organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,7,11,19,23,27-Hexa­aza­tri­cyclo­[27.3.1.113,17]tetra­triaconta-1(32),13,15,17(34),29(33),30-hexa­ene hexa­chloride tetra­hydrate

aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China, and bDepartment of Chemistry and Pharmaceutical Engineering, Suihua University, Suihua 152061, People's Republic of China
*Correspondence e-mail: majf247nenu@yahoo.com.cn

(Received 23 November 2007; accepted 25 November 2007; online 6 December 2007)

The title compound, C28H52N66+·6Cl·4H2O, is a dinucleating 28-membered centrosymmetric hexa­azamacrocyclic complex. The macrocyclic ligand adopts a chair-like conformation, with the crystallographic inversion center located in the macrocyclic cavity. The six chloride ions and four water mol­ecules are situated symmetrically outside the macrocyclic cavity. The crystal structure is stabilized by N—H⋯Cl, N—H⋯O and O—H⋯Cl hydrogen bonds.

Related literature

For studies on hexa­azamacrocyclic complexes, see: Llobet et al. (1994[Llobet, A., Reibenspies, J. & Martell, A. E. (1994). Inorg. Chem. 33, 5946-5951.]). For related literature, see: Anda et al. (2000[Anda, C., Llobet, A., Salvado, V., Reibenspies, J., Motekaitis, R. J. & Martell, A. E. (2000). Inorg. Chem. 39, 2986-2999.]); Costas et al. (2004[Costas, M., Anda, C., Llobet, A., Parella, T., Evans, H. S. & Pinilla, E. (2004). Eur. J. Inorg. Chem. pp. 857-865.]); Lu et al. (1995[Lu, Q., Motekaitis, R. J., Reibenspies, J. & Martell, A. E. (1995). Inorg. Chem. 34, 4958-4964.]).

[Scheme 1]

Experimental

Crystal data
  • C28H52N66+·6Cl·4H2O

  • Mr = 757.52

  • Monoclinic, P 21 /c

  • a = 17.012 (7) Å

  • b = 7.469 (2) Å

  • c = 17.329 (7) Å

  • β = 113.841 (13)°

  • V = 2014.0 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 (2) K

  • 0.19 × 0.18 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.895, Tmax = 0.932

  • 18546 measured reflections

  • 4594 independent reflections

  • 2416 reflections with I > 2σ(I)

  • Rint = 0.102

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.130

  • S = 1.04

  • 4594 reflections

  • 235 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2 0.86 (2) 2.24 (1) 3.082 (3) 168 (3)
N1—H1B⋯Cl1i 0.89 (3) 2.24 (3) 3.115 (3) 169 (3)
O1W—H1O⋯Cl3 0.84 (4) 2.46 (5) 3.287 (4) 169 (4)
N2—H2A⋯Cl1 0.89 (3) 2.28 (3) 3.162 (3) 177 (3)
N2—H2B⋯Cl2i 0.95 (3) 2.17 (3) 3.113 (3) 177 (3)
O1W—H2O⋯Cl1 0.84 (5) 2.40 (5) 3.222 (4) 166 (5)
N3—H3A⋯Cl3 0.85 (2) 2.25 (2) 3.104 (3) 173 (3)
N3—H3B⋯O2W 0.86 (2) 1.94 (2) 2.782 (4) 169 (2)
O2W—H3O⋯Cl3ii 0.84 (2) 2.30 (2) 3.144 (3) 176 (6)
O2W—H4O⋯Cl3iii 0.84 (3) 2.30 (3) 3.133 (4) 168 (4)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL-Plus (Sheldrick, 1990[Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

It has been shown that macrocyclic polyamines have numerous advantages as enzyme models. They can participate in molecular recongnition phenomena with different kinds of substrates, such as organic, inorganic, and biologically important anions (Lu et al., 1995; Anda et al., 2000). In addition, hexaaza macrocycles can form dinuclear metal complexes which in turn are capable of coordinating anions (Costas et al., 2004). In this paper, the synthesis and the crystal structure of a hexaazamacrocyclic complex, L.6HCl.4H2O [L is 3,7,11,19, 23,27-hexaazztricyclo[27.3.1.113,17]tetratriaconta-1(32),13,15,17 (34),29 (33),30-hexaene] is presented.

The structure of the title compound is shown in Fig.1. It consists of a centrosymmetric hexaprotonated macrocycle, six chloride counterions, and four water molecules of crystallization. In the macrocycle, each of the aliphatic chains adopts a planar trans configuration, and each of the benzene rings is tilted from the mean plane of chains by 108.9 (1)°. All six N atoms are protonated with hydrogen atoms directed outside the ring. None of the chloride counterions are situated inside the macrocyclic cavity. The macrocycle adopts a chair conformation, similar to that observed in related compounds (Llobet et al., 1994). The crystal structure is stabilized by N—H···Cl, N—H···O and O—H···Cl hydrogen bonds (Table 1).

Related literature top

For studies on hexaazamacrocyclic complexes, see: Llobet et al. (1994). For related literature, see: Anda et al. (2000); Costas et al. (2004); Lu et al. (1995).

Experimental top

A solution of 3,3'-iminobis(propylamine) (1.31 g, 10 mmol) in CH3OH (400 ml) was added dropwise from a dropping funnel to a stirred solution of 97% m-phthalaldehyde (1.34 g, 10 mmol) in CH3OH (400 ml) in a round-bottomed three-neck flask over 12 h at room temperature. Then the volume of the mixture was concentrated to 200 ml. NaBH4 (2 g) was added to the solution and the suspension was magnetically stirred for about 5 h at room temperature. The solvent was removed under reduced pressure, and the product was extracted with CH2Cl2 from an aqueous solution (CH2Cl2/H2O, 120 ml/50 ml). Evaporation of CH2Cl2 under reduced pressure yielded a colourless oil which was then dissolved in 50 ml of 8% HCl. The volume was reduced under low pressure until at approximately 5 ml, a white crystalline solid precipitated.

Refinement top

N-bound H atoms were located in a difference map and refined freely; N—H distances involving atoms N1 and N3 were restrained to 0.85 (1) Å. H atoms bonded to water molecules were located in a difference Fourier map and refined isotropically, with distance restraints of O—H = 0.85 (1) Å and H···H = 1.30 (1) Å, and with Uiso(H) = 1.5 Ueq(O). C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier).

Structure description top

It has been shown that macrocyclic polyamines have numerous advantages as enzyme models. They can participate in molecular recongnition phenomena with different kinds of substrates, such as organic, inorganic, and biologically important anions (Lu et al., 1995; Anda et al., 2000). In addition, hexaaza macrocycles can form dinuclear metal complexes which in turn are capable of coordinating anions (Costas et al., 2004). In this paper, the synthesis and the crystal structure of a hexaazamacrocyclic complex, L.6HCl.4H2O [L is 3,7,11,19, 23,27-hexaazztricyclo[27.3.1.113,17]tetratriaconta-1(32),13,15,17 (34),29 (33),30-hexaene] is presented.

The structure of the title compound is shown in Fig.1. It consists of a centrosymmetric hexaprotonated macrocycle, six chloride counterions, and four water molecules of crystallization. In the macrocycle, each of the aliphatic chains adopts a planar trans configuration, and each of the benzene rings is tilted from the mean plane of chains by 108.9 (1)°. All six N atoms are protonated with hydrogen atoms directed outside the ring. None of the chloride counterions are situated inside the macrocyclic cavity. The macrocycle adopts a chair conformation, similar to that observed in related compounds (Llobet et al., 1994). The crystal structure is stabilized by N—H···Cl, N—H···O and O—H···Cl hydrogen bonds (Table 1).

For studies on hexaazamacrocyclic complexes, see: Llobet et al. (1994). For related literature, see: Anda et al. (2000); Costas et al. (2004); Lu et al. (1995).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998; data reduction: PROCESS-AUTO (Rigaku, 1998; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) 1 - x, -y, 1 - z.
3,7,11,19,23,27-Hexaazatricyclo[27.3.1.113,17]tetratriaconta- 1(32),13,15,17 (34),29 (33),30-hexaene hexachloride tetrahydrate top
Crystal data top
C28H52N66+·6Cl·4H2OF(000) = 808
Mr = 757.52Dx = 1.249 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 4594 reflections
a = 17.012 (7) Åθ = 3.0–27.5°
b = 7.469 (2) ŵ = 0.46 mm1
c = 17.329 (7) ÅT = 293 K
β = 113.841 (13)°Block, colourless
V = 2014.0 (13) Å30.19 × 0.18 × 0.15 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4594 independent reflections
Radiation source: fine-focus sealed tube2416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.102
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 2222
Absorption correction: multi-scan
(Higashi, 1995)
k = 98
Tmin = 0.895, Tmax = 0.932l = 2222
18546 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.1273P]
where P = (Fo2 + 2Fc2)/3
4594 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.24 e Å3
8 restraintsΔρmin = 0.26 e Å3
Crystal data top
C28H52N66+·6Cl·4H2OV = 2014.0 (13) Å3
Mr = 757.52Z = 2
Monoclinic, P21/cMo Kα radiation
a = 17.012 (7) ŵ = 0.46 mm1
b = 7.469 (2) ÅT = 293 K
c = 17.329 (7) Å0.19 × 0.18 × 0.15 mm
β = 113.841 (13)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4594 independent reflections
Absorption correction: multi-scan
(Higashi, 1995)
2416 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.932Rint = 0.102
18546 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0598 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.24 e Å3
4594 reflectionsΔρmin = 0.26 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.82877 (18)0.1791 (4)0.39938 (18)0.0355 (7)
C20.84179 (18)0.0147 (4)0.44031 (19)0.0368 (7)
H20.81050.08430.41150.044*
C30.90031 (19)0.0047 (4)0.52305 (19)0.0350 (7)
C40.94848 (19)0.1433 (4)0.5644 (2)0.0400 (8)
H40.98900.13200.61960.048*
C50.9369 (2)0.3061 (4)0.5244 (2)0.0450 (8)
H50.96930.40440.55280.054*
C60.8769 (2)0.3245 (4)0.4419 (2)0.0420 (8)
H60.86920.43510.41510.050*
C70.76289 (18)0.1935 (5)0.30992 (19)0.0431 (8)
H7A0.78560.26860.27810.052*
H7B0.75270.07540.28450.052*
C80.63910 (18)0.1810 (4)0.35545 (18)0.0367 (7)
H8A0.67560.19540.41490.044*
H8B0.63290.05390.34280.044*
C90.55173 (19)0.2631 (4)0.33619 (19)0.0395 (8)
H9A0.55800.39110.34650.047*
H9B0.51490.24470.27710.047*
C100.51067 (18)0.1803 (4)0.39031 (19)0.0385 (7)
H10A0.50660.05170.38200.046*
H10B0.54600.20370.44930.046*
C110.37784 (18)0.1881 (4)0.41939 (19)0.0411 (8)
H11A0.40350.23920.47560.049*
H11B0.38380.05900.42450.049*
C120.28364 (19)0.2373 (4)0.3786 (2)0.0435 (8)
H12A0.27820.36450.36630.052*
H12B0.25660.17340.32560.052*
C130.23772 (18)0.1922 (4)0.4348 (2)0.0412 (8)
H13A0.25360.07280.45770.049*
H13B0.25440.27620.48140.049*
C140.08870 (19)0.1827 (4)0.4337 (2)0.0434 (8)
H14A0.02890.19770.39570.052*
H14B0.10330.27690.47570.052*
N10.67900 (17)0.2703 (4)0.30374 (17)0.0345 (6)
H1A0.683 (2)0.3817 (17)0.3174 (19)0.049 (10)*
H1B0.6425 (19)0.256 (4)0.2505 (19)0.037 (8)*
N20.42311 (16)0.2566 (4)0.36763 (17)0.0341 (6)
H2A0.4253 (18)0.375 (4)0.3706 (18)0.038 (9)*
H2B0.391 (2)0.238 (4)0.309 (2)0.052 (10)*
N30.14354 (16)0.2017 (4)0.38479 (18)0.0385 (6)
H3A0.129 (2)0.303 (2)0.3601 (18)0.053 (11)*
H3B0.130 (2)0.120 (3)0.3470 (14)0.046 (10)*
O1W0.2694 (2)0.7467 (6)0.4322 (2)0.1099 (12)
H1O0.226 (2)0.690 (7)0.400 (3)0.165*
H2O0.307 (2)0.711 (8)0.416 (4)0.165*
O2W0.09052 (17)0.0279 (3)0.24667 (18)0.0595 (7)
H3O0.090 (3)0.1386 (18)0.256 (3)0.089*
H4O0.0390 (11)0.005 (5)0.232 (3)0.089*
Cl10.43151 (6)0.67844 (11)0.38468 (5)0.0500 (2)
Cl20.68078 (6)0.68054 (11)0.32358 (5)0.0545 (3)
Cl30.10025 (6)0.55940 (11)0.28508 (6)0.0543 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0243 (15)0.0496 (19)0.0374 (16)0.0022 (15)0.0175 (13)0.0018 (15)
C20.0258 (15)0.0446 (18)0.0432 (17)0.0034 (13)0.0172 (14)0.0063 (15)
C30.0252 (15)0.0397 (17)0.0454 (18)0.0035 (13)0.0197 (14)0.0033 (15)
C40.0295 (16)0.054 (2)0.0393 (17)0.0024 (15)0.0172 (14)0.0001 (16)
C50.0406 (19)0.0457 (19)0.0478 (19)0.0110 (15)0.0169 (16)0.0032 (16)
C60.0391 (18)0.0430 (18)0.0475 (19)0.0013 (15)0.0213 (15)0.0061 (16)
C70.0331 (17)0.064 (2)0.0373 (17)0.0027 (16)0.0192 (14)0.0028 (16)
C80.0329 (16)0.0444 (17)0.0362 (16)0.0022 (14)0.0174 (14)0.0044 (14)
C90.0350 (17)0.0436 (17)0.0449 (18)0.0044 (14)0.0210 (15)0.0038 (15)
C100.0293 (16)0.0456 (18)0.0400 (17)0.0042 (14)0.0133 (14)0.0056 (15)
C110.0302 (16)0.0512 (19)0.0434 (18)0.0002 (15)0.0165 (14)0.0063 (16)
C120.0327 (17)0.053 (2)0.0496 (19)0.0028 (15)0.0213 (15)0.0107 (16)
C130.0279 (16)0.054 (2)0.0423 (17)0.0007 (15)0.0151 (14)0.0043 (16)
C140.0343 (17)0.0475 (19)0.057 (2)0.0081 (15)0.0279 (16)0.0075 (16)
N10.0321 (14)0.0430 (17)0.0290 (14)0.0003 (13)0.0130 (12)0.0010 (13)
N20.0267 (14)0.0355 (15)0.0413 (16)0.0016 (12)0.0152 (12)0.0004 (13)
N30.0328 (14)0.0379 (16)0.0460 (16)0.0016 (13)0.0170 (13)0.0068 (15)
O1W0.077 (2)0.147 (3)0.101 (3)0.015 (2)0.031 (2)0.065 (2)
O2W0.0507 (16)0.0587 (15)0.0750 (17)0.0019 (14)0.0317 (15)0.0071 (15)
Cl10.0533 (5)0.0491 (5)0.0392 (4)0.0022 (4)0.0098 (4)0.0021 (4)
Cl20.0599 (6)0.0452 (5)0.0469 (5)0.0075 (4)0.0096 (4)0.0035 (4)
Cl30.0492 (5)0.0495 (5)0.0622 (6)0.0017 (4)0.0206 (4)0.0085 (4)
Geometric parameters (Å, º) top
C1—C61.380 (4)C11—N21.489 (4)
C1—C21.391 (4)C11—C121.512 (4)
C1—C71.505 (4)C11—H11A0.97
C2—C31.383 (4)C11—H11B0.97
C2—H20.93C12—C131.512 (4)
C3—C41.390 (4)C12—H12A0.97
C3—C14i1.500 (4)C12—H12B0.97
C4—C51.374 (4)C13—N31.483 (4)
C4—H40.93C13—H13A0.97
C5—C61.387 (4)C13—H13B0.97
C5—H50.93C14—N31.500 (4)
C6—H60.93C14—C3i1.500 (4)
C7—N11.501 (4)C14—H14A0.97
C7—H7A0.97C14—H14B0.97
C7—H7B0.97N1—H1A0.861 (10)
C8—N11.483 (4)N1—H1B0.89 (3)
C8—C91.515 (4)N2—H2A0.89 (3)
C8—H8A0.97N2—H2B0.95 (3)
C8—H8B0.97N3—H3A0.857 (10)
C9—C101.510 (4)N3—H3B0.857 (10)
C9—H9A0.97O1W—H1O0.84 (4)
C9—H9B0.97O1W—H2O0.84 (5)
C10—N21.492 (4)O2W—H3O0.841 (10)
C10—H10A0.97O2W—H4O0.84 (3)
C10—H10B0.97
C6—C1—C2119.0 (3)N2—C11—H11A109.7
C6—C1—C7121.9 (3)C12—C11—H11A109.7
C2—C1—C7119.1 (3)N2—C11—H11B109.7
C3—C2—C1121.4 (3)C12—C11—H11B109.7
C3—C2—H2119.3H11A—C11—H11B108.2
C1—C2—H2119.3C13—C12—C11111.7 (3)
C2—C3—C4118.6 (3)C13—C12—H12A109.3
C2—C3—C14i120.1 (3)C11—C12—H12A109.3
C4—C3—C14i121.3 (3)C13—C12—H12B109.3
C5—C4—C3120.7 (3)C11—C12—H12B109.3
C5—C4—H4119.7H12A—C12—H12B107.9
C3—C4—H4119.7N3—C13—C12109.3 (3)
C4—C5—C6120.2 (3)N3—C13—H13A109.8
C4—C5—H5119.9C12—C13—H13A109.8
C6—C5—H5119.9N3—C13—H13B109.8
C1—C6—C5120.2 (3)C12—C13—H13B109.8
C1—C6—H6119.9H13A—C13—H13B108.3
C5—C6—H6119.9N3—C14—C3i112.7 (2)
N1—C7—C1113.0 (2)N3—C14—H14A109.1
N1—C7—H7A109.0C3i—C14—H14A109.1
C1—C7—H7A109.0N3—C14—H14B109.1
N1—C7—H7B109.0C3i—C14—H14B109.1
C1—C7—H7B109.0H14A—C14—H14B107.8
H7A—C7—H7B107.8C8—N1—C7116.1 (2)
N1—C8—C9109.4 (2)C8—N1—H1A106 (2)
N1—C8—H8A109.8C7—N1—H1A112 (2)
C9—C8—H8A109.8C8—N1—H1B106 (2)
N1—C8—H8B109.8C7—N1—H1B106 (2)
C9—C8—H8B109.8H1A—N1—H1B110 (3)
H8A—C8—H8B108.2C11—N2—C10114.5 (2)
C10—C9—C8110.9 (2)C11—N2—H2A109 (2)
C10—C9—H9A109.5C10—N2—H2A110.6 (19)
C8—C9—H9A109.5C11—N2—H2B112 (2)
C10—C9—H9B109.5C10—N2—H2B108 (2)
C8—C9—H9B109.5H2A—N2—H2B102 (3)
H9A—C9—H9B108.1C13—N3—C14115.9 (3)
N2—C10—C9110.1 (2)C13—N3—H3A111 (2)
N2—C10—H10A109.6C14—N3—H3A104 (2)
C9—C10—H10A109.6C13—N3—H3B108 (2)
N2—C10—H10B109.6C14—N3—H3B109 (2)
C9—C10—H10B109.6H3A—N3—H3B108 (3)
H10A—C10—H10B108.2H1O—O1W—H2O102 (5)
N2—C11—C12110.0 (2)H3O—O2W—H4O105 (4)
C6—C1—C2—C31.6 (5)C2—C1—C7—N199.6 (3)
C7—C1—C2—C3178.7 (3)N1—C8—C9—C10177.8 (3)
C1—C2—C3—C42.0 (5)C8—C9—C10—N2177.3 (2)
C1—C2—C3—C14i178.4 (3)N2—C11—C12—C13172.3 (3)
C2—C3—C4—C51.4 (5)C11—C12—C13—N3166.5 (3)
C14i—C3—C4—C5179.1 (3)C9—C8—N1—C7174.9 (2)
C3—C4—C5—C60.3 (5)C1—C7—N1—C853.3 (4)
C2—C1—C6—C50.5 (5)C12—C11—N2—C10166.3 (3)
C7—C1—C6—C5179.8 (3)C9—C10—N2—C11178.1 (3)
C4—C5—C6—C10.2 (5)C12—C13—N3—C14172.8 (3)
C6—C1—C7—N180.7 (4)C3i—C14—N3—C1362.0 (4)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl20.86 (2)2.24 (1)3.082 (3)168 (3)
N1—H1B···Cl1ii0.89 (3)2.24 (3)3.115 (3)169 (3)
O1W—H1O···Cl30.84 (4)2.46 (5)3.287 (4)169 (4)
N2—H2A···Cl10.89 (3)2.28 (3)3.162 (3)177 (3)
N2—H2B···Cl2ii0.95 (3)2.17 (3)3.113 (3)177 (3)
O1W—H2O···Cl10.84 (5)2.40 (5)3.222 (4)166 (5)
N3—H3A···Cl30.85 (2)2.25 (2)3.104 (3)173 (3)
N3—H3B···O2W0.86 (2)1.94 (2)2.782 (4)169 (2)
O2W—H3O···Cl3iii0.84 (2)2.30 (2)3.144 (3)176 (6)
O2W—H4O···Cl3iv0.84 (3)2.30 (3)3.133 (4)168 (4)
Symmetry codes: (ii) x+1, y1/2, z+1/2; (iii) x, y1, z; (iv) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC28H52N66+·6Cl·4H2O
Mr757.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.012 (7), 7.469 (2), 17.329 (7)
β (°) 113.841 (13)
V3)2014.0 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.19 × 0.18 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(Higashi, 1995)
Tmin, Tmax0.895, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
18546, 4594, 2416
Rint0.102
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.130, 1.04
No. of reflections4594
No. of parameters235
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.26

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO (Rigaku, 1998, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl20.86 (2)2.24 (1)3.082 (3)168 (3)
N1—H1B···Cl1i0.89 (3)2.24 (3)3.115 (3)169 (3)
O1W—H1O···Cl30.84 (4)2.46 (5)3.287 (4)169 (4)
N2—H2A···Cl10.89 (3)2.28 (3)3.162 (3)177 (3)
N2—H2B···Cl2i0.95 (3)2.17 (3)3.113 (3)177 (3)
O1W—H2O···Cl10.84 (5)2.40 (5)3.222 (4)166 (5)
N3—H3A···Cl30.85 (2)2.25 (2)3.104 (3)173 (3)
N3—H3B···O2W0.86 (2)1.94 (2)2.782 (4)169 (2)
O2W—H3O···Cl3ii0.84 (2)2.30 (2)3.144 (3)176 (6)
O2W—H4O···Cl3iii0.84 (3)2.30 (3)3.133 (4)168 (4)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1, z; (iii) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Science Foundation for Young Teachers of Northeast Normal University (grant No. 20060304) for supporting this work.

References

First citationAnda, C., Llobet, A., Salvado, V., Reibenspies, J., Motekaitis, R. J. & Martell, A. E. (2000). Inorg. Chem. 39, 2986–2999.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCostas, M., Anda, C., Llobet, A., Parella, T., Evans, H. S. & Pinilla, E. (2004). Eur. J. Inorg. Chem. pp. 857–865.  Web of Science CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLlobet, A., Reibenspies, J. & Martell, A. E. (1994). Inorg. Chem. 33, 5946–5951.  CSD CrossRef CAS Web of Science Google Scholar
First citationLu, Q., Motekaitis, R. J., Reibenspies, J. & Martell, A. E. (1995). Inorg. Chem. 34, 4958–4964.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds