organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cinchonidinium chloride monohydrate

aKey Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, People's Republic of China, and bCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: apharm@sina.com

(Received 23 November 2007; accepted 26 November 2007; online 6 December 2007)

In the title salt, C19H23N2O+·Cl·H2O, the ions and the water mol­ecule are held together by O—H⋯Cl, N—H⋯Cl, O—H⋯O, O—H⋯N and C—H⋯Cl hydrogen bonds, forming a three-dimensional framework. The vinyl group is disordered over two orientations with refined occupancies of 0.564 (16) and 0.436 (16). The cell parameters of the title compound have been reported previously [Griffiths (1952[Griffiths, P. J. F. (1952). Acta Cryst. 5, 290-291.]). Acta Cryst. 5, 290–291].

Related literature

For the Cambridge Structural Database (Version 5.26), see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For related literature, see: Griffiths (1952[Griffiths, P. J. F. (1952). Acta Cryst. 5, 290-291.]); Zhang, Lü et al. (2006[Zhang, H.-M., Lü, Y.-P., Tu, B., Jin, Z.-M. & Wu, Z.-Y. (2006). Acta Cryst. E62, o3398-o3400.]); Zhang, Tu et al. (2006[Zhang, H.-M., Tu, B., Jin, Z.-M., Wu, Z.-Y. & Hu, M.-L. (2006). Acta Cryst. E62, o2614-o2616.]).

[Scheme 1]

Experimental

Crystal data
  • C19H23N2O+·Cl·H2O

  • Mr = 348.86

  • Orthorhombic, P 21 21 21

  • a = 10.4924 (8) Å

  • b = 12.9049 (10) Å

  • c = 13.3936 (10) Å

  • V = 1813.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 273 (2) K

  • 0.37 × 0.34 × 0.12 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: multi-scan (SHELXTL; Bruker, 1998[Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.722, Tmax = 0.895 (expected range = 0.785–0.973)

  • 9572 measured reflections

  • 3214 independent reflections

  • 3090 reflections with I > 2σ(I)

  • Rint = 0.031

  • 3 standard reflections every 97 reflections intensity decay: 5.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.179

  • S = 1.18

  • 3214 reflections

  • 252 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1369 Friedel pairs

  • Flack parameter: 0.04 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 (2) 1.84 (2) 2.653 (5) 172 (3)
O2—H2OB⋯N1ii 0.82 (2) 2.07 (2) 2.867 (6) 165 (3)
O2—H2OA⋯Cl1 0.82 (2) 2.31 (2) 3.135 (5) 174 (6)
N2—H2⋯Cl1 0.96 (4) 2.08 (4) 3.034 (6) 175 (3)
C5—H5⋯Cl1 0.93 2.77 3.692 (5) 172
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1998[Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The cell parameters (a = 12.8, b = 13.3, c = 10.6 Å) of the title compound have been reported previously (Griffiths, 1952; CSD refcode ZZZTZW, CSD, Version 5.26; Allen, 2002), but structural details are not available. Crystal structures of some compounds containing cinchonidine have also been reported, e.g. cinchonidinium bis(4-methylbenzenesulfonate) monohydrate (Zhang, Lü et al., 2006), cinchonidinium bis(perchlorate) (Zhang, Tu et al., 2006).

The geometry of the cinchonidinium unit is consistent with that observed in other cinchonidinium compounds (Zhang, Lv et al., 2006; Zhang, Tu et al., 2006), except for the disorder in the vinyl group. The C—C bond lengths in quinoline ring system range from 1.358 (6) to 1.429 (6) Å, comparable with the range of 1.344 (5)–1.422 (4) Å observed by Zhang, Lv et al. (2006).

As shown in Fig. 1, the chloride anion and cinchonidinium cation are linked by N—H···Cl and weak C—H···Cl hydrogen bonds, and the chloride ion and water molecule are connected by a O—H···Cl hydrogen bond (Table 1). The ionic pairs and water molecule are linked by O—H···N and O—H···O hydrogen bonds to form a three-dimensional framework (Fig. 2).

Related literature top

For the Cambridge Structural Database, see: Allen (2002). For related literature, see: Griffiths (1952); Zhang, Lü et al. (2006); Zhang, Tu et al. (2006).

Experimental top

Cinchonidine (0.01 mol, 2.94 g) and 10% hydrochloric acid (3.65 g) were mixed together with enough water, and heated to a temperature where a clear solution was resulted. Colourless single crystals of the title compound were obtained by slow evaporation of the solution at room temperature for 7 d.

Refinement top

The vinyl group is disordered over two orientations with refined occupancies of 0.564 (16) and 0.436 (16); the corresponding C—C distances in the major and minor conformers were restrained to be equal. Atoms C18' and C19' were restrained to have the same Uij components. N– and O-bound H atoms were located in a difference map and refined with the O—H and H···H (in water) distances restrained to 0.82 (2) and 1.39 (2) Å, respectively. C-bound H atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) values set at 1.2 times Ueq of the parent atoms.

Structure description top

The cell parameters (a = 12.8, b = 13.3, c = 10.6 Å) of the title compound have been reported previously (Griffiths, 1952; CSD refcode ZZZTZW, CSD, Version 5.26; Allen, 2002), but structural details are not available. Crystal structures of some compounds containing cinchonidine have also been reported, e.g. cinchonidinium bis(4-methylbenzenesulfonate) monohydrate (Zhang, Lü et al., 2006), cinchonidinium bis(perchlorate) (Zhang, Tu et al., 2006).

The geometry of the cinchonidinium unit is consistent with that observed in other cinchonidinium compounds (Zhang, Lv et al., 2006; Zhang, Tu et al., 2006), except for the disorder in the vinyl group. The C—C bond lengths in quinoline ring system range from 1.358 (6) to 1.429 (6) Å, comparable with the range of 1.344 (5)–1.422 (4) Å observed by Zhang, Lv et al. (2006).

As shown in Fig. 1, the chloride anion and cinchonidinium cation are linked by N—H···Cl and weak C—H···Cl hydrogen bonds, and the chloride ion and water molecule are connected by a O—H···Cl hydrogen bond (Table 1). The ionic pairs and water molecule are linked by O—H···N and O—H···O hydrogen bonds to form a three-dimensional framework (Fig. 2).

For the Cambridge Structural Database, see: Allen (2002). For related literature, see: Griffiths (1952); Zhang, Lü et al. (2006); Zhang, Tu et al. (2006).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
Cinchonidinium chloride monohydrate top
Crystal data top
C19H23N2O+·Cl·H2OF(000) = 744
Mr = 348.86Dx = 1.278 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 31 reflections
a = 10.4924 (8) Åθ = 3.3–18.6°
b = 12.9049 (10) ŵ = 0.22 mm1
c = 13.3936 (10) ÅT = 273 K
V = 1813.5 (2) Å3Plate, colourless
Z = 40.37 × 0.34 × 0.12 mm
Data collection top
Siemens P4
diffractometer
3090 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω scansh = 1211
Absorption correction: multi-scan
(SHELXTL; Bruker, 1998)
k = 915
Tmin = 0.722, Tmax = 0.895l = 1515
9572 measured reflections3 standard reflections every 97 reflections
3214 independent reflections intensity decay: 5.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.179 w = 1/[σ2(Fo2) + (0.0981P)2 + 0.5633P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
3214 reflectionsΔρmax = 0.31 e Å3
252 parametersΔρmin = 0.21 e Å3
12 restraintsAbsolute structure: Flack (1983), with 1369 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (13)
Crystal data top
C19H23N2O+·Cl·H2OV = 1813.5 (2) Å3
Mr = 348.86Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.4924 (8) ŵ = 0.22 mm1
b = 12.9049 (10) ÅT = 273 K
c = 13.3936 (10) Å0.37 × 0.34 × 0.12 mm
Data collection top
Siemens P4
diffractometer
3090 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SHELXTL; Bruker, 1998)
Rint = 0.031
Tmin = 0.722, Tmax = 0.8953 standard reflections every 97 reflections
9572 measured reflections intensity decay: 5.0%
3214 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.069H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.179Δρmax = 0.31 e Å3
S = 1.18Δρmin = 0.21 e Å3
3214 reflectionsAbsolute structure: Flack (1983), with 1369 Friedel pairs
252 parametersAbsolute structure parameter: 0.04 (13)
12 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.94217 (9)0.75097 (9)0.35617 (7)0.0500 (3)
O10.7326 (3)0.9410 (2)0.1041 (2)0.0511 (8)
O21.0407 (3)0.5216 (3)0.3556 (4)0.0858 (13)
N10.6545 (4)0.6294 (3)0.1087 (2)0.0510 (9)
N20.6840 (3)0.8504 (3)0.3211 (2)0.0454 (8)
C10.6176 (4)0.7257 (4)0.1063 (3)0.0533 (12)
H1A0.56960.74970.15990.064*
C20.6443 (4)0.7957 (4)0.0297 (3)0.0478 (10)
H2A0.61430.86340.03330.057*
C30.7148 (3)0.7642 (3)0.0508 (3)0.0381 (9)
C40.7589 (3)0.6594 (3)0.0517 (3)0.0346 (8)
C50.8343 (4)0.6152 (3)0.1287 (3)0.0422 (9)
H50.85460.65490.18440.051*
C60.8775 (4)0.5162 (3)0.1227 (3)0.0482 (10)
H60.92710.48900.17390.058*
C70.8475 (4)0.4552 (4)0.0401 (3)0.0527 (11)
H70.87810.38770.03610.063*
C80.7738 (4)0.4939 (4)0.0349 (3)0.0489 (10)
H80.75330.45220.08920.059*
C90.7288 (4)0.5953 (3)0.0310 (3)0.0397 (9)
C100.7394 (3)0.8374 (3)0.1368 (3)0.0363 (8)
H100.82460.82410.16380.044*
C110.6392 (4)0.8168 (3)0.2187 (3)0.0410 (9)
H110.62690.74160.22160.049*
C120.5101 (4)0.8640 (5)0.2001 (4)0.0668 (15)
H12A0.45110.81090.17800.080*
H12B0.51630.91620.14820.080*
C130.4614 (5)0.9137 (5)0.2972 (4)0.0701 (15)
H130.37430.93880.28690.084*
C140.4621 (5)0.8368 (4)0.3821 (3)0.0615 (13)
H140.43340.87250.44260.074*
C150.5996 (5)0.8022 (4)0.3980 (3)0.0620 (13)
H15A0.62770.82270.46420.074*
H15B0.60480.72730.39340.074*
C160.5460 (6)1.0037 (4)0.3240 (5)0.0831 (18)
H16A0.51751.03460.38610.100*
H16B0.54201.05600.27210.100*
C170.6826 (5)0.9649 (4)0.3353 (4)0.0613 (13)
H17A0.73690.99780.28600.074*
H17B0.71470.98220.40110.074*
C180.3877 (9)0.7331 (8)0.3733 (7)0.050 (3)0.564 (16)
H180.42180.67540.40510.061*0.564 (16)
C190.2832 (9)0.7210 (9)0.3257 (8)0.067 (3)0.564 (16)
H19A0.24600.77680.29290.081*0.564 (16)
H19B0.24430.65620.32390.081*0.564 (16)
C18'0.3393 (10)0.7759 (9)0.3550 (12)0.080 (6)0.436 (16)
H18'0.27130.80630.32150.096*0.436 (16)
C19'0.338 (2)0.6812 (10)0.3823 (11)0.079 (5)0.436 (16)
H19C0.40830.65350.41580.094*0.436 (16)
H19D0.26800.63980.36870.094*0.436 (16)
H20.765 (4)0.820 (3)0.336 (3)0.035 (10)*
H10.803 (3)0.967 (4)0.111 (4)0.062 (16)*
H2OA1.020 (4)0.5832 (15)0.358 (5)0.081 (18)*
H2OB0.982 (3)0.480 (2)0.354 (4)0.061 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0518 (5)0.0549 (6)0.0432 (5)0.0083 (5)0.0100 (4)0.0045 (5)
O10.0510 (18)0.0404 (16)0.0618 (18)0.0074 (14)0.0066 (15)0.0044 (14)
O20.0468 (19)0.051 (2)0.160 (4)0.0026 (17)0.002 (3)0.012 (3)
N10.053 (2)0.059 (2)0.0405 (18)0.0011 (18)0.0096 (16)0.0068 (17)
N20.0440 (19)0.053 (2)0.0387 (17)0.0083 (17)0.0003 (14)0.0012 (16)
C10.056 (2)0.066 (3)0.038 (2)0.000 (2)0.0127 (19)0.006 (2)
C20.051 (2)0.044 (2)0.048 (2)0.002 (2)0.005 (2)0.0043 (18)
C30.0346 (18)0.047 (2)0.0329 (18)0.0061 (18)0.0032 (14)0.0078 (17)
C40.0298 (17)0.045 (2)0.0294 (18)0.0013 (16)0.0031 (14)0.0000 (16)
C50.047 (2)0.045 (2)0.0344 (19)0.0088 (18)0.0041 (17)0.0029 (17)
C60.051 (2)0.045 (2)0.048 (2)0.0081 (19)0.008 (2)0.0003 (19)
C70.057 (3)0.042 (2)0.059 (3)0.011 (2)0.004 (2)0.001 (2)
C80.056 (2)0.050 (2)0.041 (2)0.005 (2)0.0007 (19)0.0162 (19)
C90.0357 (19)0.049 (2)0.0347 (18)0.0030 (18)0.0058 (16)0.0030 (17)
C100.0369 (18)0.0347 (18)0.0374 (18)0.0003 (16)0.0076 (16)0.0005 (16)
C110.042 (2)0.043 (2)0.038 (2)0.0058 (18)0.0023 (16)0.0026 (17)
C120.040 (2)0.113 (4)0.047 (3)0.007 (3)0.0029 (19)0.009 (3)
C130.045 (3)0.092 (4)0.073 (3)0.019 (3)0.008 (2)0.005 (3)
C140.061 (3)0.076 (3)0.048 (3)0.011 (3)0.021 (2)0.015 (2)
C150.090 (4)0.060 (3)0.036 (2)0.002 (3)0.011 (2)0.003 (2)
C160.086 (4)0.053 (3)0.110 (5)0.019 (3)0.031 (4)0.006 (3)
C170.073 (3)0.056 (3)0.055 (3)0.011 (2)0.011 (2)0.013 (2)
C180.068 (6)0.026 (6)0.058 (5)0.010 (5)0.005 (4)0.008 (4)
C190.078 (7)0.051 (7)0.072 (7)0.015 (5)0.003 (5)0.019 (5)
C18'0.108 (15)0.040 (8)0.092 (11)0.033 (9)0.034 (11)0.006 (9)
C19'0.115 (13)0.046 (8)0.075 (10)0.012 (9)0.007 (9)0.010 (7)
Geometric parameters (Å, º) top
O1—C101.409 (5)C11—C121.505 (6)
O1—H10.82 (2)C11—H110.98
O2—H2OA0.823 (19)C12—C131.538 (7)
O2—H2OB0.816 (18)C12—H12A0.97
N1—C11.302 (6)C12—H12B0.97
N1—C91.372 (5)C13—C161.506 (9)
N2—C171.490 (6)C13—C141.508 (7)
N2—C151.495 (6)C13—H130.98
N2—C111.512 (5)C14—C151.524 (7)
N2—H20.96 (4)C14—C18'1.552 (12)
C1—C21.395 (6)C14—C181.554 (9)
C1—H1A0.93C14—H140.98
C2—C31.370 (6)C15—H15A0.97
C2—H2A0.93C15—H15B0.97
C3—C41.429 (6)C16—C171.525 (8)
C3—C101.512 (5)C16—H16A0.97
C4—C91.419 (5)C16—H16B0.97
C4—C51.419 (5)C17—H17A0.97
C5—C61.358 (6)C17—H17B0.97
C5—H50.93C18—C191.278 (11)
C6—C71.394 (6)C18—H180.93
C6—H60.93C19—H19A0.93
C7—C81.363 (6)C19—H19B0.93
C7—H70.93C18'—C19'1.277 (12)
C8—C91.391 (6)C18'—H18'0.93
C8—H80.93C19'—H19C0.93
C10—C111.543 (5)C19'—H19D0.93
C10—H100.98
C10—O1—H1108 (4)C13—C12—H12A109.9
H2OA—O2—H2OB116 (3)C11—C12—H12B109.9
C1—N1—C9117.1 (3)C13—C12—H12B109.9
C17—N2—C15108.6 (4)H12A—C12—H12B108.3
C17—N2—C11113.4 (3)C16—C13—C14109.0 (5)
C15—N2—C11108.8 (3)C16—C13—C12109.1 (5)
C17—N2—H2113 (2)C14—C13—C12111.2 (4)
C15—N2—H2102 (2)C16—C13—H13109.2
C11—N2—H2110 (2)C14—C13—H13109.2
N1—C1—C2125.2 (4)C12—C13—H13109.2
N1—C1—H1A117.4C13—C14—C15107.6 (4)
C2—C1—H1A117.4C13—C14—C18'98.8 (7)
C3—C2—C1119.6 (4)C15—C14—C18'132.1 (6)
C3—C2—H2A120.2C13—C14—C18120.4 (5)
C1—C2—H2A120.2C15—C14—C18103.5 (5)
C2—C3—C4117.6 (4)C13—C14—H14108.2
C2—C3—C10120.4 (4)C15—C14—H14108.2
C4—C3—C10122.0 (3)C18'—C14—H14100.1
C9—C4—C5117.2 (4)C18—C14—H14108.2
C9—C4—C3118.2 (3)N2—C15—C14110.0 (4)
C5—C4—C3124.5 (3)N2—C15—H15A109.7
C6—C5—C4121.4 (4)C14—C15—H15A109.7
C6—C5—H5119.3N2—C15—H15B109.7
C4—C5—H5119.3C14—C15—H15B109.7
C5—C6—C7120.2 (4)H15A—C15—H15B108.2
C5—C6—H6119.9C13—C16—C17108.9 (4)
C7—C6—H6119.9C13—C16—H16A109.9
C8—C7—C6120.4 (4)C17—C16—H16A109.9
C8—C7—H7119.8C13—C16—H16B109.9
C6—C7—H7119.8C17—C16—H16B109.9
C7—C8—C9120.6 (4)H16A—C16—H16B108.3
C7—C8—H8119.7N2—C17—C16108.8 (4)
C9—C8—H8119.7N2—C17—H17A109.9
N1—C9—C8117.8 (4)C16—C17—H17A109.9
N1—C9—C4122.1 (4)N2—C17—H17B109.9
C8—C9—C4120.1 (4)C16—C17—H17B109.9
O1—C10—C3110.4 (3)H17A—C17—H17B108.3
O1—C10—C11110.5 (3)C19—C18—C14125.1 (11)
C3—C10—C11108.5 (3)C19—C18—H18117.4
O1—C10—H10109.1C14—C18—H18117.4
C3—C10—H10109.1C18—C19—H19A120.0
C11—C10—H10109.1C18—C19—H19B120.0
C12—C11—N2108.3 (4)H19A—C19—H19B120.0
C12—C11—C10115.2 (3)C19'—C18'—C14115.1 (13)
N2—C11—C10112.6 (3)C19'—C18'—H18'122.4
C12—C11—H11106.8C14—C18'—H18'122.4
N2—C11—H11106.8C18'—C19'—H19C120.0
C10—C11—H11106.8C18'—C19'—H19D120.0
C11—C12—C13109.1 (4)H19C—C19'—H19D120.0
C11—C12—H12A109.9
C9—N1—C1—C22.0 (7)C3—C10—C11—C1279.1 (5)
N1—C1—C2—C30.1 (7)O1—C10—C11—N282.8 (4)
C1—C2—C3—C40.4 (6)C3—C10—C11—N2156.1 (3)
C1—C2—C3—C10177.1 (4)N2—C11—C12—C139.2 (5)
C2—C3—C4—C90.9 (5)C10—C11—C12—C13136.2 (4)
C10—C3—C4—C9178.5 (3)C11—C12—C13—C1665.9 (6)
C2—C3—C4—C5179.0 (4)C11—C12—C13—C1454.3 (6)
C10—C3—C4—C53.4 (5)C16—C13—C14—C1559.0 (5)
C9—C4—C5—C60.9 (6)C12—C13—C14—C1561.3 (5)
C3—C4—C5—C6177.2 (4)C16—C13—C14—C18'161.5 (6)
C4—C5—C6—C70.3 (6)C12—C13—C14—C18'78.3 (6)
C5—C6—C7—C80.6 (7)C16—C13—C14—C18177.2 (6)
C6—C7—C8—C91.0 (7)C12—C13—C14—C1856.9 (7)
C1—N1—C9—C8177.1 (4)C17—N2—C15—C1464.0 (5)
C1—N1—C9—C43.5 (6)C11—N2—C15—C1459.8 (5)
C7—C8—C9—N1179.7 (4)C13—C14—C15—N23.6 (5)
C7—C8—C9—C40.3 (6)C18'—C14—C15—N2116.6 (9)
C5—C4—C9—N1178.8 (4)C18—C14—C15—N2125.0 (5)
C3—C4—C9—N13.0 (5)C14—C13—C16—C1763.4 (6)
C5—C4—C9—C80.6 (5)C12—C13—C16—C1758.2 (6)
C3—C4—C9—C8177.6 (4)C15—N2—C17—C1659.6 (5)
C2—C3—C10—O125.4 (5)C11—N2—C17—C1661.4 (5)
C4—C3—C10—O1157.1 (3)C13—C16—C17—N22.9 (6)
C2—C3—C10—C1195.8 (4)C13—C14—C18—C1933.2 (12)
C4—C3—C10—C1181.6 (4)C15—C14—C18—C19153.4 (10)
C17—N2—C11—C1253.9 (5)C18'—C14—C18—C1913.9 (13)
C15—N2—C11—C1267.0 (5)C13—C14—C18'—C19'150.7 (12)
C17—N2—C11—C1074.6 (4)C15—C14—C18'—C19'27.2 (17)
C15—N2—C11—C10164.5 (3)C18—C14—C18'—C19'10.5 (12)
O1—C10—C11—C1242.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.82 (2)1.84 (2)2.653 (5)172 (3)
O2—H2OB···N1ii0.82 (2)2.07 (2)2.867 (6)165 (3)
O2—H2OA···Cl10.82 (2)2.31 (2)3.135 (5)174 (6)
N2—H2···Cl10.96 (4)2.08 (4)3.034 (6)175 (3)
C5—H5···Cl10.932.773.692 (5)172
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H23N2O+·Cl·H2O
Mr348.86
Crystal system, space groupOrthorhombic, P212121
Temperature (K)273
a, b, c (Å)10.4924 (8), 12.9049 (10), 13.3936 (10)
V3)1813.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.37 × 0.34 × 0.12
Data collection
DiffractometerSiemens P4
Absorption correctionMulti-scan
(SHELXTL; Bruker, 1998)
Tmin, Tmax0.722, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
9572, 3214, 3090
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.179, 1.18
No. of reflections3214
No. of parameters252
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.21
Absolute structureFlack (1983), with 1369 Friedel pairs
Absolute structure parameter0.04 (13)

Computer programs: XSCANS (Siemens, 1994), SHELXTL (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.82 (2)1.84 (2)2.653 (5)172 (3)
O2—H2OB···N1ii0.82 (2)2.07 (2)2.867 (6)165 (3)
O2—H2OA···Cl10.82 (2)2.31 (2)3.135 (5)174 (6)
N2—H2···Cl10.96 (4)2.08 (4)3.034 (6)175 (3)
C5—H5···Cl10.932.773.692 (5)172
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+3/2, y+1, z+1/2.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGriffiths, P. J. F. (1952). Acta Cryst. 5, 290–291.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhang, H.-M., Lü, Y.-P., Tu, B., Jin, Z.-M. & Wu, Z.-Y. (2006). Acta Cryst. E62, o3398–o3400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, H.-M., Tu, B., Jin, Z.-M., Wu, Z.-Y. & Hu, M.-L. (2006). Acta Cryst. E62, o2614–o2616.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds