organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4,6-Di­methyl­pyrimidin-2-ylsulfan­yl)-N-(4-methyl­pyridin-2-yl)acetamide

aSchool of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
*Correspondence e-mail: tju_chemistry@yahoo.com.cn

(Received 23 November 2007; accepted 28 November 2007; online 6 December 2007)

The non-H atoms of the title mol­ecule, C14H16N4OS, are coplanar, with an r.m.s. deviation of 0.039 Å. The dihedral angle between the two aromatic rings is 2.4 (2)°. An intra­molecular C—H⋯O hydrogen bond is observed. The mol­ecules exist as N—H⋯N hydrogen-bonded centrosymmetric dimers.

Related literature

For related literature, see: Koike et al. (1999[Koike, K., Jia, Z., Nikaido, T., Liu, Y., Zhao, Y. & Guo, D. (1999). Org. Lett. 1, 197-198.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N4OS

  • Mr = 288.37

  • Monoclinic, P 21 /c

  • a = 5.1924 (19) Å

  • b = 15.423 (5) Å

  • c = 18.121 (6) Å

  • β = 91.678 (6)°

  • V = 1450.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 (2) K

  • 0.40 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0), SADABS (Version 2.03) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.916, Tmax = 0.957

  • 8084 measured reflections

  • 2970 independent reflections

  • 1582 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.144

  • S = 0.98

  • 2970 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N4i 0.86 2.31 3.171 (3) 174
C10—H10⋯O1 0.93 2.20 2.821 (4) 123
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0), SADABS (Version 2.03) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0), SADABS (Version 2.03) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0), SADABS (Version 2.03) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Acetamide is an important class of medical intermediate. Many biologically active compounds are prepared by using acetamide (Koike et al., 1999). The title compound was prepared from the reaction of 2-thio-4,6-dimethylpyrimidine with 2-chloro-N-(5-methylpyridin-2-yl)acetamide. We report here the crystal structure of the title compound.

The non-hydrogen atoms of the title molecule are coplanar, with an r.m.s. deviation of 0.039 Å. The dihedral angle between the two heterocyclic rings is 2.4 (2)°. The O1—C8—N3 [124.3 (2)°] and N3—C8—C7 [113.9 (2)°] angles deviate significantly from the ideal value of 120°. Due to the p-π conjugation bwtween the S atom and the pyrimidine ring, the S1—C1 bond distance [1.756 (3) Å] is slightly shorter than the S1—C7 bond distance [1.794 (3) Å]. An intramolecular C—H···O hydrogen bond is observed. The molecules exist as N—H···O hydrogen-bonded centrosymmetric dimer (Table 1).

Related literature top

For related literature, see: Koike et al. (1999).

Experimental top

The title compound was synthesized by the reaction of 2-thio-4,6-dimethylpyrimidine (2 mmol) with 2-chloro-N-(5-methylpyridin-2-yl)acetamide (2 mmol) in refluxing ethanol (40 ml). Single crystals suitable for X-ray analysis were grown by slow evaporation of a chloroform-acetone (1:5 v/v) solution.

Refinement top

All H atoms were positioned geometrically and refined as riding (N—H = 0.86 Å and C—H = 0.93–0.97 Å). For the CH and CH2 groups, Uiso(H) values were set equal to 1.2Ueq(C) and for the methyl groups they were set equal to 1.5Ueq(C).

Structure description top

Acetamide is an important class of medical intermediate. Many biologically active compounds are prepared by using acetamide (Koike et al., 1999). The title compound was prepared from the reaction of 2-thio-4,6-dimethylpyrimidine with 2-chloro-N-(5-methylpyridin-2-yl)acetamide. We report here the crystal structure of the title compound.

The non-hydrogen atoms of the title molecule are coplanar, with an r.m.s. deviation of 0.039 Å. The dihedral angle between the two heterocyclic rings is 2.4 (2)°. The O1—C8—N3 [124.3 (2)°] and N3—C8—C7 [113.9 (2)°] angles deviate significantly from the ideal value of 120°. Due to the p-π conjugation bwtween the S atom and the pyrimidine ring, the S1—C1 bond distance [1.756 (3) Å] is slightly shorter than the S1—C7 bond distance [1.794 (3) Å]. An intramolecular C—H···O hydrogen bond is observed. The molecules exist as N—H···O hydrogen-bonded centrosymmetric dimer (Table 1).

For related literature, see: Koike et al. (1999).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.
2-(4,6-Dimethylpyrimidin-2-ylsulfanyl)-N-(4-methylpyridin-2-yl)acetamide top
Crystal data top
C14H16N4OSF(000) = 608
Mr = 288.37Dx = 1.320 Mg m3
Monoclinic, P21/cMelting point: 418 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.1924 (19) ÅCell parameters from 1663 reflections
b = 15.423 (5) Åθ = 2.6–22.2°
c = 18.121 (6) ŵ = 0.22 mm1
β = 91.678 (6)°T = 293 K
V = 1450.5 (9) Å3Plate, colourless
Z = 40.40 × 0.24 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2970 independent reflections
Radiation source: fine-focus sealed tube1582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
φ and ω scansθmax = 26.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 64
Tmin = 0.916, Tmax = 0.957k = 1719
8084 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0718P)2]
where P = (Fo2 + 2Fc2)/3
2970 reflections(Δ/σ)max = 0.004
184 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C14H16N4OSV = 1450.5 (9) Å3
Mr = 288.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.1924 (19) ŵ = 0.22 mm1
b = 15.423 (5) ÅT = 293 K
c = 18.121 (6) Å0.40 × 0.24 × 0.20 mm
β = 91.678 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2970 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1582 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.957Rint = 0.060
8084 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 0.98Δρmax = 0.27 e Å3
2970 reflectionsΔρmin = 0.23 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19772 (16)0.06150 (5)0.30190 (4)0.0565 (3)
O10.4584 (4)0.17627 (12)0.39721 (11)0.0629 (6)
C80.5502 (6)0.10500 (16)0.40685 (14)0.0424 (7)
N30.7497 (4)0.08705 (13)0.45581 (11)0.0437 (6)
H3A0.79290.03340.46030.052*
N10.0905 (5)0.02849 (15)0.21206 (12)0.0526 (6)
N20.2279 (4)0.11038 (14)0.28121 (12)0.0487 (6)
N41.0824 (5)0.11059 (13)0.54011 (12)0.0471 (6)
C70.4517 (5)0.02656 (16)0.36422 (15)0.0466 (7)
H7A0.38730.01660.39800.056*
H7B0.59010.00080.33690.056*
C10.1057 (6)0.03772 (17)0.26160 (15)0.0464 (7)
C90.8914 (5)0.14679 (15)0.49939 (13)0.0390 (7)
C100.8368 (6)0.23511 (16)0.50028 (15)0.0493 (7)
H100.70060.25720.47160.059*
C30.0551 (6)0.18068 (19)0.19480 (16)0.0566 (8)
H30.11190.23100.17120.068*
C121.1828 (6)0.25295 (18)0.58610 (17)0.0580 (8)
H121.28710.28740.61670.070*
C40.1449 (6)0.18362 (18)0.24637 (16)0.0502 (7)
C20.1703 (6)0.1016 (2)0.17864 (15)0.0535 (8)
C50.2828 (6)0.26511 (18)0.26755 (19)0.0677 (9)
H5A0.44760.26630.24490.102*
H5B0.18280.31420.25110.102*
H5C0.30670.26730.32020.102*
C131.2229 (6)0.16531 (18)0.58239 (17)0.0611 (9)
H131.35700.14210.61120.073*
C60.3885 (7)0.0931 (2)0.12243 (18)0.0747 (10)
H6A0.50280.04780.13720.112*
H6B0.48120.14690.11910.112*
H6C0.32050.07920.07520.112*
C110.9856 (6)0.28937 (17)0.54384 (15)0.0507 (8)
C140.9279 (7)0.38546 (17)0.54669 (19)0.0782 (11)
H14A0.82680.39770.58900.117*
H14B0.83370.40230.50260.117*
H14C1.08660.41730.55030.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0590 (5)0.0408 (4)0.0681 (5)0.0027 (4)0.0256 (4)0.0038 (4)
O10.0813 (16)0.0368 (11)0.0683 (13)0.0118 (10)0.0348 (12)0.0053 (9)
C80.0517 (18)0.0305 (15)0.0445 (16)0.0044 (13)0.0055 (14)0.0006 (12)
N30.0501 (15)0.0285 (11)0.0516 (14)0.0060 (10)0.0152 (12)0.0033 (10)
N10.0499 (16)0.0553 (15)0.0518 (15)0.0103 (12)0.0128 (12)0.0042 (12)
N20.0498 (16)0.0438 (14)0.0521 (14)0.0044 (11)0.0070 (12)0.0049 (11)
N40.0469 (15)0.0359 (13)0.0574 (14)0.0054 (11)0.0174 (12)0.0049 (11)
C70.0497 (18)0.0393 (16)0.0502 (17)0.0008 (13)0.0118 (14)0.0047 (13)
C10.0471 (18)0.0445 (17)0.0476 (17)0.0084 (13)0.0029 (14)0.0002 (13)
C90.0419 (17)0.0334 (14)0.0414 (15)0.0019 (12)0.0031 (13)0.0014 (12)
C100.0582 (19)0.0341 (15)0.0546 (18)0.0111 (13)0.0154 (15)0.0024 (13)
C30.060 (2)0.0498 (19)0.0594 (19)0.0169 (16)0.0021 (16)0.0065 (15)
C120.062 (2)0.0379 (17)0.072 (2)0.0005 (14)0.0252 (17)0.0088 (14)
C40.0496 (19)0.0465 (17)0.0544 (18)0.0109 (14)0.0015 (15)0.0074 (14)
C20.0496 (19)0.063 (2)0.0477 (18)0.0202 (16)0.0086 (15)0.0012 (14)
C50.075 (2)0.0444 (18)0.083 (2)0.0057 (16)0.0081 (19)0.0105 (16)
C130.057 (2)0.0455 (18)0.079 (2)0.0046 (15)0.0272 (17)0.0055 (15)
C60.071 (2)0.081 (2)0.070 (2)0.0275 (19)0.0276 (19)0.0112 (18)
C110.062 (2)0.0339 (15)0.0554 (18)0.0007 (14)0.0062 (16)0.0046 (13)
C140.104 (3)0.0346 (17)0.094 (3)0.0064 (17)0.028 (2)0.0098 (16)
Geometric parameters (Å, º) top
S1—C11.756 (3)C3—C21.386 (4)
S1—C71.794 (3)C3—H30.93
O1—C81.209 (3)C12—C131.369 (4)
C8—N31.372 (3)C12—C111.380 (4)
C8—C71.516 (3)C12—H120.93
N3—C91.407 (3)C4—C51.491 (4)
N3—H3A0.86C2—C61.507 (4)
N1—C21.340 (3)C5—H5A0.96
N1—C11.346 (3)C5—H5B0.96
N2—C11.331 (3)C5—H5C0.96
N2—C41.358 (3)C13—H130.93
N4—C91.341 (3)C6—H6A0.96
N4—C131.341 (3)C6—H6B0.96
C7—H7A0.97C6—H6C0.96
C7—H7B0.97C11—C141.513 (4)
C9—C101.391 (3)C14—H14A0.96
C10—C111.373 (4)C14—H14B0.96
C10—H100.93C14—H14C0.96
C3—C41.377 (4)
C1—S1—C7100.72 (13)N2—C4—C3120.7 (3)
O1—C8—N3124.3 (2)N2—C4—C5116.0 (3)
O1—C8—C7121.8 (3)C3—C4—C5123.3 (3)
N3—C8—C7113.9 (2)N1—C2—C3121.3 (3)
C8—N3—C9127.1 (2)N1—C2—C6116.6 (3)
C8—N3—H3A116.5C3—C2—C6122.1 (3)
C9—N3—H3A116.5C4—C5—H5A109.5
C2—N1—C1115.5 (2)C4—C5—H5B109.5
C1—N2—C4115.7 (2)H5A—C5—H5B109.5
C9—N4—C13115.7 (2)C4—C5—H5C109.5
C8—C7—S1108.17 (18)H5A—C5—H5C109.5
C8—C7—H7A110.1H5B—C5—H5C109.5
S1—C7—H7A110.1N4—C13—C12124.6 (3)
C8—C7—H7B110.1N4—C13—H13117.7
S1—C7—H7B110.1C12—C13—H13117.7
H7A—C7—H7B108.4C2—C6—H6A109.5
N2—C1—N1127.8 (2)C2—C6—H6B109.5
N2—C1—S1120.1 (2)H6A—C6—H6B109.5
N1—C1—S1112.1 (2)C2—C6—H6C109.5
N4—C9—C10123.3 (2)H6A—C6—H6C109.5
N4—C9—N3113.7 (2)H6B—C6—H6C109.5
C10—C9—N3123.0 (2)C10—C11—C12117.8 (2)
C11—C10—C9119.5 (2)C10—C11—C14120.5 (3)
C11—C10—H10120.3C12—C11—C14121.6 (3)
C9—C10—H10120.3C11—C14—H14A109.5
C4—C3—C2119.0 (3)C11—C14—H14B109.5
C4—C3—H3120.5H14A—C14—H14B109.5
C2—C3—H3120.5C11—C14—H14C109.5
C13—C12—C11119.1 (3)H14A—C14—H14C109.5
C13—C12—H12120.5H14B—C14—H14C109.5
C11—C12—H12120.5
O1—C8—N3—C94.1 (5)N3—C9—C10—C11179.4 (2)
C7—C8—N3—C9175.6 (2)C1—N2—C4—C30.5 (4)
O1—C8—C7—S10.8 (4)C1—N2—C4—C5179.4 (3)
N3—C8—C7—S1178.85 (19)C2—C3—C4—N20.2 (4)
C1—S1—C7—C8177.95 (19)C2—C3—C4—C5179.7 (3)
C4—N2—C1—N10.6 (4)C1—N1—C2—C30.1 (4)
C4—N2—C1—S1179.3 (2)C1—N1—C2—C6179.5 (3)
C2—N1—C1—N20.2 (4)C4—C3—C2—N10.1 (5)
C2—N1—C1—S1179.6 (2)C4—C3—C2—C6179.5 (3)
C7—S1—C1—N21.0 (3)C9—N4—C13—C120.1 (4)
C7—S1—C1—N1179.1 (2)C11—C12—C13—N40.1 (5)
C13—N4—C9—C100.5 (4)C9—C10—C11—C120.9 (4)
C13—N4—C9—N3179.8 (2)C9—C10—C11—C14179.1 (3)
C8—N3—C9—N4177.6 (2)C13—C12—C11—C100.5 (5)
C8—N3—C9—C102.8 (4)C13—C12—C11—C14178.7 (3)
N4—C9—C10—C110.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N4i0.862.313.171 (3)174
C10—H10···O10.932.202.821 (4)123
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H16N4OS
Mr288.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.1924 (19), 15.423 (5), 18.121 (6)
β (°) 91.678 (6)
V3)1450.5 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.40 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.916, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
8084, 2970, 1582
Rint0.060
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.144, 0.98
No. of reflections2970
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.23

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N4i0.862.313.171 (3)174
C10—H10···O10.932.202.821 (4)123
Symmetry code: (i) x+2, y, z+1.
 

References

First citationBruker (1997). SMART (Version 5.611), SAINT (Version 6.0), SADABS (Version 2.03) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKoike, K., Jia, Z., Nikaido, T., Liu, Y., Zhao, Y. & Guo, D. (1999). Org. Lett. 1, 197–198.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds