metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[(μ2-2-amino-4,5-dimethybenzene­sulfonato-κ2N:O)(μ2-2-methyl­pyrazine-κ2N:N′)silver(I)] monohydrate]

aJilin Agricultural Science and Technology College, Jilin 132000, People's Republic of China
*Correspondence e-mail: hljwuhua@163.com

(Received 23 November 2007; accepted 27 November 2007; online 6 December 2007)

In the title compound, {[Ag(C8H10NO3S)(C7H6N2)]·H2O}n, each AgI cation is four-coordinated by three N atoms from two different 2-methyl­pyrazine ligands and one –NH2 group of a 2-amino-4,5-dimethybenzene­sulfonate ligand, and by one sulfonate O atom, in a distorted tetra­hedral coordination geometry. The AgI centres are bridged by both types of ligands, forming a two-dimensional network. N—H⋯O hydrogen bonds and O⋯O inter­actions complete the structure.

Related literature

For related literature, see: Cote & Shimizu (2004[Cote, A. P. & Shimizu, G. K. H. (2004). Inorg. Chem. 43, 6663-6673.]); Li et al. (2005[Li, F.-F., Ma, J.-F., Song, S.-Y., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2005). Inorg. Chem. 44, 9374-9383.]); Liu et al. (2007[Liu, H.-Y., Ma, J.-C. & Yang, J. (2007). Acta Cryst. E63, m2707.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C8H10NO3S)(C7H6N2)]·H2O

  • Mr = 420.23

  • Orthorhombic, P 21 21 21

  • a = 7.2340 (4) Å

  • b = 11.7610 (5) Å

  • c = 18.913 (1) Å

  • V = 1609.10 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 292 (2) K

  • 0.35 × 0.29 × 0.25 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.615, Tmax = 0.711

  • 13881 measured reflections

  • 3667 independent reflections

  • 3083 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.02

  • 3667 reflections

  • 207 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.58 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1369 Friedel pairs

  • Flack parameter: 0.00 (3)

Table 1
Selected geometric parameters (Å, °)

Ag1—N2 2.243 (3)
Ag1—N1 2.301 (4)
Ag1—N3i 2.469 (4)
Ag1—O3ii 2.525 (3)
N2—Ag1—N1 141.78 (13)
N2—Ag1—N3i 102.19 (12)
N1—Ag1—N3i 98.44 (13)
N2—Ag1—O3ii 125.98 (12)
N1—Ag1—O3ii 87.53 (14)
N3i—Ag1—O3ii 84.57 (12)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2N⋯O2 0.82 (3) 2.36 (4) 2.982 (5) 133 (4)
N1—H1N⋯O1Wii 0.82 (5) 2.15 (5) 2.946 (5) 164 (5)
Symmetry code: (ii) x+1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL-Plus (Sheldrick, 1990[Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Silver(I) sulfonate coordination polymers have received much attention for their interesting structural features and potential applications (Cote & Shimizu, 2004). Recently, silver(I) sulfonate compounds with nitrogen-based secondary ligands have been reported (Li et al., 2005). We report here the crystal structure of the title compound.

Selected geometric parameters are listed in Table 1. The AgI cation is four-coordinated by three N atoms from two different 2-methylpyrazine ligands and one –NH2 group of anion, and one sulfonate O atom in a distorted tetrahedral coordination geometry (Fig.1). The Ag—N distances in the title compound are similar to those in related compounds (Liu et al., 2007). The AgI centers are doubly bridged by both types of ligands to form a two-dimensional network (Fig.2), which are linked via N—H···O hydrogen bonds (Table 2) and O···O interacitons into a three-dimensional framework (Fig.3).

Related literature top

For related literature, see: Cote & Shimizu (2004); Li et al. (2005); Liu et al. (2007).

Experimental top

An aqueous solution (10 ml) of 2-amino-4,5-dimethylbenzenesulfonic acid (1 mmol) was added to solid Ag2CO3 (0.5 mmol) and stirred for several minutes until no further CO2 was given off. 2-Methylpyrazine (1 mmol) was then added and a precipitate was formed. The precipitate was dissolved by ammonium hydroxide. Crystals of the title compound were obtained by slow evaporation of the solution at room temperature for 7 d.

Refinement top

All H atoms on C atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding, with Uiso(H)= 1.2Ueq(C) or 1.5Ueq(Cmethyl) The amino H-atoms were located in a difference Fourier map and its positional parameters were refined, With the N—H distances restrained to 0.82 (2) Å, and with Uiso(H) = 1.2Ueq(N). H atoms bonded to water molecules could not be located and were therefore omitted.

Structure description top

Silver(I) sulfonate coordination polymers have received much attention for their interesting structural features and potential applications (Cote & Shimizu, 2004). Recently, silver(I) sulfonate compounds with nitrogen-based secondary ligands have been reported (Li et al., 2005). We report here the crystal structure of the title compound.

Selected geometric parameters are listed in Table 1. The AgI cation is four-coordinated by three N atoms from two different 2-methylpyrazine ligands and one –NH2 group of anion, and one sulfonate O atom in a distorted tetrahedral coordination geometry (Fig.1). The Ag—N distances in the title compound are similar to those in related compounds (Liu et al., 2007). The AgI centers are doubly bridged by both types of ligands to form a two-dimensional network (Fig.2), which are linked via N—H···O hydrogen bonds (Table 2) and O···O interacitons into a three-dimensional framework (Fig.3).

For related literature, see: Cote & Shimizu (2004); Li et al. (2005); Liu et al. (2007).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The coordination environment of atom Ag1 in the title compound, showing 30% probability displacement ellipsoids [Symmetry codes: (i) -x + 1, y + 1/2, -z + 1/2; (ii) x + 1, y, z].
[Figure 2] Fig. 2. View of a two-dimensional network in the title compound.
[Figure 3] Fig. 3. Part of the three-dimensional network of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen-bonding interactions have been omitted.
Poly[[(µ2-2-amino-4,5-dimethybenzenesulfonato-κ2N:O)(µ2-2- methylpyrazine-κ2N:N')silver(I)] monohydrate] top
Crystal data top
[Ag(C8H10NO3S)(C7H6N2)]·H2OF(000) = 848
Mr = 420.23Dx = 1.735 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 3667 reflections
a = 7.2340 (4) Åθ = 2.0–27.5°
b = 11.7610 (5) ŵ = 1.40 mm1
c = 18.913 (1) ÅT = 292 K
V = 1609.10 (14) Å3Block, yellow
Z = 40.35 × 0.29 × 0.25 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3667 independent reflections
Radiation source: fine-focus sealed tube3083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.615, Tmax = 0.711k = 1515
13881 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0492P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3667 reflectionsΔρmax = 0.50 e Å3
207 parametersΔρmin = 0.58 e Å3
4 restraintsAbsolute structure: Flack (1983), with 1369 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
[Ag(C8H10NO3S)(C7H6N2)]·H2OV = 1609.10 (14) Å3
Mr = 420.23Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2340 (4) ŵ = 1.40 mm1
b = 11.7610 (5) ÅT = 292 K
c = 18.913 (1) Å0.35 × 0.29 × 0.25 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3667 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3083 reflections with I > 2σ(I)
Tmin = 0.615, Tmax = 0.711Rint = 0.053
13881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085Δρmax = 0.50 e Å3
S = 1.02Δρmin = 0.58 e Å3
3667 reflectionsAbsolute structure: Flack (1983), with 1369 Friedel pairs
207 parametersAbsolute structure parameter: 0.00 (3)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.57509 (5)0.32306 (3)0.368222 (17)0.04386 (11)
C10.1920 (5)0.5165 (3)0.4190 (2)0.0308 (8)
C20.1248 (6)0.6189 (4)0.3919 (2)0.0393 (10)
H20.00450.62110.37460.047*
C30.2286 (7)0.7160 (4)0.3898 (2)0.0444 (11)
C40.4079 (8)0.7131 (4)0.4174 (2)0.0455 (11)
C50.4746 (6)0.6123 (4)0.4454 (2)0.0408 (10)
H50.59270.61130.46470.049*
C60.3719 (5)0.5128 (3)0.4457 (2)0.0316 (9)
C70.5321 (8)0.8154 (5)0.4164 (3)0.0684 (16)
H7A0.47440.87650.44180.103*
H7B0.55350.83830.36840.103*
H7C0.64780.79670.43840.103*
C80.1486 (9)0.8237 (4)0.3565 (3)0.0723 (16)
H8A0.17670.88790.38590.108*
H8B0.01690.81600.35210.108*
H8C0.20180.83470.31050.108*
C90.3884 (6)0.1510 (4)0.2665 (2)0.0455 (12)
H100.29630.20580.27040.055*
C100.3556 (7)0.0582 (4)0.2262 (3)0.0493 (12)
H110.24150.05050.20400.059*
C110.6419 (6)0.0062 (4)0.2511 (2)0.0413 (10)
H120.73490.06020.24590.050*
C120.6755 (6)0.0873 (4)0.2934 (2)0.0410 (10)
C130.8545 (8)0.1001 (6)0.3321 (4)0.078 (2)
H24A0.85280.16940.35900.117*
H24B0.95450.10240.29880.117*
H24C0.87120.03680.36350.117*
N10.4536 (5)0.4089 (3)0.46717 (18)0.0371 (8)
N20.5462 (5)0.1673 (3)0.30075 (16)0.0366 (8)
N30.4829 (5)0.0226 (3)0.21749 (19)0.0435 (9)
O10.1454 (4)0.3189 (3)0.36351 (17)0.0529 (8)
O20.0582 (5)0.3433 (3)0.48525 (17)0.0518 (8)
O30.1281 (4)0.4287 (3)0.3932 (2)0.0573 (9)
O1W0.2470 (5)0.4027 (3)0.57266 (16)0.0484 (8)
S10.05493 (14)0.39276 (9)0.41453 (6)0.0369 (2)
H1N0.539 (7)0.421 (4)0.495 (2)0.055*
H2N0.383 (6)0.362 (3)0.485 (2)0.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.04702 (19)0.03504 (16)0.04951 (17)0.00277 (16)0.00239 (16)0.00726 (15)
C10.029 (2)0.030 (2)0.0339 (19)0.0029 (17)0.0002 (16)0.0016 (16)
C20.036 (2)0.036 (2)0.046 (2)0.0036 (18)0.0017 (17)0.0005 (18)
C30.057 (3)0.030 (2)0.046 (2)0.003 (2)0.003 (2)0.0004 (18)
C40.054 (3)0.037 (2)0.045 (2)0.011 (2)0.001 (2)0.0067 (18)
C50.036 (2)0.041 (2)0.045 (2)0.006 (2)0.0013 (18)0.0043 (18)
C60.027 (2)0.034 (2)0.0334 (19)0.0037 (17)0.0002 (15)0.0014 (16)
C70.078 (4)0.050 (3)0.077 (3)0.026 (3)0.005 (3)0.002 (3)
C80.087 (4)0.033 (2)0.097 (4)0.002 (3)0.014 (3)0.012 (3)
C90.038 (3)0.049 (3)0.049 (2)0.009 (2)0.0029 (19)0.012 (2)
C100.040 (2)0.058 (3)0.050 (3)0.007 (2)0.012 (2)0.016 (2)
C110.038 (2)0.036 (2)0.050 (2)0.0044 (19)0.001 (2)0.007 (2)
C120.039 (2)0.038 (2)0.046 (2)0.001 (2)0.000 (2)0.001 (2)
C130.050 (3)0.066 (4)0.118 (5)0.006 (3)0.031 (3)0.032 (4)
N10.031 (2)0.0407 (19)0.0398 (18)0.0009 (16)0.0075 (16)0.0044 (15)
N20.0350 (19)0.0370 (18)0.0377 (16)0.0004 (19)0.0021 (14)0.0052 (15)
N30.047 (2)0.041 (2)0.0423 (19)0.0042 (19)0.0043 (17)0.0079 (16)
O10.0533 (18)0.0402 (16)0.0653 (19)0.0123 (17)0.0106 (17)0.0140 (19)
O20.0434 (18)0.049 (2)0.0626 (18)0.0032 (17)0.0058 (15)0.0194 (15)
O30.0284 (16)0.048 (2)0.095 (3)0.0068 (14)0.0196 (16)0.0175 (18)
O1W0.0428 (18)0.0499 (19)0.0526 (18)0.0038 (16)0.0054 (15)0.0033 (15)
S10.0255 (5)0.0328 (5)0.0524 (6)0.0029 (4)0.0004 (5)0.0053 (4)
Geometric parameters (Å, º) top
Ag1—N22.243 (3)C8—H8C0.96
Ag1—N12.301 (4)C9—N21.326 (6)
Ag1—N3i2.469 (4)C9—C101.353 (7)
Ag1—O3ii2.525 (3)C9—H100.9300
C1—C21.396 (6)C10—N31.333 (6)
C1—C61.396 (6)C10—H110.93
C1—S11.763 (4)C11—N31.329 (5)
C2—C31.368 (6)C11—C121.381 (6)
C2—H20.93C11—H120.93
C3—C41.399 (8)C12—N21.334 (6)
C3—C81.528 (7)C12—C131.495 (7)
C4—C51.386 (6)C13—H24A0.96
C4—C71.501 (7)C13—H24B0.96
C5—C61.386 (6)C13—H24C0.96
C5—H50.93N1—H1N0.82 (5)
C6—N11.417 (5)N1—H2N0.82 (3)
C7—H7A0.96N3—Ag1iii2.469 (4)
C7—H7B0.96O1—S11.454 (3)
C7—H7C0.96O2—S11.459 (3)
C8—H8A0.96O3—S11.448 (3)
C8—H8B0.96O3—Ag1iv2.525 (3)
N2—Ag1—N1141.78 (13)N2—C9—H10118.6
N2—Ag1—N3i102.19 (12)C10—C9—H10118.6
N1—Ag1—N3i98.44 (13)N3—C10—C9121.6 (4)
N2—Ag1—O3ii125.98 (12)N3—C10—H11119.2
N1—Ag1—O3ii87.53 (14)C9—C10—H11119.2
N3i—Ag1—O3ii84.57 (12)N3—C11—C12123.1 (4)
C2—C1—C6119.0 (4)N3—C11—H12118.5
C2—C1—S1119.9 (3)C12—C11—H12118.5
C6—C1—S1121.0 (3)N2—C12—C11119.9 (4)
C3—C2—C1122.7 (4)N2—C12—C13119.0 (4)
C3—C2—H2118.7C11—C12—C13121.1 (4)
C1—C2—H2118.7C12—C13—H24A109.5
C2—C3—C4118.6 (4)C12—C13—H24B109.5
C2—C3—C8119.8 (5)H24A—C13—H24B109.5
C4—C3—C8121.7 (4)C12—C13—H24C109.5
C5—C4—C3119.1 (4)H24A—C13—H24C109.5
C5—C4—C7118.8 (5)H24B—C13—H24C109.5
C3—C4—C7122.1 (4)C6—N1—Ag1107.7 (2)
C4—C5—C6122.5 (4)C6—N1—H1N111 (4)
C4—C5—H5118.7Ag1—N1—H1N108 (3)
C6—C5—H5118.7C6—N1—H2N116 (3)
C5—C6—C1118.1 (4)Ag1—N1—H2N107 (3)
C5—C6—N1120.4 (4)H1N—N1—H2N108 (4)
C1—C6—N1121.3 (4)C9—N2—C12116.8 (4)
C4—C7—H7A109.5C9—N2—Ag1118.4 (3)
C4—C7—H7B109.5C12—N2—Ag1124.8 (3)
H7A—C7—H7B109.5C11—N3—C10115.8 (4)
C4—C7—H7C109.5C11—N3—Ag1iii124.6 (3)
H7A—C7—H7C109.5C10—N3—Ag1iii119.2 (3)
H7B—C7—H7C109.5S1—O3—Ag1iv133.33 (19)
C3—C8—H8A109.5O3—S1—O1113.6 (2)
C3—C8—H8B109.5O3—S1—O2112.8 (2)
H8A—C8—H8B109.5O1—S1—O2111.3 (2)
C3—C8—H8C109.5O3—S1—C1106.66 (19)
H8A—C8—H8C109.5O1—S1—C1105.76 (18)
H8B—C8—H8C109.5O2—S1—C1106.0 (2)
N2—C9—C10122.8 (4)
C6—C1—C2—C30.6 (6)C10—C9—N2—Ag1178.1 (4)
S1—C1—C2—C3175.8 (4)C11—C12—N2—C90.6 (6)
C1—C2—C3—C41.5 (7)C13—C12—N2—C9178.7 (5)
C1—C2—C3—C8177.4 (5)C11—C12—N2—Ag1179.1 (3)
C2—C3—C4—C50.4 (7)C13—C12—N2—Ag10.2 (6)
C8—C3—C4—C5178.4 (5)N1—Ag1—N2—C963.6 (4)
C2—C3—C4—C7179.3 (5)N3i—Ag1—N2—C957.6 (3)
C8—C3—C4—C70.4 (7)O3ii—Ag1—N2—C9149.7 (3)
C3—C4—C5—C61.6 (7)N1—Ag1—N2—C12114.9 (3)
C7—C4—C5—C6177.3 (4)N3i—Ag1—N2—C12124.0 (3)
C4—C5—C6—C12.5 (6)O3ii—Ag1—N2—C1231.8 (4)
C4—C5—C6—N1172.5 (4)C12—C11—N3—C100.8 (7)
C2—C1—C6—C51.4 (6)C12—C11—N3—Ag1iii173.4 (3)
S1—C1—C6—C5177.7 (3)C9—C10—N3—C110.4 (7)
C2—C1—C6—N1173.6 (4)C9—C10—N3—Ag1iii172.7 (4)
S1—C1—C6—N12.8 (5)Ag1iv—O3—S1—O162.2 (4)
N2—C9—C10—N31.1 (8)Ag1iv—O3—S1—O265.6 (4)
N3—C11—C12—N21.3 (7)Ag1iv—O3—S1—C1178.4 (3)
N3—C11—C12—C13177.9 (5)C2—C1—S1—O310.7 (4)
C5—C6—N1—Ag190.6 (4)C6—C1—S1—O3172.9 (3)
C1—C6—N1—Ag184.2 (4)C2—C1—S1—O1110.6 (3)
N2—Ag1—N1—C6116.6 (3)C6—C1—S1—O165.8 (4)
N3i—Ag1—N1—C65.7 (3)C2—C1—S1—O2131.2 (3)
O3ii—Ag1—N1—C689.8 (3)C6—C1—S1—O252.5 (4)
C10—C9—N2—C120.5 (7)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y1/2, z+1/2; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2N···O20.82 (3)2.36 (4)2.982 (5)133 (4)
N1—H1N···O1Wii0.82 (5)2.15 (5)2.946 (5)164 (5)
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ag(C8H10NO3S)(C7H6N2)]·H2O
Mr420.23
Crystal system, space groupOrthorhombic, P212121
Temperature (K)292
a, b, c (Å)7.2340 (4), 11.7610 (5), 18.913 (1)
V3)1609.10 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.35 × 0.29 × 0.25
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.615, 0.711
No. of measured, independent and
observed [I > 2σ(I)] reflections
13881, 3667, 3083
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.02
No. of reflections3667
No. of parameters207
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.58
Absolute structureFlack (1983), with 1369 Friedel pairs
Absolute structure parameter0.00 (3)

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).

Selected geometric parameters (Å, º) top
Ag1—N22.243 (3)Ag1—N3i2.469 (4)
Ag1—N12.301 (4)Ag1—O3ii2.525 (3)
N2—Ag1—N1141.78 (13)N2—Ag1—O3ii125.98 (12)
N2—Ag1—N3i102.19 (12)N1—Ag1—O3ii87.53 (14)
N1—Ag1—N3i98.44 (13)N3i—Ag1—O3ii84.57 (12)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2N···O20.82 (3)2.36 (4)2.982 (5)133 (4)
N1—H1N···O1Wii0.82 (5)2.15 (5)2.946 (5)164 (5)
Symmetry code: (ii) x+1, y, z.
 

Acknowledgements

The authors thank the Science Foundation for Young Teachers of Northeast Normal University (grant No. 20070314) for support.

References

First citationCote, A. P. & Shimizu, G. K. H. (2004). Inorg. Chem. 43, 6663–6673.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, F.-F., Ma, J.-F., Song, S.-Y., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2005). Inorg. Chem. 44, 9374–9383.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, H.-Y., Ma, J.-C. & Yang, J. (2007). Acta Cryst. E63, m2707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds