organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propane-2,2-diyl di-p-phenyl­ene dibenzoate

aDepartment of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, PO Box 180, HR-10002 Zagreb, Croatia, and bDepartment of Chemistry, Laboratory of General and Inorganic Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
*Correspondence e-mail: judas@chem.pmf.hr

(Received 28 November 2007; accepted 4 December 2007; online 12 December 2007)

The V-shaped propeller-like mol­ecule of the title compound, C29H24O4, does not exhibit crystallographic twofold symmetry as the two benzene rings are twisted asymmetrically with respect to both the central propyl plane and the benzo­yloxy groups [4.6 (2), 43.6 (2)° and 45.07 (8), 69.50 (8)°]. In the crystal structure, centrosymmetrically related mol­ecules form a dimer through C—H⋯π inter­molecular inter­actions.

Related literature

For related literature, see: Perez & Scaringe (1987[Perez, S. & Scaringe, R. P. (1987). Macromolecules, 20, 68-77.]); Toda et al. (1988[Toda, F., Tanaka, K., Hyoda, T. & Mak, T. C. W. (1988). Chem. Lett. pp. 107-110.]); Bocelli & Cantoni (1989[Bocelli, G. & Cantoni, A. (1989). Acta Cryst. C45, 1660-1661.]); Casarini et al. (1995[Casarini, D., Harris, R. K. & Kenwright, A. M. (1995). J. Mol. Struct. 355, 121-125.]); Williams (1966[Williams, D. E. (1966). Acta Cryst. 21, 340-349.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C29H24O4

  • Mr = 436.48

  • Monoclinic, P 21 /c

  • a = 8.7298 (2) Å

  • b = 21.4202 (4) Å

  • c = 12.6693 (3) Å

  • β = 104.291 (2)°

  • V = 2295.77 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.68 × 0.46 × 0.23 mm

Data collection
  • Oxford Diffraction Xcalibur CCD diffractometer

  • Absorption correction: none

  • 23733 measured reflections

  • 4033 independent reflections

  • 2427 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.03

  • 4033 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯Cg2i 0.93 2.86 3.743 (2) 160
Symmetry code: (i) -x+1, -y+1, -z+1. Cg2 is the centroid of the C10–C15 ring.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Versions 1.170. Oxford Diffraction Ltd, Wroclaw, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Versions 1.170. Oxford Diffraction Ltd, Wroclaw, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and POV-RAY (Persistence of Vision, 2004[Persistence of Vision (2004). POV-RAY. Version 3.6. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. http://www.povray.org/download/.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound was synthesized as a part of our work on organizing a workshop on parallel synthesis and combinatorial chemistry. The title compound belongs to the class of compounds that can be used for isomeric separation by crystalline inclusion or for studies on isomeric selectivity, host design and molecular recognition.

The molecular structure of the title compound is shown in Fig. 1. The V-shaped propeller-like molecule consists of several parts: central propyl part (C1—C3), two benzene rings (C4—C9 and C10—C15) and two benzoyloxy groups (O1/O2/C16—C22 and O3/O4/C23—C29). All bond lengths and angles fall within normal ranges (Allen et al., 1987).

The molecule does not exhibit twofold symmetry as there is a characteristic asymmetric twist of the two benzene rings with respect to the C1/C2/C3 plane, which is best described by the torsion angles C5—C4—C2—C1 and C1—C2—C10—C11 of -4.6 (2)° and 43.6 (2)°, respectively. Further, the benzoyloxy moieties are also twisted asymmetrically with respect to the attached benzene rings. The dihedral angle between the C4—C9 and C17—C22 planes is 45.07 (8)° and that between the C10—C15 and C24—C29 planes is 69.50 (8)°.

In the crystal, the centrosymmetrically related molecules form a dimeric pair through C—H···π intermolecular interactions involving the C26—H26 group and the C10—C15 benzene ring (centroid Cg1) (Table 1).

Related literature top

For related literature, see: Perez & Scaringe (1987); Toda et al. (1988); Bocelli & Cantoni (1989); Casarini et al. (1995); Williams (1966). For bond-length data, see: Allen et al. (1987)

Experimental top

Bisphenol A (500 mg, 2.19 mmol) was dissolved in an aqueous solution (3.0 ml) of 2 M sodium hydroxide (6 mmol) and benzoyl chloride (508 µL, 616 mg, 4.38 mmol) was added to it. The reaction mixture was vigorously shaken for 20 min. The resulting white solid was filtered and rinsed with cold methanol and dried. Single crystals of the title compound were obtained by slow evaporation of a toluene solution.

Refinement top

H atoms were placed in calculated positions and included in the refinement using the riding-model approximation, with C—H distances of 0.93 Å for phenyl and 0.96 Å for methyl groups, and with Uiso(H) = 1.2Ueq(C) or 1.2Ueq(Cmethyl). A rotating group model was used for the methyl groups.

Structure description top

The title compound was synthesized as a part of our work on organizing a workshop on parallel synthesis and combinatorial chemistry. The title compound belongs to the class of compounds that can be used for isomeric separation by crystalline inclusion or for studies on isomeric selectivity, host design and molecular recognition.

The molecular structure of the title compound is shown in Fig. 1. The V-shaped propeller-like molecule consists of several parts: central propyl part (C1—C3), two benzene rings (C4—C9 and C10—C15) and two benzoyloxy groups (O1/O2/C16—C22 and O3/O4/C23—C29). All bond lengths and angles fall within normal ranges (Allen et al., 1987).

The molecule does not exhibit twofold symmetry as there is a characteristic asymmetric twist of the two benzene rings with respect to the C1/C2/C3 plane, which is best described by the torsion angles C5—C4—C2—C1 and C1—C2—C10—C11 of -4.6 (2)° and 43.6 (2)°, respectively. Further, the benzoyloxy moieties are also twisted asymmetrically with respect to the attached benzene rings. The dihedral angle between the C4—C9 and C17—C22 planes is 45.07 (8)° and that between the C10—C15 and C24—C29 planes is 69.50 (8)°.

In the crystal, the centrosymmetrically related molecules form a dimeric pair through C—H···π intermolecular interactions involving the C26—H26 group and the C10—C15 benzene ring (centroid Cg1) (Table 1).

For related literature, see: Perez & Scaringe (1987); Toda et al. (1988); Bocelli & Cantoni (1989); Casarini et al. (1995); Williams (1966). For bond-length data, see: Allen et al. (1987)

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and POVRay (Persistence of Vision, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.
Propane-2,2-diyldi-p-phenylene dibenzoate top
Crystal data top
C29H24O4F(000) = 920
Mr = 436.48Dx = 1.263 Mg m3
Monoclinic, P21/cMelting point: 435 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.7298 (2) ÅCell parameters from 238 reflections
b = 21.4202 (4) Åθ = 8.4–23.2°
c = 12.6693 (3) ŵ = 0.08 mm1
β = 104.291 (2)°T = 293 K
V = 2295.77 (9) Å3Prism, colourless
Z = 40.68 × 0.46 × 0.23 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2427 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.0°, θmin = 3.7°
ω scansh = 1010
23733 measured reflectionsk = 2525
4033 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0623P)2]
where P = (Fo2 + 2Fc2)/3
4033 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C29H24O4V = 2295.77 (9) Å3
Mr = 436.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7298 (2) ŵ = 0.08 mm1
b = 21.4202 (4) ÅT = 293 K
c = 12.6693 (3) Å0.68 × 0.46 × 0.23 mm
β = 104.291 (2)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2427 reflections with I > 2σ(I)
23733 measured reflectionsRint = 0.023
4033 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.03Δρmax = 0.14 e Å3
4033 reflectionsΔρmin = 0.15 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25033 (15)0.50560 (5)0.89440 (10)0.0753 (4)
O20.13081 (17)0.42428 (6)0.83756 (12)0.0937 (5)
O30.41160 (13)0.59632 (5)0.44375 (9)0.0644 (3)
O40.41701 (15)0.68081 (6)0.34023 (10)0.0768 (4)
C10.0091 (2)0.75543 (7)0.71258 (14)0.0723 (5)
H1A0.10220.74380.76700.108*
H1B0.06940.77080.74740.108*
H1C0.03520.78750.66700.108*
C20.05579 (18)0.69840 (7)0.64295 (12)0.0530 (4)
C30.2072 (2)0.71965 (8)0.56017 (15)0.0752 (5)
H3A0.18150.75160.51420.113*
H3B0.28090.73590.59830.113*
H3C0.25380.68470.51630.113*
C40.09977 (17)0.64530 (7)0.71197 (12)0.0503 (4)
C50.0719 (2)0.64800 (8)0.82398 (14)0.0681 (5)
H50.02080.68270.86050.082*
C60.1179 (2)0.60034 (8)0.88348 (15)0.0730 (5)
H60.09810.60330.95890.088*
C70.1922 (2)0.54922 (7)0.83096 (15)0.0594 (4)
C80.2206 (2)0.54453 (8)0.72020 (15)0.0696 (5)
H80.27170.50960.68420.084*
C90.1726 (2)0.59194 (8)0.66261 (14)0.0648 (5)
H90.19000.58790.58750.078*
C100.06761 (19)0.67327 (6)0.58543 (12)0.0492 (4)
C110.2245 (2)0.66805 (7)0.64163 (13)0.0611 (5)
H110.25420.68110.71380.073*
C120.3385 (2)0.64411 (7)0.59432 (14)0.0625 (5)
H120.44320.64140.63400.075*
C130.2961 (2)0.62455 (7)0.48917 (13)0.0528 (4)
C140.1429 (2)0.62839 (8)0.43036 (14)0.0664 (5)
H140.11440.61460.35850.080*
C150.0302 (2)0.65297 (8)0.47874 (14)0.0652 (5)
H150.07390.65590.43800.078*
C160.2158 (2)0.44437 (8)0.89067 (14)0.0623 (5)
C170.29534 (18)0.40654 (7)0.95880 (12)0.0529 (4)
C180.37050 (19)0.43330 (8)1.03155 (13)0.0603 (4)
H180.37000.47641.04010.072*
C190.4462 (2)0.39608 (9)1.09129 (15)0.0706 (5)
H190.49650.41411.14050.085*
C200.4477 (2)0.33262 (9)1.07866 (15)0.0704 (5)
H200.50110.30771.11800.084*
C210.3711 (2)0.30582 (8)1.00863 (15)0.0745 (5)
H210.36990.26261.00170.089*
C220.2957 (2)0.34237 (8)0.94838 (15)0.0692 (5)
H220.24450.32390.90020.083*
C230.46431 (19)0.62946 (8)0.36846 (13)0.0545 (4)
C240.58527 (18)0.59521 (7)0.32854 (13)0.0533 (4)
C250.6445 (2)0.53766 (8)0.36993 (15)0.0678 (5)
H250.60560.51850.42390.081*
C260.7605 (2)0.50891 (8)0.33132 (19)0.0839 (6)
H260.80030.47050.35960.101*
C270.8177 (2)0.53652 (9)0.25142 (18)0.0800 (6)
H270.89590.51670.22560.096*
C280.7604 (2)0.59323 (10)0.20925 (15)0.0748 (5)
H280.79890.61160.15450.090*
C290.6450 (2)0.62308 (8)0.24852 (14)0.0643 (5)
H290.60750.66190.22110.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0976 (10)0.0520 (7)0.0952 (9)0.0053 (6)0.0600 (8)0.0114 (6)
O20.1152 (11)0.0755 (8)0.1173 (11)0.0196 (7)0.0800 (10)0.0121 (8)
O30.0735 (8)0.0576 (7)0.0742 (8)0.0104 (5)0.0414 (6)0.0063 (6)
O40.0900 (9)0.0587 (8)0.0953 (9)0.0110 (6)0.0489 (8)0.0088 (7)
C10.0843 (14)0.0539 (10)0.0911 (13)0.0044 (9)0.0453 (11)0.0076 (9)
C20.0567 (10)0.0476 (9)0.0599 (10)0.0015 (7)0.0243 (8)0.0020 (8)
C30.0714 (13)0.0776 (12)0.0822 (13)0.0196 (9)0.0294 (10)0.0175 (10)
C40.0482 (9)0.0530 (9)0.0547 (10)0.0010 (7)0.0219 (8)0.0030 (7)
C50.0836 (13)0.0649 (11)0.0604 (11)0.0192 (9)0.0263 (10)0.0095 (9)
C60.0971 (15)0.0724 (12)0.0570 (11)0.0095 (10)0.0332 (10)0.0013 (10)
C70.0646 (11)0.0518 (10)0.0726 (12)0.0009 (8)0.0375 (9)0.0051 (9)
C80.0824 (13)0.0571 (10)0.0730 (13)0.0190 (9)0.0265 (10)0.0072 (9)
C90.0796 (13)0.0633 (11)0.0544 (10)0.0125 (9)0.0219 (9)0.0053 (9)
C100.0541 (10)0.0454 (9)0.0523 (9)0.0001 (7)0.0211 (8)0.0036 (7)
C110.0635 (12)0.0717 (11)0.0493 (9)0.0095 (9)0.0163 (9)0.0046 (8)
C120.0528 (10)0.0734 (11)0.0609 (11)0.0091 (8)0.0135 (9)0.0005 (9)
C130.0570 (11)0.0495 (9)0.0586 (11)0.0047 (8)0.0268 (9)0.0025 (8)
C140.0669 (13)0.0831 (12)0.0537 (10)0.0057 (9)0.0239 (10)0.0145 (9)
C150.0529 (11)0.0858 (12)0.0585 (11)0.0013 (9)0.0166 (9)0.0089 (9)
C160.0648 (12)0.0567 (11)0.0724 (12)0.0062 (9)0.0305 (10)0.0038 (9)
C170.0521 (10)0.0501 (9)0.0593 (10)0.0030 (7)0.0191 (8)0.0036 (8)
C180.0692 (11)0.0515 (9)0.0652 (11)0.0057 (8)0.0263 (9)0.0034 (8)
C190.0756 (13)0.0744 (13)0.0702 (12)0.0073 (10)0.0339 (10)0.0103 (10)
C200.0711 (13)0.0700 (13)0.0709 (12)0.0083 (9)0.0192 (10)0.0171 (10)
C210.0941 (14)0.0502 (10)0.0807 (13)0.0034 (9)0.0246 (12)0.0034 (9)
C220.0837 (13)0.0558 (11)0.0751 (12)0.0070 (9)0.0328 (10)0.0006 (9)
C230.0582 (10)0.0507 (10)0.0582 (10)0.0061 (8)0.0208 (8)0.0047 (8)
C240.0506 (10)0.0542 (10)0.0594 (10)0.0057 (7)0.0219 (8)0.0098 (8)
C250.0724 (12)0.0564 (11)0.0862 (13)0.0029 (9)0.0415 (10)0.0033 (9)
C260.0813 (14)0.0607 (11)0.1244 (17)0.0049 (10)0.0533 (13)0.0052 (11)
C270.0685 (13)0.0770 (13)0.1078 (16)0.0086 (10)0.0469 (12)0.0285 (12)
C280.0671 (13)0.0954 (15)0.0715 (12)0.0142 (11)0.0355 (10)0.0119 (11)
C290.0612 (11)0.0725 (11)0.0636 (11)0.0043 (9)0.0239 (9)0.0004 (9)
Geometric parameters (Å, º) top
O1—C161.3492 (19)C12—C131.358 (2)
O1—C71.4064 (18)C12—H120.93
O2—C161.1981 (18)C13—C141.363 (2)
O3—C231.3574 (18)C14—C151.385 (2)
O3—C131.4144 (17)C14—H140.93
O4—C231.1980 (18)C15—H150.93
C1—C21.531 (2)C16—C171.476 (2)
C1—H1A0.96C17—C181.381 (2)
C1—H1B0.96C17—C221.381 (2)
C1—H1C0.96C18—C191.375 (2)
C2—C101.539 (2)C18—H180.93
C2—C41.540 (2)C19—C201.368 (2)
C2—C31.540 (2)C19—H190.93
C3—H3A0.96C20—C211.363 (2)
C3—H3B0.96C20—H200.93
C3—H3C0.96C21—C221.370 (2)
C4—C91.381 (2)C21—H210.93
C4—C51.380 (2)C22—H220.93
C5—C61.386 (2)C23—C241.474 (2)
C5—H50.93C24—C291.384 (2)
C6—C71.360 (2)C24—C251.389 (2)
C6—H60.93C25—C261.374 (2)
C7—C81.367 (2)C25—H250.93
C8—C91.375 (2)C26—C271.368 (3)
C8—H80.93C26—H260.93
C9—H90.93C27—C281.371 (2)
C10—C151.380 (2)C27—H270.93
C10—C111.383 (2)C28—C291.385 (2)
C11—C121.381 (2)C28—H280.93
C11—H110.93C29—H290.93
C16—O1—C7120.72 (12)C14—C13—O3120.34 (15)
C23—O3—C13117.50 (12)C13—C14—C15119.28 (16)
C2—C1—H1A109.5C13—C14—H14120.4
C2—C1—H1B109.5C15—C14—H14120.4
H1A—C1—H1B109.5C10—C15—C14122.06 (17)
C2—C1—H1C109.5C10—C15—H15119.0
H1A—C1—H1C109.5C14—C15—H15119.0
H1B—C1—H1C109.5O2—C16—O1122.91 (15)
C1—C2—C10110.44 (13)O2—C16—C17125.26 (15)
C1—C2—C4111.76 (12)O1—C16—C17111.84 (14)
C10—C2—C4108.21 (11)C18—C17—C22119.12 (15)
C1—C2—C3106.85 (13)C18—C17—C16122.13 (14)
C10—C2—C3111.38 (13)C22—C17—C16118.74 (14)
C4—C2—C3108.22 (13)C19—C18—C17119.90 (15)
C2—C3—H3A109.5C19—C18—H18120.0
C2—C3—H3B109.5C17—C18—H18120.0
H3A—C3—H3B109.5C20—C19—C18120.24 (16)
C2—C3—H3C109.5C20—C19—H19119.9
H3A—C3—H3C109.5C18—C19—H19119.9
H3B—C3—H3C109.5C21—C20—C19120.16 (16)
C9—C4—C5116.42 (14)C21—C20—H20119.9
C9—C4—C2120.38 (14)C19—C20—H20119.9
C5—C4—C2123.19 (14)C20—C21—C22120.16 (16)
C4—C5—C6121.80 (16)C20—C21—H21119.9
C4—C5—H5119.1C22—C21—H21119.9
C6—C5—H5119.1C21—C22—C17120.39 (16)
C7—C6—C5119.62 (16)C21—C22—H22119.8
C7—C6—H6120.2C17—C22—H22119.8
C5—C6—H6120.2O4—C23—O3122.57 (14)
C6—C7—C8120.34 (15)O4—C23—C24125.30 (15)
C6—C7—O1116.81 (15)O3—C23—C24112.12 (14)
C8—C7—O1122.56 (16)C29—C24—C25119.14 (15)
C7—C8—C9119.25 (16)C29—C24—C23117.88 (15)
C7—C8—H8120.4C25—C24—C23122.95 (15)
C9—C8—H8120.4C26—C25—C24120.12 (16)
C8—C9—C4122.53 (16)C26—C25—H25119.9
C8—C9—H9118.7C24—C25—H25119.9
C4—C9—H9118.7C27—C26—C25120.34 (19)
C15—C10—C11116.33 (14)C27—C26—H26119.8
C15—C10—C2123.36 (15)C25—C26—H26119.8
C11—C10—C2120.28 (14)C26—C27—C28120.43 (17)
C12—C11—C10122.32 (15)C26—C27—H27119.8
C12—C11—H11118.8C28—C27—H27119.8
C10—C11—H11118.8C27—C28—C29119.79 (17)
C13—C12—C11119.27 (16)C27—C28—H28120.1
C13—C12—H12120.4C29—C28—H28120.1
C11—C12—H12120.4C24—C29—C28120.17 (17)
C12—C13—C14120.73 (15)C24—C29—H29119.9
C12—C13—O3118.80 (15)C28—C29—H29119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···Cg2i0.932.863.743 (2)160
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC29H24O4
Mr436.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.7298 (2), 21.4202 (4), 12.6693 (3)
β (°) 104.291 (2)
V3)2295.77 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.68 × 0.46 × 0.23
Data collection
DiffractometerOxford Diffraction Xcalibur CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
23733, 4033, 2427
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.03
No. of reflections4033
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and POVRay (Persistence of Vision, 2004), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···Cg2i0.932.863.743 (2)160
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The financial support by the Ministry of Science, Education and Sport of the Republic of Croatia is gratefully acknowledged (grant Nos. 098-0982914-2935 and 119-1193079-1084).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBocelli, G. & Cantoni, A. (1989). Acta Cryst. C45, 1660–1661.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCasarini, D., Harris, R. K. & Kenwright, A. M. (1995). J. Mol. Struct. 355, 121–125.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Versions 1.170. Oxford Diffraction Ltd, Wroclaw, Poland.  Google Scholar
First citationPerez, S. & Scaringe, R. P. (1987). Macromolecules, 20, 68–77.  CSD CrossRef CAS Web of Science Google Scholar
First citationPersistence of Vision (2004). POV-RAY. Version 3.6. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. http://www.povray.org/download/Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationToda, F., Tanaka, K., Hyoda, T. & Mak, T. C. W. (1988). Chem. Lett. pp. 107–110.  CrossRef Web of Science Google Scholar
First citationWilliams, D. E. (1966). Acta Cryst. 21, 340–349.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds