organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Amino-1-phenyl-4-(propan-2-yl­­idene)pyrazol-5(4H)-one

aDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China, and bDepartment of Applied Science and Technology, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: imlijikun@163.com

(Received 23 November 2007; accepted 26 November 2007; online 6 December 2007)

In the title mol­ecule, C12H13N3O, the phenyl and the pyrazole rings make a dihedral angle of 7.5 (2)°. Inter­molecular N—H⋯O hydrogen bonds involving the amino group link the mol­ecules into a three-dimensional framework.

Related literature

For a related structure, see: Wang et al. (2003[Wang, J. L., Yang, Y., Zhang, X. & Miao, F. M. (2003). Chin. J. Struct. Chem. 22, 677-680.]). For applications of pyrazolone derivatives, see: Hodnett et al. (1972[Hodnett, E. M. & Paul, D. M. (1972). J. Med. Chem. 15, 339-341.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13N3O

  • Mr = 215.25

  • Orthorhombic, F d d 2

  • a = 22.557 (8) Å

  • b = 26.291 (9) Å

  • c = 7.528 (3) Å

  • V = 4465 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 (2) K

  • 0.15 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.987, Tmax = 0.993

  • 7064 measured reflections

  • 1448 independent reflections

  • 960 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.138

  • S = 1.03

  • 1448 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.86 2.25 3.105 (3) 174
N3—H3B⋯O1ii 0.86 2.32 3.054 (3) 144
C5—H5A⋯O1 0.96 2.20 2.935 (5) 131
C12—H12⋯O1 0.93 2.26 2.882 (4) 124
Symmetry codes: (i) -x+1, -y, z; (ii) [-x+{\script{3\over 4}}, y-{\script{1\over 4}}, z+{\script{1\over 4}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazolone derivatives are well known for their applications as analgesics, antipyretics, anti-inflammatory and insecticides (Hodnett & Paul, 1972). Therefore, the study on the derivatives of pyrazolone is the focus of many research groups working in the fields of coordination chemistry, biomedicine and pharmaceutical chemistry. We report here the crystal structure of the title compound.

All geometric parameters in the title molecule (Fig. 1) are in good agreement with those found in N-(1,5-dihydro-1-phenyl-3-methyl-4-benzoyl)-3-chloroaniline (Wang et al., 2003). The benzene and the pyrazole rings make a dihedral angle of 7.5 (2)°. Intermolecular N—H···O hydrogen bonds involving the amino group link the molecules into a three-dimensional framework (Fig. 2).

Related literature top

For a related structure, see: Wang et al. (2003). For applications of pyrazolone derivatives, see: Hodnett et al. (1972).

Experimental top

3-Amino-1-phenyl-5-pyrazolone (0.175 g, 1 mmol) was added to acetone (20 ml), and the mixture was stirred under reflux at 343 K for 6 h. The solution was allowed to cool to room temperature and filtered. Orange crystals suitable for X-ray diffraction study were obtained after 7 d (yield 0.172 g, 80%; m.p. 370–372 K). Analysis found: C 66.90, H 7.02, N 19.48%; C12H13N3O requires: C 66.96, H 6.09, N 19.52%.

Refinement top

H atoms were positioned geometrically (C—H = 0.93 - 0.96 Å and N—H = 0.86 Å) and refined as riding, with Uiso(H) = 1.5Ueq(Cmethyl) and Uiso(H) = 1.2Ueq(N and Caromatic). In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Structure description top

Pyrazolone derivatives are well known for their applications as analgesics, antipyretics, anti-inflammatory and insecticides (Hodnett & Paul, 1972). Therefore, the study on the derivatives of pyrazolone is the focus of many research groups working in the fields of coordination chemistry, biomedicine and pharmaceutical chemistry. We report here the crystal structure of the title compound.

All geometric parameters in the title molecule (Fig. 1) are in good agreement with those found in N-(1,5-dihydro-1-phenyl-3-methyl-4-benzoyl)-3-chloroaniline (Wang et al., 2003). The benzene and the pyrazole rings make a dihedral angle of 7.5 (2)°. Intermolecular N—H···O hydrogen bonds involving the amino group link the molecules into a three-dimensional framework (Fig. 2).

For a related structure, see: Wang et al. (2003). For applications of pyrazolone derivatives, see: Hodnett et al. (1972).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing of the title compound.
3-Amino-1-phenyl-4-(propan-2-ylidene)pyrazol-5(4H)-one top
Crystal data top
C12H13N3OF(000) = 1824
Mr = 215.25Dx = 1.281 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 1182 reflections
a = 22.557 (8) Åθ = 3.0–21.1°
b = 26.291 (9) ŵ = 0.09 mm1
c = 7.528 (3) ÅT = 273 K
V = 4465 (3) Å3Block, orange
Z = 160.15 × 0.12 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1448 independent reflections
Radiation source: sealed tube960 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3030
Tmin = 0.987, Tmax = 0.993k = 3535
7064 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0788P)2]
where P = (Fo2 + 2Fc2)/3
1448 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H13N3OV = 4465 (3) Å3
Mr = 215.25Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 22.557 (8) ŵ = 0.09 mm1
b = 26.291 (9) ÅT = 273 K
c = 7.528 (3) Å0.15 × 0.12 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1448 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
960 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.993Rint = 0.049
7064 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
1448 reflectionsΔρmin = 0.17 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42250 (10)0.19174 (8)0.4851 (4)0.0682 (8)
N10.48595 (11)0.12402 (8)0.4474 (4)0.0491 (7)
N20.48444 (12)0.07007 (8)0.4631 (4)0.0527 (7)
N30.41722 (12)0.00919 (9)0.5431 (5)0.0677 (9)
H3A0.44320.01430.52620.081*
H3B0.38210.00130.57790.081*
C10.43317 (14)0.14594 (11)0.4913 (5)0.0493 (8)
C20.39362 (13)0.10311 (10)0.5399 (5)0.0461 (8)
C30.43167 (14)0.05839 (10)0.5153 (5)0.0484 (8)
C40.33718 (14)0.10759 (11)0.5946 (5)0.0496 (8)
C50.30732 (16)0.15770 (12)0.6224 (6)0.0622 (10)
H5A0.33650.18420.62400.093*
H5B0.28650.15730.73350.093*
H5C0.27980.16370.52750.093*
C60.29806 (16)0.06265 (13)0.6325 (7)0.0685 (12)
H6A0.29300.04310.52600.103*
H6B0.26010.07430.67330.103*
H6C0.31610.04190.72240.103*
C70.53990 (13)0.14704 (11)0.3951 (5)0.0471 (7)
C80.58725 (15)0.11694 (14)0.3435 (5)0.0605 (9)
H80.58330.08170.33980.073*
C90.64021 (17)0.13950 (15)0.2978 (6)0.0740 (12)
H90.67190.11920.26330.089*
C100.64711 (18)0.19102 (16)0.3021 (7)0.0776 (12)
H100.68310.20580.27070.093*
C110.60048 (16)0.22050 (14)0.3530 (7)0.0731 (12)
H110.60490.25570.35540.088*
C120.54684 (16)0.19944 (13)0.4011 (6)0.0605 (10)
H120.51560.22010.43710.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0507 (13)0.0357 (12)0.118 (2)0.0070 (9)0.0051 (14)0.0085 (12)
N10.0397 (14)0.0350 (12)0.0728 (19)0.0038 (10)0.0001 (12)0.0076 (13)
N20.0485 (15)0.0354 (12)0.074 (2)0.0030 (11)0.0015 (14)0.0035 (13)
N30.0574 (17)0.0351 (14)0.111 (3)0.0070 (12)0.0143 (18)0.0088 (15)
C10.0438 (17)0.0390 (16)0.065 (2)0.0028 (12)0.0009 (16)0.0060 (14)
C20.0464 (17)0.0345 (14)0.057 (2)0.0027 (13)0.0045 (15)0.0042 (14)
C30.0477 (18)0.0341 (15)0.063 (2)0.0035 (12)0.0000 (16)0.0032 (14)
C40.0442 (18)0.0455 (17)0.059 (2)0.0041 (13)0.0001 (15)0.0060 (14)
C50.053 (2)0.053 (2)0.081 (3)0.0102 (15)0.006 (2)0.0052 (18)
C60.051 (2)0.055 (2)0.099 (3)0.0012 (15)0.012 (2)0.012 (2)
C70.0413 (17)0.0493 (17)0.0508 (19)0.0001 (13)0.0011 (15)0.0080 (16)
C80.056 (2)0.0558 (19)0.070 (3)0.0046 (16)0.0082 (19)0.0041 (17)
C90.052 (2)0.081 (3)0.090 (3)0.004 (2)0.023 (2)0.008 (2)
C100.053 (2)0.082 (3)0.098 (3)0.0153 (19)0.016 (2)0.009 (2)
C110.061 (2)0.057 (2)0.101 (3)0.0129 (17)0.006 (2)0.009 (2)
C120.052 (2)0.0498 (19)0.080 (3)0.0001 (14)0.0046 (18)0.0082 (18)
Geometric parameters (Å, º) top
O1—C11.229 (3)C5—H5C0.96
N1—C11.363 (4)C6—H6A0.96
N1—C71.415 (4)C6—H6B0.96
N1—N21.424 (3)C6—H6C0.96
N2—C31.290 (4)C7—C81.385 (5)
N3—C31.350 (4)C7—C121.387 (4)
N3—H3A0.86C8—C91.377 (5)
N3—H3B0.86C8—H80.93
C1—C21.482 (4)C9—C101.364 (5)
C2—C41.343 (4)C9—H90.93
C2—C31.468 (4)C10—C111.362 (6)
C4—C51.494 (4)C10—H100.93
C4—C61.502 (5)C11—C121.379 (5)
C5—H5A0.96C11—H110.93
C5—H5B0.96C12—H120.93
C1—N1—C7129.6 (2)C4—C6—H6A109.5
C1—N1—N2112.3 (2)C4—C6—H6B109.5
C7—N1—N2118.0 (2)H6A—C6—H6B109.5
C3—N2—N1106.5 (2)C4—C6—H6C109.5
C3—N3—H3A120.0H6A—C6—H6C109.5
C3—N3—H3B120.0H6B—C6—H6C109.5
H3A—N3—H3B120.0C8—C7—C12119.3 (3)
O1—C1—N1125.2 (3)C8—C7—N1119.8 (3)
O1—C1—C2129.5 (3)C12—C7—N1120.8 (3)
N1—C1—C2105.3 (2)C9—C8—C7119.5 (3)
C4—C2—C3131.6 (3)C9—C8—H8120.2
C4—C2—C1125.4 (3)C7—C8—H8120.2
C3—C2—C1103.0 (3)C10—C9—C8121.4 (3)
N2—C3—N3119.9 (3)C10—C9—H9119.3
N2—C3—C2112.8 (2)C8—C9—H9119.3
N3—C3—C2127.3 (3)C11—C10—C9118.9 (3)
C2—C4—C5123.2 (3)C11—C10—H10120.5
C2—C4—C6123.1 (3)C9—C10—H10120.5
C5—C4—C6113.7 (3)C10—C11—C12121.5 (4)
C4—C5—H5A109.5C10—C11—H11119.2
C4—C5—H5B109.5C12—C11—H11119.2
H5A—C5—H5B109.5C11—C12—C7119.3 (3)
C4—C5—H5C109.5C11—C12—H12120.4
H5A—C5—H5C109.5C7—C12—H12120.4
H5B—C5—H5C109.5
C1—N1—N2—C30.2 (4)C3—C2—C4—C5175.8 (4)
C7—N1—N2—C3178.7 (3)C1—C2—C4—C53.1 (5)
C7—N1—C1—O13.4 (6)C3—C2—C4—C64.6 (6)
N2—N1—C1—O1178.3 (3)C1—C2—C4—C6176.5 (4)
C7—N1—C1—C2178.3 (3)C1—N1—C7—C8175.2 (4)
N2—N1—C1—C20.0 (4)N2—N1—C7—C86.5 (5)
O1—C1—C2—C42.8 (6)C1—N1—C7—C127.3 (6)
N1—C1—C2—C4179.0 (3)N2—N1—C7—C12171.0 (3)
O1—C1—C2—C3178.0 (4)C12—C7—C8—C90.5 (6)
N1—C1—C2—C30.2 (4)N1—C7—C8—C9178.1 (4)
N1—N2—C3—N3179.5 (3)C7—C8—C9—C100.0 (7)
N1—N2—C3—C20.3 (4)C8—C9—C10—C110.1 (8)
C4—C2—C3—N2178.8 (4)C9—C10—C11—C120.4 (8)
C1—C2—C3—N20.3 (4)C10—C11—C12—C70.9 (7)
C4—C2—C3—N30.3 (6)C8—C7—C12—C111.0 (6)
C1—C2—C3—N3179.4 (3)N1—C7—C12—C11178.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.253.105 (3)174
N3—H3B···O1ii0.862.323.054 (3)144
C5—H5A···O10.962.202.935 (5)131
C12—H12···O10.932.262.882 (4)124
Symmetry codes: (i) x+1, y, z; (ii) x+3/4, y1/4, z+1/4.

Experimental details

Crystal data
Chemical formulaC12H13N3O
Mr215.25
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)273
a, b, c (Å)22.557 (8), 26.291 (9), 7.528 (3)
V3)4465 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.15 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.987, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
7064, 1448, 960
Rint0.049
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.138, 1.03
No. of reflections1448
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.253.105 (3)174
N3—H3B···O1ii0.862.323.054 (3)144
C5—H5A···O10.962.202.935 (5)131
C12—H12···O10.932.262.882 (4)124
Symmetry codes: (i) x+1, y, z; (ii) x+3/4, y1/4, z+1/4.
 

Acknowledgements

The authors thank the Postgraduate Foundation of Taishan University (grant No. Y06–2–12) for financial support.

References

First citationHodnett, E. M. & Paul, D. M. (1972). J. Med. Chem. 15, 339–341.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, J. L., Yang, Y., Zhang, X. & Miao, F. M. (2003). Chin. J. Struct. Chem. 22, 677–680.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds