007). Many complexes with these ligands show unique structural topologies and interesting properties (Meng et al., 2004), such as three-dimensional and two-dimensional networks (Chang et al., 2005; Fan et al., 2006; Su et al., 2001) and one-dimensional helical chains (Xiao et al., 2004). Recently, we found that Liu and co-workers synthesized a flexible bridging ligand 1-(pyridin-4-ylmethyl)-1H-benzo[d]imidazole (L) as well as its chiral one-dimensional double helix polymer, [Ag(L)(NO3)]n (Huang et al., 2006). As such, we also used L as a µ2-bridging ligand to react with MnII salt, meanwhile together with azido anion as a co-ligand, to obtain a one-dimensional manganese coordination polymer [Mn(C13H11N3)2(N3)2] n (I). We report here the crystal structure of (I).

The title compound (I) consists of linear polymeric coordination chains containing only one kind of MnII coordination environment (Fig. 1). The asymmetric unit of (I) is composed of one MnII ion which lies on an inversion centre, one L ligand and one N3- anion (L is 1-(pyridin-4-ylmethyl)-1H-benzo[d]imidazole). The geometry around each MnII ion can be best described as a ideal octahedron (Fig. 1). The MnII center is six-coordinated by six N atoms from four different L ligands and two N3- anions, respectively (Table 1). In the crystal structure of (I), L adopts µ2-bridging 4,4'-bipyridine-like coordination mode and N3- serves as a mono-terminal coordination mode [Mn1—N4: 2.2049 (13) Å], which together link the adjacent MnII ions into a linear chain along the [1 1 0] direction, with the shortest intrachain non-bonding Mn···Mn separation being 9.725 (2) Å (Fig. 2).

In the crystal structure of (I), the adjacent one-dimensional chains [Mn(C13H11N3)2(N3)2]n are arranged into a two-dimensional network parallel to the (0 0 1) plane by interchain C–H···N hydrogen bonding interactions between the coordinated L ligands and N atoms of azido anions (see Fig. 3 and Table 2) (Desiraju et al., 1999).

For related literature, see: Chang et al. (2005); Desiraju & Steiner (1999); Fan et al. (2006); Huang et al. (2006); Kitagawa et al. (2004); Li et al. (2007); Meng et al. (2004); Steel (2005); Su et al. (2001); Xiao et al. (2004).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The atoms labelled with the suffixes A, B and C are generated by the symmetry operations (1 + x, -1 + y, z), (1 - x, 1 - y, 2 - z) and (2 - x, -y, 2 - z), respectively.
[Figure 2] Fig. 2. View of a polymeric chain running along the [1 1 0].
[Figure 3] Fig. 3. Part of the crystal packing showing the two-dimensional network in the title compound formed by interchain C—H···N hydrogen-bonded interactions (fine dashed lines). For the sake of clarity, only H atoms involved in the interactions are shown.
catena-Poly[[diazidomanganese(II)]bis[µ-1-(4-pyridylmethyl)- 1H-benzimidazole]] top
Crystal data top
[Mn(N3)2(C13H11N3)2]Z = 1
Mr = 557.50F(000) = 287
Triclinic, P1Dx = 1.422 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4135 (17) ÅCell parameters from 6008 reflections
b = 8.5823 (17) Åθ = 3.2–27.5°
c = 10.399 (2) ŵ = 0.55 mm1
α = 67.86 (3)°T = 294 K
β = 86.03 (3)°Block, yellow
γ = 69.80 (3)°0.36 × 0.32 × 0.30 mm
V = 651.1 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2954 independent reflections
Radiation source: fine-focus sealed tube2828 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1010
Tmin = 0.827, Tmax = 0.853k = 1111
6780 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.2403P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
2954 reflectionsΔρmax = 0.31 e Å3
179 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.188 (10)
Crystal data top
[Mn(N3)2(C13H11N3)2]γ = 69.80 (3)°
Mr = 557.50V = 651.1 (3) Å3
Triclinic, P1Z = 1
a = 8.4135 (17) ÅMo Kα radiation
b = 8.5823 (17) ŵ = 0.55 mm1
c = 10.399 (2) ÅT = 294 K
α = 67.86 (3)°0.36 × 0.32 × 0.30 mm
β = 86.03 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2954 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2828 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 0.853Rint = 0.019
6780 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
2954 reflectionsΔρmin = 0.23 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.00000.00001.00000.02268 (12)
C10.13527 (18)0.75738 (18)0.81818 (14)0.0299 (3)
H10.12250.66350.89540.036*
C20.13205 (16)1.01940 (17)0.68138 (13)0.0259 (3)
C30.19824 (16)0.90468 (18)0.60918 (14)0.0281 (3)
C40.2474 (2)0.9643 (2)0.47385 (16)0.0421 (4)
H40.29140.88700.42690.050*
C50.2277 (3)1.1436 (3)0.41276 (17)0.0511 (4)
H50.25941.18830.32240.061*
C60.1610 (2)1.2603 (2)0.48348 (17)0.0463 (4)
H60.14981.38040.43900.056*
C70.1116 (2)1.20089 (19)0.61774 (16)0.0351 (3)
H70.06651.27890.66390.042*
C80.25306 (18)0.57026 (19)0.67617 (16)0.0332 (3)
H8A0.25160.59760.57680.040*
H8B0.17260.50910.71400.040*
C90.47260 (18)0.26337 (19)0.77339 (17)0.0351 (3)
H90.39600.21850.75250.042*
C100.63090 (19)0.14894 (19)0.83664 (17)0.0365 (3)
H100.65780.02690.85800.044*
C110.70528 (19)0.3804 (2)0.83490 (19)0.0392 (4)
H110.78560.42240.85360.047*
C120.5485 (2)0.5042 (2)0.77332 (19)0.0401 (4)
H120.52430.62540.75380.048*
C130.42862 (16)0.44572 (18)0.74119 (14)0.0265 (3)
N10.09396 (15)0.92194 (15)0.81364 (12)0.0285 (2)
N20.19812 (14)0.73794 (15)0.69955 (12)0.0278 (2)
N30.74795 (14)0.20399 (15)0.86900 (12)0.0297 (3)
N41.10239 (16)0.22079 (17)0.92696 (13)0.0341 (3)
N51.16197 (15)0.28050 (15)0.98900 (12)0.0298 (3)
N61.2213 (2)0.3409 (2)1.04762 (16)0.0492 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02229 (16)0.02034 (16)0.02660 (17)0.00730 (11)0.00254 (10)0.01032 (11)
C10.0331 (7)0.0231 (6)0.0295 (6)0.0071 (5)0.0051 (5)0.0086 (5)
C20.0241 (6)0.0249 (6)0.0252 (6)0.0061 (5)0.0014 (5)0.0072 (5)
C30.0234 (6)0.0291 (6)0.0277 (6)0.0055 (5)0.0001 (5)0.0092 (5)
C40.0469 (9)0.0503 (9)0.0304 (7)0.0167 (7)0.0093 (6)0.0178 (7)
C50.0629 (11)0.0599 (11)0.0269 (7)0.0293 (9)0.0070 (7)0.0057 (7)
C60.0581 (10)0.0373 (8)0.0355 (8)0.0227 (8)0.0042 (7)0.0016 (7)
C70.0401 (8)0.0274 (7)0.0345 (7)0.0111 (6)0.0048 (6)0.0072 (6)
C80.0279 (7)0.0288 (7)0.0421 (8)0.0001 (5)0.0058 (6)0.0201 (6)
C90.0287 (7)0.0283 (7)0.0514 (9)0.0073 (6)0.0056 (6)0.0194 (6)
C100.0334 (7)0.0244 (7)0.0511 (9)0.0042 (6)0.0073 (6)0.0170 (6)
C110.0303 (7)0.0292 (7)0.0585 (10)0.0097 (6)0.0075 (6)0.0157 (7)
C120.0338 (7)0.0234 (7)0.0604 (10)0.0065 (6)0.0077 (7)0.0141 (7)
C130.0236 (6)0.0257 (6)0.0293 (6)0.0038 (5)0.0018 (5)0.0137 (5)
N10.0325 (6)0.0226 (5)0.0280 (6)0.0073 (4)0.0047 (4)0.0094 (4)
N20.0262 (5)0.0230 (5)0.0309 (6)0.0025 (4)0.0012 (4)0.0118 (4)
N30.0261 (5)0.0259 (6)0.0364 (6)0.0055 (4)0.0008 (4)0.0137 (5)
N40.0392 (7)0.0336 (6)0.0365 (6)0.0207 (5)0.0047 (5)0.0135 (5)
N50.0356 (6)0.0219 (5)0.0304 (6)0.0125 (5)0.0040 (5)0.0062 (5)
N60.0717 (10)0.0397 (7)0.0456 (8)0.0301 (7)0.0050 (7)0.0148 (6)
Geometric parameters (Å, º) top
Mn1—N42.2049 (13)C6—H60.93
Mn1—N4i2.2049 (13)C7—H70.93
Mn1—N1ii2.2869 (12)C8—N21.4603 (17)
Mn1—N1iii2.2869 (12)C8—C131.5115 (19)
Mn1—N3i2.3358 (16)C8—H8A0.97
Mn1—N32.3358 (16)C8—H8B0.97
C1—N11.3156 (18)C9—C101.379 (2)
C1—N21.3540 (18)C9—C131.3858 (19)
C1—H10.93C9—H90.93
C2—C71.395 (2)C10—N31.3392 (19)
C2—N11.3968 (18)C10—H100.93
C2—C31.4014 (19)C11—N31.3354 (19)
C3—N21.3849 (19)C11—C121.384 (2)
C3—C41.391 (2)C11—H110.93
C4—C51.379 (3)C12—C131.380 (2)
C4—H40.93C12—H120.93
C5—C61.403 (3)N1—Mn1iv2.2869 (12)
C5—H50.93N4—N51.1838 (17)
C6—C71.383 (2)N5—N61.1612 (18)
N4—Mn1—N4i180C6—C7—H7121.3
N4—Mn1—N1ii88.32 (5)C2—C7—H7121.3
N4i—Mn1—N1ii91.68 (5)N2—C8—C13113.50 (11)
N4—Mn1—N1iii91.68 (5)N2—C8—H8A108.9
N4i—Mn1—N1iii88.32 (5)C13—C8—H8A108.9
N1ii—Mn1—N1iii180N2—C8—H8B108.9
N4—Mn1—N3i92.39 (5)C13—C8—H8B108.9
N4i—Mn1—N3i87.61 (5)H8A—C8—H8B107.7
N1ii—Mn1—N3i89.63 (5)C10—C9—C13119.48 (13)
N1iii—Mn1—N3i90.37 (5)C10—C9—H9120.3
N4—Mn1—N387.61 (5)C13—C9—H9120.3
N4i—Mn1—N392.39 (5)N3—C10—C9123.55 (13)
N1ii—Mn1—N390.37 (5)N3—C10—H10118.2
N1iii—Mn1—N389.63 (5)C9—C10—H10118.2
N3i—Mn1—N3180N3—C11—C12123.86 (14)
N1—C1—N2113.45 (12)N3—C11—H11118.1
N1—C1—H1123.3C12—C11—H11118.1
N2—C1—H1123.3C13—C12—C11119.19 (14)
C7—C2—N1130.51 (13)C13—C12—H12120.4
C7—C2—C3120.29 (13)C11—C12—H12120.4
N1—C2—C3109.19 (12)C12—C13—C9117.52 (13)
N2—C3—C4132.11 (14)C12—C13—C8123.05 (12)
N2—C3—C2105.56 (11)C9—C13—C8119.42 (13)
C4—C3—C2122.33 (14)C1—N1—C2105.01 (11)
C5—C4—C3116.72 (15)C1—N1—Mn1iv123.01 (10)
C5—C4—H4121.6C2—N1—Mn1iv131.84 (9)
C3—C4—H4121.6C1—N2—C3106.79 (11)
C4—C5—C6121.63 (15)C1—N2—C8124.89 (12)
C4—C5—H5119.2C3—N2—C8128.32 (12)
C6—C5—H5119.2C11—N3—C10116.38 (12)
C7—C6—C5121.56 (16)C11—N3—Mn1121.80 (10)
C7—C6—H6119.2C10—N3—Mn1121.47 (9)
C5—C6—H6119.2N5—N4—Mn1131.21 (10)
C6—C7—C2117.48 (15)N6—N5—N4178.77 (15)
C7—C2—C3—N2178.72 (12)N1—C1—N2—C30.08 (16)
N1—C2—C3—N20.39 (15)N1—C1—N2—C8179.71 (12)
C7—C2—C3—C40.6 (2)C4—C3—N2—C1179.55 (16)
N1—C2—C3—C4179.75 (13)C2—C3—N2—C10.29 (14)
N2—C3—C4—C5179.05 (15)C4—C3—N2—C80.2 (2)
C2—C3—C4—C50.1 (2)C2—C3—N2—C8179.50 (12)
C3—C4—C5—C60.1 (3)C13—C8—N2—C179.95 (18)
C4—C5—C6—C70.1 (3)C13—C8—N2—C3100.30 (16)
C5—C6—C7—C20.6 (3)C12—C11—N3—C102.0 (2)
N1—C2—C7—C6179.76 (15)C12—C11—N3—Mn1171.37 (14)
C3—C2—C7—C60.9 (2)C9—C10—N3—C110.9 (2)
C13—C9—C10—N30.4 (3)C9—C10—N3—Mn1172.44 (12)
N3—C11—C12—C131.7 (3)N4—Mn1—N3—C1123.66 (13)
C11—C12—C13—C90.2 (2)N4i—Mn1—N3—C11156.34 (13)
C11—C12—C13—C8178.92 (15)N1ii—Mn1—N3—C1164.64 (13)
C10—C9—C13—C120.7 (2)N1iii—Mn1—N3—C11115.36 (13)
C10—C9—C13—C8178.01 (14)N4—Mn1—N3—C10163.34 (12)
N2—C8—C13—C1222.6 (2)N4i—Mn1—N3—C1016.66 (12)
N2—C8—C13—C9156.11 (14)N1ii—Mn1—N3—C10108.36 (12)
N2—C1—N1—C20.17 (16)N1iii—Mn1—N3—C1071.64 (12)
N2—C1—N1—Mn1iv175.95 (9)N1ii—Mn1—N4—N533.89 (14)
C7—C2—N1—C1178.65 (14)N1iii—Mn1—N4—N5146.11 (14)
C3—C2—N1—C10.35 (15)N3i—Mn1—N4—N555.67 (14)
C7—C2—N1—Mn1iv5.7 (2)N3—Mn1—N4—N5124.33 (14)
C3—C2—N1—Mn1iv175.28 (9)
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y+1, z+2; (iii) x+1, y1, z; (iv) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N6v0.932.483.319 (1)150
C11—H11···N6vi0.932.583.305 (2)135
Symmetry codes: (v) x1, y, z; (vi) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Mn(N3)2(C13H11N3)2]
Mr557.50
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.4135 (17), 8.5823 (17), 10.399 (2)
α, β, γ (°)67.86 (3), 86.03 (3), 69.80 (3)
V3)651.1 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.36 × 0.32 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.827, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
6780, 2954, 2828
Rint0.019
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.081, 1.03
No. of reflections2954
No. of parameters179
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.23

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Mn1—N42.2049 (13)Mn1—N1ii2.2869 (12)
Mn1—N1i2.2869 (12)Mn1—N32.3358 (16)
N4—Mn1—N4iii180N1i—Mn1—N3iii89.63 (5)
N4—Mn1—N1i88.32 (5)N1ii—Mn1—N3iii90.37 (5)
N4iii—Mn1—N1i91.68 (5)N4—Mn1—N387.61 (5)
N4—Mn1—N1ii91.68 (5)N4iii—Mn1—N392.39 (5)
N4iii—Mn1—N1ii88.32 (5)N1i—Mn1—N390.37 (5)
N1i—Mn1—N1ii180N1ii—Mn1—N389.63 (5)
N4—Mn1—N3iii92.39 (5)N3iii—Mn1—N3180
N4iii—Mn1—N3iii87.61 (5)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y1, z; (iii) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N6iv0.932.483.319 (1)150
C11—H11···N6v0.932.583.305 (2)135
Symmetry codes: (iv) x1, y, z; (v) x+2, y+1, z+2.
 

Acknowledgements

This work was supported by the Startup Fund for PhDs of Natural Scientific Research of Zhengzhou University of Light Industry (No. 2008 to C-SL). The authors also gratefully thank Nankai University and Henan Provincial Key Laboratory of Surface and Interface Science for supporting this research.

References

First citationBruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, Q., Meng, X. R., Song, Y. L. & Hou, H. W. (2005). Inorg. Chim. Acta, 358, 2117–2124.  Web of Science CSD CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationFan, J., Yee, G. T., Wang, G. B. & Hanson, B. E. (2006). Inorg. Chem. 45, 599–608.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuang, M., Liu, P., Wang, J., Chen, Y., Liu, Z. & Liu, Q. (2006). Inorg. Chem. Commun. 9, 952–959.  Web of Science CSD CrossRef CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLi, L., Hu, T.-L., Li, J.-R., Wang, D.-Z., Zeng, Y.-F. & Bu, X.-H. (2007). CrystEngComm, 9, 412–420.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeng, X. R., Xiao, B., Fan, Y. T., Hou, H. W. & Li, G. (2004). Inorg. Chim. Acta, 357, 1471–1477.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteel, P. J. (2005). Acc. Chem. Res. 38, 243–250.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSu, C. Y., Cai, Y. P., Chen, C. L. & Kang, B. S. (2001). Inorg. Chem. 40, 2210–2211.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXiao, B., Han, H. Y., Meng, X. R., Song, Y. L., Fan, Y. T., Hou, H. W. & Zhu, Y. (2004). Inorg. Chem. Commun. 7, 378–381.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds