metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-cis-trans-Bis(aceto­nitrile-κN)di­chloridobis(tri­phenyl­phosphine-κP)ruthenium(II) aceto­nitrile disolvate

aDepartment of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
*Correspondence e-mail: lms@chem.okstate.edu

(Received 30 November 2007; accepted 6 December 2007; online 12 December 2007)

The title compound, [RuCl2(C2H3N)2(C18H15P)2]·2C2H3N, was obtained upon stirring an acetonitrile/ethanol solution of [RuCl2(PPh3)3]. In the crystal structure, each RuII ion is coordinated by two Cl [Ru—Cl = 2.4308 (7) and 2.4139 (7) Å], two N [Ru—N = 2.016 (2) and 2.003 (2) Å], and two P [Ru—P = 2.3688 (7) and 2.3887 (7) Å] atoms in a distorted octa­hedral geometry. Packing inter­actions include typical C—H⋯π contacts involving phenyl groups as well as weak hydrogen bonds between CH3CN methyl H atoms and Cl or solvent CH3CN N atoms.

Related literature

For the original synthesis, characterization and reactivity of the title compound and its precursor, see: Gilbert & Wilkinson (1969[Gilbert, J. D. & Wilkinson, G. (1969). J. Chem. Soc. A, pp. 1749-1753.]); Stephenson & Wilkinson (1966[Stephenson, T. A. & Wilkinson, G. (1966). J. Inorg. Nucl. Chem. 28, 945-956.]); Hallman et al. (1970[Hallman, P. S., Stephenson, T. A. & Wilkinson, G. (1970). Inorg. Synth. 12, 237-240.]); Caulton (1974[Caulton, K. G. (1974). J. Am. Chem. Soc. 96, 3005-3006.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl2(C2H3N)2(C18H15P)2]·2C2H3N

  • Mr = 860.73

  • Orthorhombic, P 21 21 21

  • a = 9.0622 (9) Å

  • b = 18.0167 (18) Å

  • c = 25.628 (2) Å

  • V = 4184.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 170 (2) K

  • 0.40 × 0.35 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS (Version 2.10) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.791, Tmax = 0.887

  • 25910 measured reflections

  • 10568 independent reflections

  • 9200 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.072

  • S = 1.02

  • 10568 reflections

  • 482 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4387 Friedel pairs

  • Flack parameter: −0.02 (2)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C51–C56 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯Cl1i 0.98 2.68 3.560 (3) 149
C101—H101⋯Cl1ii 0.98 2.80 3.698 (4) 153
C2—H2C⋯Cl2iii 0.98 2.57 3.544 (3) 175
C101—H102⋯Cl2 0.98 2.62 3.554 (4) 158
C2—H2A⋯N100i 0.98 2.60 3.519 (5) 155
C101—H103⋯N200 0.98 2.72 3.645 (6) 158
C201—H201⋯N200iv 0.98 2.66 3.526 (7) 148
C64—H64⋯Cg1iii 0.95 2.96 3.715 (4) 138
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) x+1, y, z; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 (Version 2.0) and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 (Version 2.0) and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS (Version 2.10) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

[RuCl2(PPh3)3] has been widely used as a convenient synthon for a variety of RuII complexes (Stephenson & Wilkinson, 1966; Hallman et al., 1970). It readily loses one phosphine ligand in solution to give solvent adducts or chlorido-bridged RuII species that are potential catalyst precursors (Caulton, 1974). Gilbert & Wilkinson (1969) previously reported the synthesis of two isomers of [RuCl2(CH3CN)2(PPh3)2] having either cis or trans orientations of the acetonitrile ligands as characterized by infrared spectroscopy. The cis isomer was obtained upon refluxing [RuCl2(PPh3)3] in CH3CN/acetone, whereas the trans isomer was formed upon refluxing in CH3CN/toluene. We found that the cis isomer could also be obtained by stirring [RuCl2(PPh3)3] in CH3CN/ethanol at ambient temperature, confirming the importance of a polar co-solvent in favoring a cis geometry.

The crystal structure of the title compound contains one [RuCl2(CH3CN)2(PPh3)2] complex and two acetonitriles of crystallization in the asymmetric unit. The RuII complex displays a cis orientation of both the chlorido and CH3CN ligands and a trans orientation of the phosphine ligands (Fig. 1). The Ru—Cl [2.4308 (7), 2.4139 (7) Å], Ru—N [2.016 (2), 2.003 (2) Å], and Ru—P [2.3688 (7), 2.3887 (7) Å] distances are in the expected ranges, and the angles between coordinated atoms are in the range 90.02 (6)—93.83 (2)°. In addition to typical C—H···π packing interactions involving phenyl rings, there are several weak hydrogren bonds between C—H bonds of coordinated or solvate acetonitriles and Cl ligands or solvate acetonitrile N atoms (Fig. 2). The H···acceptor distances range from 2.57—2.80 Å, and the C···acceptor distances range from 3.52—3.70 Å (Table 1).

Although it has been little investigated, [RuCl2(CH3CN)2(PPh3)2] is a potentially useful precursor for catalytically active Ru species given the presence of two dissociable ligands in a cis arrangement.

Related literature top

For the original synthesis, characterization, and reactivity of the title compound and its precursor, see: Gilbert & Wilkinson (1969); Stephenson & Wilkinson (1966); Hallman et al. (1970); Caulton (1974).

Experimental top

[RuCl2(PPh3)3] (20 mg) was dissolved in a mixture of degassed absolute ethanol (2 ml) and freshly distilled CH3CN (3 ml) and stirred for 15 min. During this time, the color of the solution changed from dark brown to yellow. The solvent was removed under vacuum, and the resulting yellow powder was dried for a further 2 h. A 10 mg portion of the solid was dissolved in 0.6 ml of acetonitrile and alllowed to stand for 3 d under nitrogen. Large yellow-orange crystals of the title compound formed over this time. The crystals became opaque due to solvent loss within 20 min of removal from acetonitrile unless placed in a cold stream. The sample used in this study was cut from a larger (>1 mm) block, immersed in Paratone N oil in a 0.5 mm nylon loop, and placed in the nitrogen cold stream of an APEXII diffractometer at 170 (2) K for X-ray diffraction analysis.

Refinement top

Phenyl H atoms were fixed at C—H distances of 0.95 Å and refined as riding, with Uiso(H) = 1.2Ueq(C). Methyl H atoms were placed with idealized threefold symmetry and fixed C—H distances of 0.98 Å, and they were refined in a riding model with Uiso(H) = 1.5Ueq(C). In order to assign the absolute structure, 4387 Friedel pairs (71% of all Friedel pairs) were measured, and Friedel opposites were not merged in the reflection list used for structure solution and refinement. The absolute structure parameter (Flack x) refined to -0.02 (2). For the inverted structure, Flack x refined to 1.02 (2), and increases in R[F2>2σ(F2)] and wR(F2) of 0.33% and 1.29%, respectively, were observed.

Structure description top

[RuCl2(PPh3)3] has been widely used as a convenient synthon for a variety of RuII complexes (Stephenson & Wilkinson, 1966; Hallman et al., 1970). It readily loses one phosphine ligand in solution to give solvent adducts or chlorido-bridged RuII species that are potential catalyst precursors (Caulton, 1974). Gilbert & Wilkinson (1969) previously reported the synthesis of two isomers of [RuCl2(CH3CN)2(PPh3)2] having either cis or trans orientations of the acetonitrile ligands as characterized by infrared spectroscopy. The cis isomer was obtained upon refluxing [RuCl2(PPh3)3] in CH3CN/acetone, whereas the trans isomer was formed upon refluxing in CH3CN/toluene. We found that the cis isomer could also be obtained by stirring [RuCl2(PPh3)3] in CH3CN/ethanol at ambient temperature, confirming the importance of a polar co-solvent in favoring a cis geometry.

The crystal structure of the title compound contains one [RuCl2(CH3CN)2(PPh3)2] complex and two acetonitriles of crystallization in the asymmetric unit. The RuII complex displays a cis orientation of both the chlorido and CH3CN ligands and a trans orientation of the phosphine ligands (Fig. 1). The Ru—Cl [2.4308 (7), 2.4139 (7) Å], Ru—N [2.016 (2), 2.003 (2) Å], and Ru—P [2.3688 (7), 2.3887 (7) Å] distances are in the expected ranges, and the angles between coordinated atoms are in the range 90.02 (6)—93.83 (2)°. In addition to typical C—H···π packing interactions involving phenyl rings, there are several weak hydrogren bonds between C—H bonds of coordinated or solvate acetonitriles and Cl ligands or solvate acetonitrile N atoms (Fig. 2). The H···acceptor distances range from 2.57—2.80 Å, and the C···acceptor distances range from 3.52—3.70 Å (Table 1).

Although it has been little investigated, [RuCl2(CH3CN)2(PPh3)2] is a potentially useful precursor for catalytically active Ru species given the presence of two dissociable ligands in a cis arrangement.

For the original synthesis, characterization, and reactivity of the title compound and its precursor, see: Gilbert & Wilkinson (1969); Stephenson & Wilkinson (1966); Hallman et al. (1970); Caulton (1974).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL (Sheldrick, 2000); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2000).

Figures top
[Figure 1] Fig. 1. ORTEP view of the complex portion of the title compound, with displacement ellipsoids at the 50% probability level. Phenyl hydrogen atoms and acetonitriles of crystallization are omitted for clarity.
[Figure 2] Fig. 2. Packing diagram showing a portion of the network of weak hydrogen bonds involving acetonitrile C—H bonds. Symmetry codes: (A) 2 - x, 1/2 + y, 1/2 - z; (B) -1 + x, y, z; (C) 1 + x, y, z; (D) -1/2 + x, 1/2 - y, -z. For solvent symmetry equivalents, N200 becomes N20A, etc.
ciscistrans-Bis(acetonitrile- κN)dichloridobis(triphenylphosphine-κP)ruthenium(II) acetonitrile disolvate top
Crystal data top
[RuCl2(C2H3N)2(C18H15P)2]·2C2H3NF(000) = 1768
Mr = 860.73Dx = 1.366 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7584 reflections
a = 9.0622 (9) Åθ = 2.6–29.0°
b = 18.0167 (18) ŵ = 0.61 mm1
c = 25.628 (2) ÅT = 170 K
V = 4184.3 (7) Å3Block, orange
Z = 40.40 × 0.35 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
10568 independent reflections
Radiation source: fine-focus sealed tube9200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 0.75 pixels mm-1θmax = 29.0°, θmin = 2.0°
φ and ω scansh = 1211
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 2324
Tmin = 0.791, Tmax = 0.887l = 2434
25910 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0197P)2 + 1.2863P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.035(Δ/σ)max = 0.002
wR(F2) = 0.072Δρmax = 0.38 e Å3
S = 1.02Δρmin = 0.30 e Å3
10568 reflectionsAbsolute structure: Flack (1983), 4387 Friedel pairs
482 parametersAbsolute structure parameter: 0.02 (2)
0 restraints
Crystal data top
[RuCl2(C2H3N)2(C18H15P)2]·2C2H3NV = 4184.3 (7) Å3
Mr = 860.73Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.0622 (9) ŵ = 0.61 mm1
b = 18.0167 (18) ÅT = 170 K
c = 25.628 (2) Å0.40 × 0.35 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
10568 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
9200 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 0.887Rint = 0.042
25910 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.072Δρmax = 0.38 e Å3
S = 1.02Δρmin = 0.30 e Å3
10568 reflectionsAbsolute structure: Flack (1983), 4387 Friedel pairs
482 parametersAbsolute structure parameter: 0.02 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.98665 (2)0.525404 (10)0.202447 (8)0.01835 (5)
N11.1935 (2)0.56649 (11)0.20310 (9)0.0221 (4)
C11.3072 (3)0.59216 (14)0.20769 (11)0.0260 (6)
C21.4541 (3)0.62345 (18)0.21633 (14)0.0424 (9)
H2A1.45720.64780.25050.064*
H2B1.47590.65990.18900.064*
H2C1.52780.58360.21520.064*
N20.9070 (2)0.62612 (12)0.21976 (8)0.0220 (5)
C30.8554 (3)0.68174 (16)0.22992 (11)0.0268 (6)
C40.7865 (4)0.75235 (16)0.24243 (12)0.0371 (7)
H4A0.74770.77490.21050.056*
H4B0.85980.78550.25810.056*
H4C0.70550.74420.26710.056*
Cl11.07873 (8)0.40246 (4)0.18086 (3)0.02873 (15)
Cl20.73218 (6)0.48601 (4)0.20527 (3)0.02807 (14)
P10.95830 (7)0.55102 (4)0.11234 (3)0.02106 (14)
P21.00686 (7)0.49955 (3)0.29358 (2)0.02023 (12)
C110.8461 (3)0.63406 (16)0.10137 (10)0.0234 (6)
C120.9038 (4)0.70435 (16)0.11118 (11)0.0311 (7)
H121.00540.70950.11950.037*
C130.8153 (4)0.76658 (17)0.10896 (13)0.0392 (8)
H130.85690.81410.11550.047*
C140.6677 (4)0.76067 (19)0.09743 (13)0.0409 (8)
H140.60730.80370.09570.049*
C150.6078 (4)0.69085 (19)0.08828 (14)0.0426 (8)
H150.50580.68610.08050.051*
C160.6965 (3)0.62787 (17)0.09043 (12)0.0321 (7)
H160.65450.58030.08440.039*
C210.8672 (3)0.48398 (16)0.06914 (10)0.0235 (6)
C220.8493 (3)0.50217 (17)0.01617 (11)0.0304 (7)
H220.88620.54800.00330.036*
C230.7778 (4)0.45353 (19)0.01746 (12)0.0376 (7)
H230.76520.46640.05310.045*
C240.7249 (4)0.3863 (2)0.00102 (13)0.0407 (8)
H240.67640.35290.02190.049*
C250.7430 (3)0.36848 (18)0.05247 (12)0.0367 (7)
H250.70590.32250.06500.044*
C260.8147 (3)0.41607 (16)0.08707 (12)0.0302 (7)
H260.82760.40230.12250.036*
C311.1296 (3)0.56553 (17)0.07510 (11)0.0274 (6)
C321.2373 (3)0.51060 (18)0.07986 (12)0.0356 (7)
H321.22350.47130.10410.043*
C331.3649 (4)0.5126 (2)0.04960 (13)0.0429 (8)
H331.43690.47450.05290.052*
C341.3864 (4)0.5699 (2)0.01487 (13)0.0474 (9)
H341.47260.57110.00620.057*
C351.2835 (4)0.6250 (2)0.01071 (13)0.0498 (10)
H351.30050.66520.01250.060*
C361.1541 (4)0.6232 (2)0.03999 (12)0.0408 (8)
H361.08250.66130.03600.049*
C410.9408 (3)0.57923 (16)0.33105 (10)0.0287 (7)
C420.7897 (4)0.5863 (2)0.34125 (12)0.0411 (8)
H420.72380.54700.33310.049*
C430.7367 (5)0.6519 (2)0.36353 (14)0.0612 (13)
H430.63460.65670.37140.073*
C440.8310 (7)0.7095 (2)0.37417 (15)0.0737 (16)
H440.79390.75400.38920.088*
C450.9794 (7)0.7031 (2)0.36316 (14)0.0654 (13)
H451.04410.74320.37050.078*
C461.0343 (4)0.63864 (18)0.34158 (12)0.0433 (9)
H461.13650.63480.33390.052*
C510.9060 (3)0.42064 (16)0.32141 (12)0.0267 (6)
C520.8560 (3)0.36297 (16)0.28975 (13)0.0337 (7)
H520.87110.36530.25310.040*
C530.7839 (3)0.30185 (18)0.31140 (17)0.0461 (10)
H530.74930.26300.28950.055*
C540.7629 (4)0.2979 (2)0.36451 (18)0.0509 (11)
H540.71470.25600.37920.061*
C550.8113 (4)0.3542 (2)0.39642 (15)0.0464 (9)
H550.79620.35090.43300.056*
C560.8823 (3)0.41577 (18)0.37543 (12)0.0338 (7)
H560.91480.45460.39770.041*
C611.1917 (3)0.48226 (16)0.32086 (11)0.0266 (6)
C621.2245 (3)0.49623 (18)0.37348 (12)0.0370 (7)
H621.15170.51740.39560.044*
C631.3620 (3)0.4794 (2)0.39327 (14)0.0445 (8)
H631.38250.48800.42910.053*
C641.4698 (4)0.45017 (19)0.36158 (16)0.0490 (9)
H641.56500.43980.37530.059*
C651.4394 (3)0.43590 (18)0.30962 (15)0.0429 (9)
H651.51350.41560.28760.051*
C661.3001 (3)0.45142 (16)0.28976 (13)0.0314 (7)
H661.27910.44060.25420.038*
N1000.6221 (4)0.2438 (2)0.17890 (18)0.0832 (13)
C1000.5542 (4)0.2940 (3)0.16867 (16)0.0563 (11)
C1010.4699 (4)0.3596 (2)0.15297 (16)0.0562 (10)
H1030.45610.35930.11500.084*
H1020.52370.40450.16320.084*
H1010.37340.35910.17020.084*
N2000.3740 (5)0.3076 (2)0.01978 (17)0.0726 (11)
C2000.2643 (5)0.3231 (2)0.00348 (18)0.0559 (11)
C2010.1228 (6)0.3429 (3)0.0176 (3)0.113 (2)
H2030.12570.33890.05580.169*
H2020.09880.39400.00770.169*
H2010.04730.30920.00380.169*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01907 (9)0.01683 (8)0.01915 (9)0.00050 (8)0.00009 (8)0.00030 (9)
N10.0268 (11)0.0175 (10)0.0219 (11)0.0018 (8)0.0020 (11)0.0027 (11)
C10.0260 (13)0.0215 (13)0.0304 (15)0.0033 (10)0.0048 (12)0.0006 (14)
C20.0214 (15)0.0347 (16)0.071 (2)0.0042 (12)0.0039 (14)0.0045 (17)
N20.0266 (12)0.0218 (11)0.0176 (11)0.0005 (9)0.0019 (9)0.0036 (10)
C30.0361 (16)0.0250 (15)0.0192 (14)0.0006 (12)0.0029 (12)0.0004 (13)
C40.058 (2)0.0217 (15)0.0312 (16)0.0095 (14)0.0018 (14)0.0020 (13)
Cl10.0313 (4)0.0206 (3)0.0342 (4)0.0044 (3)0.0042 (3)0.0014 (3)
Cl20.0233 (3)0.0293 (3)0.0316 (3)0.0013 (2)0.0012 (3)0.0008 (3)
P10.0222 (3)0.0215 (3)0.0195 (3)0.0017 (3)0.0008 (3)0.0003 (3)
P20.0188 (3)0.0210 (3)0.0209 (3)0.0012 (2)0.0001 (3)0.0029 (3)
C110.0292 (15)0.0234 (14)0.0176 (13)0.0022 (11)0.0036 (11)0.0013 (12)
C120.0438 (18)0.0250 (15)0.0245 (15)0.0099 (13)0.0056 (13)0.0047 (13)
C130.067 (2)0.0201 (14)0.0305 (16)0.0038 (16)0.0063 (15)0.0059 (14)
C140.057 (2)0.0299 (17)0.0356 (18)0.0124 (16)0.0032 (15)0.0021 (16)
C150.0358 (19)0.0411 (19)0.051 (2)0.0057 (15)0.0049 (15)0.0085 (18)
C160.0297 (16)0.0246 (15)0.0421 (18)0.0022 (12)0.0026 (13)0.0073 (14)
C210.0220 (13)0.0255 (15)0.0229 (13)0.0007 (11)0.0003 (10)0.0039 (12)
C220.0348 (16)0.0285 (15)0.0278 (15)0.0031 (12)0.0038 (12)0.0016 (13)
C230.0430 (18)0.0436 (19)0.0262 (15)0.0044 (15)0.0070 (13)0.0106 (15)
C240.0390 (19)0.047 (2)0.0360 (18)0.0087 (16)0.0020 (15)0.0214 (17)
C250.0400 (18)0.0325 (17)0.0377 (18)0.0120 (14)0.0066 (14)0.0113 (15)
C260.0353 (17)0.0288 (16)0.0265 (15)0.0020 (13)0.0026 (12)0.0057 (13)
C310.0253 (15)0.0366 (17)0.0204 (13)0.0082 (12)0.0006 (11)0.0014 (13)
C320.0330 (16)0.0366 (18)0.0371 (17)0.0018 (13)0.0112 (13)0.0009 (15)
C330.0334 (17)0.052 (2)0.0434 (19)0.0000 (15)0.0108 (14)0.0045 (18)
C340.0332 (19)0.079 (3)0.0303 (17)0.0140 (19)0.0083 (14)0.0010 (19)
C350.043 (2)0.079 (3)0.0277 (17)0.015 (2)0.0050 (15)0.0214 (19)
C360.0340 (17)0.060 (2)0.0289 (16)0.0080 (16)0.0044 (13)0.0162 (17)
C410.0408 (17)0.0272 (15)0.0182 (13)0.0104 (12)0.0003 (11)0.0039 (12)
C420.050 (2)0.045 (2)0.0290 (16)0.0171 (16)0.0111 (15)0.0141 (16)
C430.085 (3)0.066 (3)0.0331 (19)0.047 (2)0.029 (2)0.023 (2)
C440.153 (5)0.043 (2)0.026 (2)0.044 (3)0.003 (3)0.0040 (18)
C450.124 (4)0.0335 (18)0.0388 (19)0.017 (3)0.025 (3)0.0080 (16)
C460.063 (2)0.0347 (17)0.0319 (16)0.0037 (16)0.0126 (16)0.0022 (14)
C510.0171 (13)0.0287 (15)0.0345 (16)0.0022 (11)0.0015 (11)0.0107 (13)
C520.0248 (14)0.0306 (15)0.0458 (19)0.0031 (11)0.0007 (14)0.0083 (16)
C530.0288 (17)0.0316 (17)0.078 (3)0.0054 (13)0.0054 (17)0.0155 (19)
C540.0262 (17)0.043 (2)0.083 (3)0.0007 (15)0.0091 (18)0.039 (2)
C550.0317 (18)0.056 (2)0.052 (2)0.0063 (16)0.0099 (16)0.028 (2)
C560.0280 (16)0.0389 (18)0.0346 (17)0.0086 (13)0.0062 (13)0.0143 (15)
C610.0203 (13)0.0268 (14)0.0327 (15)0.0007 (12)0.0045 (10)0.0073 (14)
C620.0336 (17)0.0422 (18)0.0351 (17)0.0014 (13)0.0066 (13)0.0064 (15)
C630.0435 (19)0.0426 (19)0.0474 (19)0.0066 (17)0.0238 (15)0.0127 (19)
C640.0262 (17)0.0414 (18)0.079 (3)0.0039 (14)0.0204 (17)0.0235 (19)
C650.0259 (15)0.0375 (18)0.065 (2)0.0039 (12)0.0045 (15)0.0139 (18)
C660.0255 (14)0.0282 (14)0.0405 (18)0.0014 (11)0.0018 (12)0.0080 (14)
N1000.064 (2)0.071 (3)0.115 (4)0.008 (2)0.011 (2)0.041 (3)
C1000.041 (2)0.072 (3)0.056 (2)0.021 (2)0.0030 (17)0.004 (2)
C1010.039 (2)0.062 (2)0.067 (2)0.0101 (18)0.0026 (18)0.014 (2)
N2000.061 (3)0.065 (2)0.092 (3)0.011 (2)0.001 (2)0.012 (2)
C2000.047 (3)0.040 (2)0.081 (3)0.0072 (18)0.009 (2)0.007 (2)
C2010.079 (4)0.077 (4)0.183 (7)0.013 (3)0.035 (4)0.006 (4)
Geometric parameters (Å, º) top
Ru1—N22.003 (2)C33—H330.95
Ru1—N12.016 (2)C34—C351.366 (5)
Ru1—P12.3688 (7)C34—H340.95
Ru1—P22.3887 (7)C35—C361.393 (5)
Ru1—Cl22.4139 (7)C35—H350.95
Ru1—Cl12.4308 (7)C36—H360.95
N1—C11.135 (3)C41—C461.391 (4)
C1—C21.463 (4)C41—C421.401 (4)
C2—H2A0.98C42—C431.398 (5)
C2—H2B0.98C42—H420.95
C2—H2C0.98C43—C441.371 (7)
N2—C31.136 (3)C43—H430.95
C3—C41.453 (4)C44—C451.380 (7)
C4—H4A0.98C44—H440.95
C4—H4B0.98C45—C461.378 (5)
C4—H4C0.98C45—H450.95
P1—C111.831 (3)C46—H460.95
P1—C211.835 (3)C51—C521.394 (4)
P1—C311.841 (3)C51—C561.404 (4)
P2—C411.828 (3)C52—C531.396 (4)
P2—C511.834 (3)C52—H520.95
P2—C611.841 (3)C53—C541.376 (6)
C11—C161.389 (4)C53—H530.95
C11—C121.393 (4)C54—C551.374 (6)
C12—C131.380 (4)C54—H540.95
C12—H120.95C55—C561.391 (4)
C13—C141.374 (5)C55—H550.95
C13—H130.95C56—H560.95
C14—C151.390 (5)C61—C661.382 (4)
C14—H140.95C61—C621.404 (4)
C15—C161.392 (4)C62—C631.379 (4)
C15—H150.95C62—H620.95
C16—H160.95C63—C641.375 (5)
C21—C261.391 (4)C63—H630.95
C21—C221.406 (4)C64—C651.384 (5)
C22—C231.389 (4)C64—H640.95
C22—H220.95C65—C661.390 (4)
C23—C241.386 (5)C65—H650.95
C23—H230.95C66—H660.95
C24—C251.367 (4)N100—C1001.125 (5)
C24—H240.95C100—C1011.464 (6)
C25—C261.394 (4)C101—H1030.98
C25—H250.95C101—H1020.98
C26—H260.95C101—H1010.98
C31—C361.392 (4)N200—C2001.114 (5)
C31—C321.396 (4)C200—C2011.437 (7)
C32—C331.393 (4)C201—H2030.98
C32—H320.95C201—H2020.98
C33—C341.377 (5)C201—H2010.98
N2—Ru1—N190.03 (9)C33—C32—H32119.5
N2—Ru1—P190.02 (6)C31—C32—H32119.5
N1—Ru1—P192.15 (7)C34—C33—C32119.7 (3)
N2—Ru1—P289.29 (6)C34—C33—H33120.1
N1—Ru1—P289.55 (7)C32—C33—H33120.1
P1—Ru1—P2178.17 (2)C35—C34—C33120.0 (3)
N2—Ru1—Cl285.16 (7)C35—C34—H34120.0
N1—Ru1—Cl2175.05 (6)C33—C34—H34120.0
P1—Ru1—Cl289.02 (2)C34—C35—C36121.0 (3)
P2—Ru1—Cl289.23 (2)C34—C35—H35119.5
N2—Ru1—Cl1178.93 (7)C36—C35—H35119.5
N1—Ru1—Cl190.99 (6)C31—C36—C35120.1 (3)
P1—Ru1—Cl189.59 (3)C31—C36—H36120.0
P2—Ru1—Cl191.06 (2)C35—C36—H36120.0
Cl2—Ru1—Cl193.83 (2)C46—C41—C42119.3 (3)
C1—N1—Ru1173.9 (2)C46—C41—P2120.5 (2)
N1—C1—C2177.0 (3)C42—C41—P2119.3 (3)
C1—C2—H2A109.5C43—C42—C41119.3 (4)
C1—C2—H2B109.5C43—C42—H42120.3
H2A—C2—H2B109.5C41—C42—H42120.3
C1—C2—H2C109.5C44—C43—C42120.5 (4)
H2A—C2—H2C109.5C44—C43—H43119.8
H2B—C2—H2C109.5C42—C43—H43119.8
C3—N2—Ru1176.7 (2)C43—C44—C45120.2 (4)
N2—C3—C4178.8 (3)C43—C44—H44119.9
C3—C4—H4A109.5C45—C44—H44119.9
C3—C4—H4B109.5C46—C45—C44120.3 (4)
H4A—C4—H4B109.5C46—C45—H45119.8
C3—C4—H4C109.5C44—C45—H45119.8
H4A—C4—H4C109.5C45—C46—C41120.4 (4)
H4B—C4—H4C109.5C45—C46—H46119.8
C11—P1—C21101.26 (12)C41—C46—H46119.8
C11—P1—C31105.82 (14)C52—C51—C56118.5 (3)
C21—P1—C3199.21 (12)C52—C51—P2120.9 (2)
C11—P1—Ru1111.67 (9)C56—C51—P2120.6 (2)
C21—P1—Ru1120.58 (9)C51—C52—C53120.6 (3)
C31—P1—Ru1116.22 (9)C51—C52—H52119.7
C41—P2—C51103.96 (13)C53—C52—H52119.7
C41—P2—C61103.37 (13)C54—C53—C52119.9 (4)
C51—P2—C61100.04 (12)C54—C53—H53120.1
C41—P2—Ru1109.60 (9)C52—C53—H53120.1
C51—P2—Ru1119.54 (10)C55—C54—C53120.5 (3)
C61—P2—Ru1118.29 (9)C55—C54—H54119.8
C16—C11—C12118.4 (3)C53—C54—H54119.8
C16—C11—P1120.5 (2)C54—C55—C56120.4 (3)
C12—C11—P1120.5 (2)C54—C55—H55119.8
C13—C12—C11120.9 (3)C56—C55—H55119.8
C13—C12—H12119.6C55—C56—C51120.1 (3)
C11—C12—H12119.6C55—C56—H56119.9
C14—C13—C12120.8 (3)C51—C56—H56119.9
C14—C13—H13119.6C66—C61—C62118.4 (3)
C12—C13—H13119.6C66—C61—P2119.7 (2)
C13—C14—C15119.1 (3)C62—C61—P2121.8 (2)
C13—C14—H14120.5C63—C62—C61120.4 (3)
C15—C14—H14120.5C63—C62—H62119.8
C14—C15—C16120.4 (3)C61—C62—H62119.8
C14—C15—H15119.8C64—C63—C62120.6 (3)
C16—C15—H15119.8C64—C63—H63119.7
C11—C16—C15120.4 (3)C62—C63—H63119.7
C11—C16—H16119.8C63—C64—C65119.9 (3)
C15—C16—H16119.8C63—C64—H64120.1
C26—C21—C22119.0 (3)C65—C64—H64120.1
C26—C21—P1122.3 (2)C64—C65—C66119.7 (3)
C22—C21—P1118.8 (2)C64—C65—H65120.1
C23—C22—C21120.4 (3)C66—C65—H65120.1
C23—C22—H22119.8C61—C66—C65121.0 (3)
C21—C22—H22119.8C61—C66—H66119.5
C24—C23—C22120.0 (3)C65—C66—H66119.5
C24—C23—H23120.0N100—C100—C101177.2 (5)
C22—C23—H23120.0C100—C101—H103109.5
C25—C24—C23119.6 (3)C100—C101—H102109.5
C25—C24—H24120.2H103—C101—H102109.5
C23—C24—H24120.2C100—C101—H101109.5
C24—C25—C26121.7 (3)H103—C101—H101109.5
C24—C25—H25119.2H102—C101—H101109.5
C26—C25—H25119.2N200—C200—C201179.8 (6)
C21—C26—C25119.4 (3)C200—C201—H203109.5
C21—C26—H26120.3C200—C201—H202109.5
C25—C26—H26120.3H203—C201—H202109.5
C36—C31—C32118.3 (3)C200—C201—H201109.5
C36—C31—P1125.2 (2)H203—C201—H201109.5
C32—C31—P1116.4 (2)H202—C201—H201109.5
C33—C32—C31120.9 (3)
N2—Ru1—P1—C1112.66 (12)Ru1—P1—C31—C36133.4 (2)
N1—Ru1—P1—C11102.69 (11)C11—P1—C31—C32176.5 (2)
Cl2—Ru1—P1—C1172.50 (10)C21—P1—C31—C3278.9 (2)
Cl1—Ru1—P1—C11166.34 (10)Ru1—P1—C31—C3252.0 (3)
N2—Ru1—P1—C21131.27 (12)C36—C31—C32—C331.2 (5)
N1—Ru1—P1—C21138.70 (11)P1—C31—C32—C33173.9 (2)
Cl2—Ru1—P1—C2146.11 (10)C31—C32—C33—C340.8 (5)
Cl1—Ru1—P1—C2147.73 (10)C32—C33—C34—C350.8 (5)
N2—Ru1—P1—C31108.85 (13)C33—C34—C35—C362.0 (6)
N1—Ru1—P1—C3118.82 (13)C32—C31—C36—C350.0 (5)
Cl2—Ru1—P1—C31165.99 (11)P1—C31—C36—C35174.6 (3)
Cl1—Ru1—P1—C3172.16 (11)C34—C35—C36—C311.6 (5)
N2—Ru1—P2—C410.84 (12)C51—P2—C41—C46147.0 (2)
N1—Ru1—P2—C4190.87 (12)C61—P2—C41—C4642.9 (3)
Cl2—Ru1—P2—C4184.33 (11)Ru1—P2—C41—C4684.1 (2)
Cl1—Ru1—P2—C41178.15 (11)C51—P2—C41—C4244.1 (3)
N2—Ru1—P2—C51120.59 (12)C61—P2—C41—C42148.2 (2)
N1—Ru1—P2—C51149.38 (12)Ru1—P2—C41—C4284.8 (2)
Cl2—Ru1—P2—C5135.42 (10)C46—C41—C42—C432.3 (4)
Cl1—Ru1—P2—C5158.40 (10)P2—C41—C42—C43171.3 (2)
N2—Ru1—P2—C61117.22 (13)C41—C42—C43—C441.6 (5)
N1—Ru1—P2—C6127.19 (12)C42—C43—C44—C450.3 (6)
Cl2—Ru1—P2—C61157.61 (11)C43—C44—C45—C460.3 (6)
Cl1—Ru1—P2—C6163.79 (11)C44—C45—C46—C410.5 (5)
C21—P1—C11—C1632.4 (3)C42—C41—C46—C451.8 (4)
C31—P1—C11—C16135.5 (2)P2—C41—C46—C45170.7 (2)
Ru1—P1—C11—C1697.1 (2)C41—P2—C51—C52142.5 (2)
C21—P1—C11—C12156.8 (2)C61—P2—C51—C52110.9 (2)
C31—P1—C11—C1253.8 (3)Ru1—P2—C51—C5219.9 (3)
Ru1—P1—C11—C1273.6 (2)C41—P2—C51—C5639.8 (3)
C16—C11—C12—C131.4 (4)C61—P2—C51—C5666.8 (3)
P1—C11—C12—C13172.3 (2)Ru1—P2—C51—C56162.40 (19)
C11—C12—C13—C140.5 (5)C56—C51—C52—C530.0 (4)
C12—C13—C14—C150.4 (5)P2—C51—C52—C53177.7 (2)
C13—C14—C15—C160.4 (5)C51—C52—C53—C540.6 (5)
C12—C11—C16—C151.4 (5)C52—C53—C54—C550.6 (5)
P1—C11—C16—C15172.3 (3)C53—C54—C55—C560.1 (5)
C14—C15—C16—C110.5 (5)C54—C55—C56—C510.5 (5)
C11—P1—C21—C26125.0 (2)C52—C51—C56—C550.5 (4)
C31—P1—C21—C26126.7 (2)P2—C51—C56—C55177.2 (2)
Ru1—P1—C21—C261.3 (3)C41—P2—C61—C66150.7 (2)
C11—P1—C21—C2254.7 (2)C51—P2—C61—C66102.2 (2)
C31—P1—C21—C2253.6 (2)Ru1—P2—C61—C6629.4 (3)
Ru1—P1—C21—C22178.40 (18)C41—P2—C61—C6232.4 (3)
C26—C21—C22—C231.2 (4)C51—P2—C61—C6274.7 (3)
P1—C21—C22—C23178.5 (2)Ru1—P2—C61—C62153.7 (2)
C21—C22—C23—C240.6 (5)C66—C61—C62—C630.0 (5)
C22—C23—C24—C250.3 (5)P2—C61—C62—C63176.9 (2)
C23—C24—C25—C260.5 (5)C61—C62—C63—C641.4 (5)
C22—C21—C26—C251.3 (4)C62—C63—C64—C651.5 (5)
P1—C21—C26—C25178.3 (2)C63—C64—C65—C660.2 (5)
C24—C25—C26—C211.0 (5)C62—C61—C66—C651.3 (4)
C11—P1—C31—C368.8 (3)P2—C61—C66—C65178.3 (2)
C21—P1—C31—C3695.7 (3)C64—C65—C66—C611.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···Cl1i0.982.683.560 (3)149
C101—H101···Cl1ii0.982.803.698 (4)153
C2—H2C···Cl2iii0.982.573.544 (3)175
C101—H102···Cl20.982.623.554 (4)158
C2—H2A···N100i0.982.603.519 (5)155
C101—H103···N2000.982.723.645 (6)158
C201—H201···N200iv0.982.663.526 (7)148
C64—H64···Cg1iii0.952.963.715 (4)138
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y, z; (iv) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[RuCl2(C2H3N)2(C18H15P)2]·2C2H3N
Mr860.73
Crystal system, space groupOrthorhombic, P212121
Temperature (K)170
a, b, c (Å)9.0622 (9), 18.0167 (18), 25.628 (2)
V3)4184.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.40 × 0.35 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.791, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
25910, 10568, 9200
Rint0.042
(sin θ/λ)max1)0.683
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.072, 1.02
No. of reflections10568
No. of parameters482
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.30
Absolute structureFlack (1983), 4387 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···Cl1i0.982.683.560 (3)149
C101—H101···Cl1ii0.982.803.698 (4)153
C2—H2C···Cl2iii0.982.573.544 (3)175
C101—H102···Cl20.982.623.554 (4)158
C2—H2A···N100i0.982.603.519 (5)155
C101—H103···N2000.982.723.645 (6)158
C201—H201···N200iv0.982.663.526 (7)148
C64—H64···Cg1iii0.952.963.715 (4)138
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y, z; (iv) x1/2, y+1/2, z.
 

Acknowledgements

The authors thank Oklahoma State University for financial support and the Oklahoma State Regents for Higher Education for providing funds to purchase the APEXII diffractometer.

References

First citationBruker (2006). APEX2 (Version 2.0) and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaulton, K. G. (1974). J. Am. Chem. Soc. 96, 3005–3006.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGilbert, J. D. & Wilkinson, G. (1969). J. Chem. Soc. A, pp. 1749–1753.  CrossRef Google Scholar
First citationHallman, P. S., Stephenson, T. A. & Wilkinson, G. (1970). Inorg. Synth. 12, 237–240.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS (Version 2.10) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationStephenson, T. A. & Wilkinson, G. (1966). J. Inorg. Nucl. Chem. 28, 945–956.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds