metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[aqua­di­pyridine­copper(II)]-μ-fumarato]

aState Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116012, People's Republic of China
*Correspondence e-mail: ninggl@dlut.edu.cn

(Received 23 November 2007; accepted 27 November 2007; online 6 December 2007)

The title compound, [Cu(C4H2O4)(C5H5N)2(H2O)]n, is a one-dimensional coordination polymer based on pyridine and fumarate ligands. Each CuII cation is coordinated by two carboxyl­ate O atoms belonging to two fumarate anions, two N atoms from two pyridine mol­ecules and one water mol­ecule, in a square-based pyramidal geometry. Each fumarate anion bridges two CuII cations through the two carboxyl­ate groups in a bis-monodentate fashion to form a one-dimensional polymeric chain along the c axis. Neighbouring chains are linked together to form a two-dimensional network parallel to the ac plane via hydrogen bonding inter­actions between uncoordinated carboxyl­ate O atoms and coordinated water mol­ecules of adjecent chains.

Related literature

For related literature, see: Barthelet et al. (2002[Barthelet, K., Marrot, J., Riou, D. & Ferey, G. (2002). Angew. Chem. Int. Ed. 41, 281-284.]); Che et al. (2006[Che, G.-B., Liu, C.-B. & Xu, Z.-L. (2006). Acta Cryst. E62, m1948-m1949.]); Dalai et al. (2002[Dalai, S., Mukherjee, P. S., Rogez, G., Mallah, T., Drew, M. G. B. & Chaudhuri, N. R. (2002). Eur. J. Inorg. Chem. pp. 3292-3297.]); Rao et al. (2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1490-1521. ]); Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C4H2O4)(C5H5N)2(H2O)]

  • Mr = 353.81

  • Orthorhombic, P 21 21 21

  • a = 5.6238 (6) Å

  • b = 15.3174 (16) Å

  • c = 17.4404 (16) Å

  • V = 1502.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 273 (2) K

  • 0.32 × 0.32 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.648, Tmax = 0.732

  • 9106 measured reflections

  • 3330 independent reflections

  • 2520 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.116

  • S = 1.02

  • 3330 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1347 Friedel pairs

  • Flack parameter: 0.50 (2)

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.925 (2)
Cu1—O4i 1.931 (2)
Cu1—N2 2.031 (3)
Cu1—N1 2.030 (4)
Cu1—O5 2.210 (3)
O1—Cu1—O4i 179.45 (15)
O1—Cu1—N2 89.83 (13)
O4i—Cu1—N2 89.86 (12)
O1—Cu1—N1 90.30 (13)
O4i—Cu1—N1 90.06 (12)
N2—Cu1—N1 173.11 (17)
O1—Cu1—O5 88.78 (12)
O4i—Cu1—O5 90.80 (12)
N2—Cu1—O5 95.07 (15)
N1—Cu1—O5 91.82 (15)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O2ii 0.91 1.82 2.718 (4) 167
O5—H5A⋯O3iii 0.88 1.86 2.700 (4) 158
Symmetry codes: (ii) x+1, y, z; (iii) [-x+{\script{3\over 2}}, -y+2, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1997[Bruker (1997). SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the design and construction of coordination polymers have attracted great attention due to their rich network topologies and potential applications (Yaghi et al., 1998). Organic O– and N-donors are often chosen to fabricate these complexes. A number of metal-organic frameworks with extended structures and novel adsorption and magnetic properties have been synthesized based on aromatic dicarboxylate ligands (Barthelet et al., 2002; Rao et al., 2004). Compared with benzenedicarboxylic acid, the alkenedicarboxylic acid is also regarded as an excellent candidate for the self-assembly of coordination polymers. Fumaric acid ligand is the typical example of alkenedicarboxylic acid ligand. As far as we know, several coordination polymers based on fumaric acid have been obtained (Che et al., 2006; Dalai et al., 2002). We report here the crystal structure of the title coordination polymer, [Cu(C4H2O4)(C5NH5)2(H2O)]n.

The asymmetric unit of the title compound consists of one CuII cation, one fumarate dianion, two pyridine ligands and one water molecule (Fig. 1). The CuII cation has a square-based pyramidal geometry formed by two carboxylate O atoms from two fumarate ligands, two N atoms from two pyridine molecules and one water molecule. The four basal coordination sites are filled by the atoms O1, N1, N2 and O4i, while the axial position is occupied by the atom O5. The Cu—O distances are in the range 1.925 (2)–2.210 (3) Å and the Cu—N distances are 2.030 (4) and 2.031 (3) Å. These values are in good agreement with those found in other extended structures (Dalai et al., 2002). The angles subtended at the metal centre are listed in Table 1. Each fumarate dianion acts as a µ2-bridging ligand to connect two CuII centers to form a chain structure along the c axis, with a Cu···Cu distance of 8.743 (4) Å. The chains are further packed into a two-dimensional network parallel to the ac plane through O—H···O hydrogen bonding interactions between the water molecule and uncoordinated carboxylate O atoms of fumarate ligands of adjacent chains (Fig. 2). Each pyridine, as a terminal ligand, occupies two coordination positions of CuII cation and decorates alternately at two sides of chains (Fig. 3).

Related literature top

For related literature, see: Barthelet et al. (2002); Che et al. (2006); Dalai et al. (2002); Rao et al. (2004); Yaghi et al. (1998).

Experimental top

A solid mixture of Cu(NO3)2.6H2O (0.120 g, 0.5 mmol) and fumaric acid (0.06 g, 0.5 mmol) was dissolved in a 25 ml vial containing DMF (10 ml). The solution was stirred in air for 50 min and the vial was placed in a 80 ml beaker containing pyridine (3 ml) and DMF (5 ml). The reaction mixture was sealed by parafilm and kept at 333 K. Block-shaped blue crystals of the title compound were obtained after 5 d.

Refinement top

C-bound H atoms were placed in calculated positions (C—H = 0.93 Å) and refined in the riding-model approximation with Uiso(H) = 1.2Ueq(C). O-bound H atoms were located in a difference map and refined in the riding-model approximation, with Uiso(H) = 1.2Ueq(O). Flack parameter refined to 0.50 (2) indicating that the crystal used was a racemic twin (Flack, 1983).

Structure description top

Recently, the design and construction of coordination polymers have attracted great attention due to their rich network topologies and potential applications (Yaghi et al., 1998). Organic O– and N-donors are often chosen to fabricate these complexes. A number of metal-organic frameworks with extended structures and novel adsorption and magnetic properties have been synthesized based on aromatic dicarboxylate ligands (Barthelet et al., 2002; Rao et al., 2004). Compared with benzenedicarboxylic acid, the alkenedicarboxylic acid is also regarded as an excellent candidate for the self-assembly of coordination polymers. Fumaric acid ligand is the typical example of alkenedicarboxylic acid ligand. As far as we know, several coordination polymers based on fumaric acid have been obtained (Che et al., 2006; Dalai et al., 2002). We report here the crystal structure of the title coordination polymer, [Cu(C4H2O4)(C5NH5)2(H2O)]n.

The asymmetric unit of the title compound consists of one CuII cation, one fumarate dianion, two pyridine ligands and one water molecule (Fig. 1). The CuII cation has a square-based pyramidal geometry formed by two carboxylate O atoms from two fumarate ligands, two N atoms from two pyridine molecules and one water molecule. The four basal coordination sites are filled by the atoms O1, N1, N2 and O4i, while the axial position is occupied by the atom O5. The Cu—O distances are in the range 1.925 (2)–2.210 (3) Å and the Cu—N distances are 2.030 (4) and 2.031 (3) Å. These values are in good agreement with those found in other extended structures (Dalai et al., 2002). The angles subtended at the metal centre are listed in Table 1. Each fumarate dianion acts as a µ2-bridging ligand to connect two CuII centers to form a chain structure along the c axis, with a Cu···Cu distance of 8.743 (4) Å. The chains are further packed into a two-dimensional network parallel to the ac plane through O—H···O hydrogen bonding interactions between the water molecule and uncoordinated carboxylate O atoms of fumarate ligands of adjacent chains (Fig. 2). Each pyridine, as a terminal ligand, occupies two coordination positions of CuII cation and decorates alternately at two sides of chains (Fig. 3).

For related literature, see: Barthelet et al. (2002); Che et al. (2006); Dalai et al. (2002); Rao et al. (2004); Yaghi et al. (1998).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL (Bruker, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. View of a fragment of polymeric title compound, showing the coordination environment of the metal center and atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. [symmetry code: (A) -x + 1/2, -y + 2, z + 1/2].
[Figure 2] Fig. 2. View of a hydrogen-bonded (dashed lines) two-dimensional network in the title compound.
[Figure 3] Fig. 3. The crystal packing of the title compound, viewed down the a axis.
catena-Poly[[aquadipyridinecopper(II)]-µ-fumarato] top
Crystal data top
[Cu(C4H2O4)(C5H5N)2(H2O)]F(000) = 724
Mr = 353.81Dx = 1.564 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2169 reflections
a = 5.6238 (6) Åθ = 2.3–27.5°
b = 15.3174 (16) ŵ = 1.48 mm1
c = 17.4404 (16) ÅT = 273 K
V = 1502.4 (3) Å3Block, blue
Z = 40.32 × 0.32 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3330 independent reflections
Radiation source: fine-focus sealed tube2520 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: Bruker SMART CCD area-detector pixels mm-1θmax = 27.5°, θmin = 2.3°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1819
Tmin = 0.648, Tmax = 0.732l = 2222
9106 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.6209P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3330 reflectionsΔρmax = 0.70 e Å3
199 parametersΔρmin = 0.33 e Å3
0 restraintsAbsolute structure: Flack (1983), with 1347 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.50 (2)
Crystal data top
[Cu(C4H2O4)(C5H5N)2(H2O)]V = 1502.4 (3) Å3
Mr = 353.81Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.6238 (6) ŵ = 1.48 mm1
b = 15.3174 (16) ÅT = 273 K
c = 17.4404 (16) Å0.32 × 0.32 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3330 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2520 reflections with I > 2σ(I)
Tmin = 0.648, Tmax = 0.732Rint = 0.034
9106 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.116Δρmax = 0.70 e Å3
S = 1.03Δρmin = 0.33 e Å3
3330 reflectionsAbsolute structure: Flack (1983), with 1347 Friedel pairs
199 parametersAbsolute structure parameter: 0.50 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.25711 (11)0.97944 (3)0.87637 (2)0.03127 (15)
O10.2678 (6)0.9836 (2)0.76609 (13)0.0420 (7)
O20.1160 (6)0.9684 (3)0.74117 (16)0.0595 (10)
O30.6212 (6)0.9782 (3)0.50624 (16)0.0573 (9)
O40.2510 (6)1.02406 (18)0.48704 (12)0.0404 (6)
O50.6495 (5)0.9721 (2)0.87740 (15)0.0526 (8)
H5B0.72180.97920.83130.063*
H5A0.75220.99280.91090.063*
N10.2274 (7)0.8475 (2)0.87281 (18)0.0414 (8)
N20.2434 (7)1.1119 (2)0.87979 (17)0.0411 (7)
C10.0911 (8)0.9761 (3)0.7220 (2)0.0338 (9)
C20.1466 (8)0.9824 (3)0.6380 (2)0.0356 (10)
H20.02210.98200.60300.043*
C30.3656 (9)0.9883 (3)0.6126 (2)0.0345 (10)
H30.49030.98720.64760.041*
C40.4217 (9)0.9968 (2)0.5281 (2)0.0320 (11)
C50.0718 (10)0.8032 (4)0.9141 (3)0.0586 (14)
H50.03770.83370.94380.070*
C60.0664 (13)0.7118 (4)0.9146 (4)0.083 (2)
H60.04540.68220.94400.100*
C70.2251 (13)0.6674 (4)0.8719 (4)0.087 (2)
H70.22490.60670.87160.105*
C80.3846 (13)0.7123 (4)0.8294 (4)0.086 (2)
H80.49580.68270.79980.103*
C90.3818 (11)0.8019 (4)0.8303 (3)0.0606 (14)
H90.49110.83200.80030.073*
C100.0860 (10)1.1570 (3)0.8377 (3)0.0581 (15)
H100.02641.12690.80880.070*
C110.0874 (12)1.2476 (4)0.8363 (4)0.080 (2)
H110.02341.27760.80670.095*
C120.2507 (12)1.2924 (3)0.8781 (3)0.0804 (17)
H120.25441.35300.87710.096*
C130.4077 (11)1.2468 (4)0.9211 (4)0.0752 (19)
H130.52011.27610.95050.090*
C140.4004 (9)1.1567 (3)0.9211 (3)0.0538 (13)
H140.50911.12620.95110.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0335 (2)0.0455 (3)0.01487 (19)0.0008 (4)0.0003 (2)0.0007 (2)
O10.0401 (18)0.0715 (17)0.0145 (11)0.003 (2)0.0026 (13)0.0035 (12)
O20.039 (2)0.115 (3)0.0241 (14)0.006 (2)0.0066 (13)0.0059 (19)
O30.0350 (19)0.108 (3)0.0286 (15)0.009 (2)0.0072 (13)0.0122 (18)
O40.0478 (18)0.0552 (15)0.0180 (11)0.010 (3)0.0002 (15)0.0010 (12)
O50.0291 (14)0.101 (3)0.0279 (15)0.0031 (16)0.0005 (12)0.013 (2)
N10.046 (2)0.0493 (19)0.0295 (16)0.001 (2)0.002 (2)0.0013 (15)
N20.0424 (18)0.0470 (19)0.0340 (16)0.007 (2)0.001 (3)0.0016 (15)
C10.034 (2)0.047 (2)0.0204 (17)0.001 (2)0.0036 (15)0.005 (2)
C20.033 (2)0.050 (2)0.023 (2)0.004 (2)0.0031 (16)0.003 (2)
C30.041 (2)0.042 (3)0.020 (2)0.0003 (19)0.0036 (16)0.0008 (17)
C40.033 (3)0.041 (3)0.0226 (19)0.0061 (16)0.0010 (16)0.0006 (15)
C50.060 (4)0.053 (3)0.063 (3)0.001 (3)0.000 (3)0.000 (3)
C60.078 (5)0.065 (4)0.107 (5)0.016 (4)0.013 (4)0.020 (4)
C70.067 (4)0.047 (3)0.147 (7)0.005 (3)0.043 (6)0.008 (4)
C80.072 (5)0.063 (4)0.122 (6)0.015 (4)0.014 (4)0.037 (4)
C90.058 (4)0.056 (3)0.068 (4)0.003 (3)0.002 (3)0.015 (3)
C100.070 (4)0.045 (3)0.059 (3)0.001 (3)0.018 (3)0.005 (2)
C110.085 (5)0.052 (4)0.102 (5)0.010 (3)0.031 (4)0.007 (3)
C120.082 (4)0.046 (3)0.114 (5)0.008 (4)0.008 (6)0.001 (3)
C130.070 (4)0.050 (3)0.106 (5)0.010 (3)0.027 (4)0.015 (3)
C140.045 (3)0.057 (3)0.059 (3)0.006 (2)0.014 (2)0.002 (3)
Geometric parameters (Å, º) top
Cu1—O11.925 (2)C3—H30.93
Cu1—O4i1.931 (2)C5—C61.400 (8)
Cu1—N22.031 (3)C5—H50.93
Cu1—N12.030 (4)C6—C71.347 (9)
Cu1—O52.210 (3)C6—H60.93
O1—C11.262 (5)C7—C81.351 (9)
O2—C11.218 (5)C7—H70.93
O3—C41.219 (5)C8—C91.372 (8)
O4—C41.268 (5)C8—H80.93
O4—Cu1ii1.931 (2)C9—H90.93
O5—H5B0.91C10—C111.388 (8)
O5—H5A0.88C10—H100.93
N1—C51.321 (6)C11—C121.358 (8)
N1—C91.338 (6)C11—H110.93
N2—C141.330 (6)C12—C131.352 (8)
N2—C101.342 (6)C12—H120.93
C1—C21.501 (5)C13—C141.381 (7)
C2—C31.312 (6)C13—H130.93
C2—H20.93C14—H140.93
C3—C41.513 (5)
O1—Cu1—O4i179.45 (15)O4—C4—C3114.9 (4)
O1—Cu1—N289.83 (13)N1—C5—C6122.1 (6)
O4i—Cu1—N289.86 (12)N1—C5—H5119.0
O1—Cu1—N190.30 (13)C6—C5—H5119.0
O4i—Cu1—N190.06 (12)C7—C6—C5119.2 (7)
N2—Cu1—N1173.11 (17)C7—C6—H6120.4
O1—Cu1—O588.78 (12)C5—C6—H6120.4
O4i—Cu1—O590.80 (12)C6—C7—C8119.0 (6)
N2—Cu1—O595.07 (15)C6—C7—H7120.5
N1—Cu1—O591.82 (15)C8—C7—H7120.5
C1—O1—Cu1125.5 (3)C7—C8—C9119.7 (7)
C4—O4—Cu1ii124.9 (3)C7—C8—H8120.1
Cu1—O5—H5B115.7C9—C8—H8120.1
Cu1—O5—H5A130.0N1—C9—C8122.4 (6)
H5B—O5—H5A104.5N1—C9—H9118.8
C5—N1—C9117.6 (5)C8—C9—H9118.8
C5—N1—Cu1123.3 (3)N2—C10—C11121.4 (5)
C9—N1—Cu1118.9 (4)N2—C10—H10119.3
C14—N2—C10117.9 (4)C11—C10—H10119.3
C14—N2—Cu1120.4 (3)C12—C11—C10120.0 (6)
C10—N2—Cu1121.6 (3)C12—C11—H11120.0
O2—C1—O1126.5 (4)C10—C11—H11120.0
O2—C1—C2118.2 (4)C13—C12—C11118.6 (6)
O1—C1—C2115.2 (4)C13—C12—H12120.7
C3—C2—C1122.0 (4)C11—C12—H12120.7
C3—C2—H2119.0C12—C13—C14119.8 (5)
C1—C2—H2119.0C12—C13—H13120.1
C2—C3—C4122.1 (4)C14—C13—H13120.1
C2—C3—H3119.0N2—C14—C13122.4 (5)
C4—C3—H3119.0N2—C14—H14118.8
O3—C4—O4126.7 (4)C13—C14—H14118.8
O3—C4—C3118.4 (4)
Symmetry codes: (i) x+1/2, y+2, z+1/2; (ii) x+1/2, y+2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O2iii0.911.822.718 (4)167
O5—H5A···O3iv0.881.862.700 (4)158
Symmetry codes: (iii) x+1, y, z; (iv) x+3/2, y+2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C4H2O4)(C5H5N)2(H2O)]
Mr353.81
Crystal system, space groupOrthorhombic, P212121
Temperature (K)273
a, b, c (Å)5.6238 (6), 15.3174 (16), 17.4404 (16)
V3)1502.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.32 × 0.32 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.648, 0.732
No. of measured, independent and
observed [I > 2σ(I)] reflections
9106, 3330, 2520
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.116, 1.03
No. of reflections3330
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.33
Absolute structureFlack (1983), with 1347 Friedel pairs
Absolute structure parameter0.50 (2)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Bruker, 1997).

Selected geometric parameters (Å, º) top
Cu1—O11.925 (2)Cu1—N12.030 (4)
Cu1—O4i1.931 (2)Cu1—O52.210 (3)
Cu1—N22.031 (3)
O1—Cu1—O4i179.45 (15)N2—Cu1—N1173.11 (17)
O1—Cu1—N289.83 (13)O1—Cu1—O588.78 (12)
O4i—Cu1—N289.86 (12)O4i—Cu1—O590.80 (12)
O1—Cu1—N190.30 (13)N2—Cu1—O595.07 (15)
O4i—Cu1—N190.06 (12)N1—Cu1—O591.82 (15)
Symmetry code: (i) x+1/2, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O2ii0.911.822.718 (4)167
O5—H5A···O3iii0.881.862.700 (4)158
Symmetry codes: (ii) x+1, y, z; (iii) x+3/2, y+2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20772014).

References

First citationBarthelet, K., Marrot, J., Riou, D. & Ferey, G. (2002). Angew. Chem. Int. Ed. 41, 281–284.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChe, G.-B., Liu, C.-B. & Xu, Z.-L. (2006). Acta Cryst. E62, m1948–m1949.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDalai, S., Mukherjee, P. S., Rogez, G., Mallah, T., Drew, M. G. B. & Chaudhuri, N. R. (2002). Eur. J. Inorg. Chem. pp. 3292–3297.  CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1490–1521.   CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds