organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Dihydr­­oxy-N′-(2-hy­droxy­benzyl­­idene)benzohydrazide–methanol–water (2/1/3)

aDepartment of Nutrition, Jilin Medical College, Jilin 132013, People's Republic of China, and bSchool of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
*Correspondence e-mail: dyp78@sina.com, diaoyiwen@126.com

(Received 30 November 2007; accepted 2 December 2007; online 6 December 2007)

The asymmetric unit of the title compound, C14H12N2O4·0.5CH4O·1.5H2O, consists of two Schiff base mol­ecules, three water mol­ecules and one methanol mol­ecule. The dihedral angle between the two benzene rings is 7.8 (2)° in one of the mol­ecules and 4.0 (2)° in the other. Intra­molecular O—H⋯O and O—H⋯N hydrogen bonds are observed. Mol­ecules are linked into a three-dimensional network by O—H⋯O and N—H⋯O inter­molecular hydrogen bonds.

Related literature

For the biological properties of Schiff base compounds, see: Brückner et al. (2000[Brückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100-6106.]); Harrop et al. (2003[Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410-411.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]). For related structures, see: Diao (2007[Diao, Y.-P. (2007). Acta Cryst. E63, m1453-m1454.]); Diao et al. (2007[Diao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.]); Huang et al. (2007[Huang, S.-S., Zhou, Q. & Diao, Y.-P. (2007). Acta Cryst. E63, o4659.]); Li et al. (2007[Li, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O4·0.5CH4O·1.5H2O

  • Mr = 315.30

  • Triclinic, [P \overline 1]

  • a = 10.707 (2) Å

  • b = 11.994 (2) Å

  • c = 14.103 (3) Å

  • α = 111.56 (3)°

  • β = 103.13 (3)°

  • γ = 104.72 (3)°

  • V = 1522.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 (2) K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01). SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.984

  • 9348 measured reflections

  • 6429 independent reflections

  • 2812 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.144

  • S = 0.97

  • 6429 reflections

  • 438 parameters

  • 11 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10B⋯O7i 0.85 (2) 1.96 (1) 2.793 (3) 168 (3)
O10—H10A⋯O6ii 0.85 (1) 2.10 (1) 2.938 (3) 173 (3)
O11—H11A⋯O8 0.85 (2) 2.09 (1) 2.925 (3) 170 (3)
O12—H12A⋯O11iii 0.85 (2) 1.94 (1) 2.770 (3) 165 (3)
N1—H1A⋯O10 0.91 (3) 1.96 (3) 2.844 (3) 167 (3)
O12—H12B⋯O2iv 0.85 (2) 2.04 (1) 2.889 (3) 177 (3)
O11—H11B⋯O9v 0.85 (3) 1.95 (3) 2.765 (3) 162 (3)
N3—H3⋯O12 0.90 (3) 1.96 (3) 2.845 (3) 165 (3)
O8—H8⋯N4 0.82 1.87 2.589 (3) 146
O6—H6⋯O9vi 0.82 2.04 2.834 (3) 161
O5—H5⋯O3vi 0.82 1.86 2.670 (3) 170
O4—H4⋯N2 0.82 1.84 2.561 (3) 146
O2—H2⋯O1 0.82 2.29 2.725 (3) 114
O2—H2⋯O11vii 0.82 1.93 2.703 (3) 158
O1—H1⋯O7vii 0.82 1.88 2.695 (3) 172
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z+1; (iii) -x+2, -y+1, -z+1; (iv) x, y-1, z-1; (v) x, y+1, z; (vi) x, y, z-1; (vii) x, y, z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01). SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01). SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000[Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01). SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds have received much attention in recent years. Some of the complexes have been found to have pharmacological and antitumor properties (Brückner et al., 2000; Harrop et al., 2003; Ren et al., 2002). As part of our research programme on the structure of Schiff base compounds (Diao, 2007; Diao et al., 2007; Li et al., 2007; Huang et al., 2007), we report here the structure of the title compound.

The asymmetric unit of the title compound consists of two Schiff base molecules, three water molecules and one methanol molecule (Fig. 1). The corresponding bond lengths and angles in the two Schiff base molecules are nearly identical. The dihedral angle between the C1—C6 and C9—C14 benzene rings is 7.8 (2)° and that between the C15—C20 and C23—C28 benzene rings is 4.0 (2)°. The structure of each molecule is stabilized by O—H···O and O—H···N intramolecular hydrogen bonds.

In the crystal structure, the molecules are linked through intermolecular O—H···O and N—H···O hydrogen bonds (Table 1), forming a three-dimensional network (Fig. 2).

Related literature top

For the biological properties of Schiff base compounds, see: Brückner et al. (2000); Harrop et al. (2003); Ren et al. (2002). For related structures, see: Diao (2007); Diao et al. (2007); Huang et al. (2007); Li et al. (2007).

Experimental top

Salicylaldehyde (1.0 mmol, 122.1 mg) and 3,4-dihydroxybenzoic acid hydrazide (1.0 mmol, 168.2 mg) were dissolved in a methanol solution (70 ml). The mixture was stirred at room temperature for 1 h and filtered. After keeping the filtrate in air for a week, yellow block-shaped crystals were formed.

Refinement top

H atoms of the water molecules and –NH groups were located in a difference Fourier map and refined isotropically, with N—H, O—H and H···H (in water) distances restrained to 0.90 (1) Å, 0.85 (1) Å and 1.37 (2) Å, respectively, and with a fixed Uiso value of 0.08 Å2. The remaining H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H = 0.93–0.96 Å, O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O, Cmethyl).

Structure description top

Schiff base compounds have received much attention in recent years. Some of the complexes have been found to have pharmacological and antitumor properties (Brückner et al., 2000; Harrop et al., 2003; Ren et al., 2002). As part of our research programme on the structure of Schiff base compounds (Diao, 2007; Diao et al., 2007; Li et al., 2007; Huang et al., 2007), we report here the structure of the title compound.

The asymmetric unit of the title compound consists of two Schiff base molecules, three water molecules and one methanol molecule (Fig. 1). The corresponding bond lengths and angles in the two Schiff base molecules are nearly identical. The dihedral angle between the C1—C6 and C9—C14 benzene rings is 7.8 (2)° and that between the C15—C20 and C23—C28 benzene rings is 4.0 (2)°. The structure of each molecule is stabilized by O—H···O and O—H···N intramolecular hydrogen bonds.

In the crystal structure, the molecules are linked through intermolecular O—H···O and N—H···O hydrogen bonds (Table 1), forming a three-dimensional network (Fig. 2).

For the biological properties of Schiff base compounds, see: Brückner et al. (2000); Harrop et al. (2003); Ren et al. (2002). For related structures, see: Diao (2007); Diao et al. (2007); Huang et al. (2007); Li et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound.
3,4-Dihydroxy-N'-(2-hydroxybenzylidene)benzohydrazide–\ methanol–water (2/1/3) top
Crystal data top
C14H12N2O4·0.5CH4O·1.5H2OZ = 4
Mr = 315.30F(000) = 664
Triclinic, P1Dx = 1.376 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.707 (2) ÅCell parameters from 1027 reflections
b = 11.994 (2) Åθ = 2.6–24.4°
c = 14.103 (3) ŵ = 0.11 mm1
α = 111.56 (3)°T = 298 K
β = 103.13 (3)°Block, yellow
γ = 104.72 (3)°0.17 × 0.15 × 0.15 mm
V = 1522.2 (8) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
6429 independent reflections
Radiation source: fine-focus sealed tube2812 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 26.9°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 139
Tmin = 0.982, Tmax = 0.984k = 1415
9348 measured reflectionsl = 1417
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0505P)2]
where P = (Fo2 + 2Fc2)/3
6429 reflections(Δ/σ)max = 0.001
438 parametersΔρmax = 0.17 e Å3
11 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H12N2O4·0.5CH4O·1.5H2Oγ = 104.72 (3)°
Mr = 315.30V = 1522.2 (8) Å3
Triclinic, P1Z = 4
a = 10.707 (2) ÅMo Kα radiation
b = 11.994 (2) ŵ = 0.11 mm1
c = 14.103 (3) ÅT = 298 K
α = 111.56 (3)°0.17 × 0.15 × 0.15 mm
β = 103.13 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6429 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2812 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.984Rint = 0.030
9348 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05511 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.17 e Å3
6429 reflectionsΔρmin = 0.21 e Å3
438 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7795 (2)0.64000 (17)1.35513 (13)0.0587 (6)
H10.76250.56331.33880.088*
O20.7267 (2)0.85547 (16)1.37077 (14)0.0528 (5)
H20.74900.83231.41790.079*
O30.7116 (2)0.39011 (18)0.96456 (14)0.0609 (6)
O40.6696 (2)0.19447 (18)0.67631 (15)0.0605 (6)
H40.67230.25510.72960.091*
O50.6555 (2)0.13711 (18)0.10815 (14)0.0675 (6)
H50.67010.21320.09320.101*
O60.7472 (2)0.05612 (18)0.11851 (15)0.0635 (6)
H60.74960.02120.15860.095*
O70.71818 (18)0.38404 (17)0.28249 (13)0.0490 (5)
O80.7971 (2)0.60616 (18)0.57457 (15)0.0625 (6)
H80.79580.54640.52140.094*
O90.8032 (2)0.04122 (18)0.73419 (16)0.0581 (5)
H90.74700.07010.71280.087*
O100.5614 (2)0.6868 (2)0.83236 (18)0.0619 (6)
O110.8239 (2)0.84887 (19)0.56226 (15)0.0563 (6)
O120.9056 (2)0.11266 (19)0.42584 (19)0.0669 (6)
N10.6301 (2)0.4906 (2)0.87321 (17)0.0401 (5)
N20.6220 (2)0.3958 (2)0.77792 (17)0.0406 (5)
N30.8292 (2)0.30112 (19)0.37667 (17)0.0396 (5)
N40.8380 (2)0.39822 (19)0.47159 (16)0.0382 (5)
C10.6883 (2)0.5837 (2)1.06912 (19)0.0370 (6)
C20.7299 (2)0.5671 (2)1.16190 (19)0.0425 (7)
H2A0.75060.49451.15590.051*
C30.7415 (3)0.6543 (2)1.2623 (2)0.0404 (6)
C40.7141 (3)0.7644 (2)1.2724 (2)0.0401 (6)
C50.6716 (3)0.7821 (2)1.1813 (2)0.0461 (7)
H5A0.65120.85491.18770.055*
C60.6588 (3)0.6929 (2)1.0802 (2)0.0464 (7)
H6A0.63030.70631.01920.056*
C70.6776 (3)0.4813 (3)0.9654 (2)0.0418 (7)
C80.5749 (2)0.4005 (3)0.6887 (2)0.0431 (7)
H8A0.54510.46690.68880.052*
C90.5675 (2)0.3036 (3)0.58771 (19)0.0399 (6)
C100.6148 (3)0.2049 (3)0.5842 (2)0.0457 (7)
C110.6070 (3)0.1131 (3)0.4859 (2)0.0602 (9)
H110.64000.04810.48450.072*
C120.5506 (3)0.1181 (3)0.3907 (3)0.0722 (11)
H120.54360.05540.32450.087*
C130.5047 (3)0.2150 (4)0.3926 (2)0.0697 (10)
H130.46790.21870.32800.084*
C140.5126 (3)0.3074 (3)0.4900 (2)0.0555 (8)
H140.48090.37290.49040.067*
C150.7553 (3)0.1977 (2)0.17858 (19)0.0389 (6)
C160.7038 (3)0.2094 (2)0.0849 (2)0.0447 (7)
H160.67030.27470.08900.054*
C170.7011 (3)0.1264 (3)0.0143 (2)0.0475 (7)
C180.7470 (3)0.0272 (2)0.0213 (2)0.0481 (7)
C190.7935 (3)0.0113 (3)0.0699 (2)0.0581 (8)
H190.82210.05710.06450.070*
C200.7984 (3)0.0957 (2)0.1699 (2)0.0517 (8)
H200.83060.08430.23140.062*
C210.7657 (3)0.3000 (2)0.2826 (2)0.0385 (6)
C220.8895 (2)0.3959 (2)0.5612 (2)0.0406 (6)
H220.92120.33060.56160.049*
C230.8987 (2)0.4949 (2)0.6626 (2)0.0404 (7)
C240.8529 (3)0.5961 (3)0.6665 (2)0.0462 (7)
C250.8627 (3)0.6882 (3)0.7647 (2)0.0606 (8)
H250.83200.75460.76670.073*
C260.9175 (3)0.6818 (3)0.8592 (3)0.0686 (10)
H260.92410.74450.92520.082*
C270.9630 (3)0.5839 (3)0.8583 (2)0.0653 (9)
H270.99990.58010.92290.078*
C280.9532 (3)0.4917 (3)0.7604 (2)0.0518 (8)
H280.98390.42560.75960.062*
C290.9365 (3)0.1399 (4)0.7883 (3)0.1063 (14)
H29A0.93560.21060.84880.159*
H29B0.96230.16960.73840.159*
H29C1.00190.10660.81450.159*
H30.857 (3)0.238 (2)0.382 (2)0.080*
H11B0.799 (3)0.897 (2)0.6091 (19)0.080*
H12B0.852 (2)0.0381 (15)0.411 (2)0.080*
H1A0.608 (3)0.5579 (19)0.871 (2)0.080*
H12A0.9848 (14)0.110 (3)0.428 (2)0.080*
H11A0.806 (3)0.7774 (15)0.565 (2)0.080*
H10A0.613 (2)0.7585 (17)0.840 (2)0.080*
H10B0.4781 (12)0.677 (3)0.804 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0975 (16)0.0432 (11)0.0340 (11)0.0319 (12)0.0162 (10)0.0165 (9)
O20.0792 (14)0.0403 (11)0.0418 (11)0.0273 (10)0.0260 (11)0.0157 (9)
O30.1012 (16)0.0528 (13)0.0427 (12)0.0477 (12)0.0267 (11)0.0225 (10)
O40.0862 (15)0.0518 (13)0.0495 (13)0.0376 (12)0.0249 (12)0.0205 (11)
O50.1172 (18)0.0582 (13)0.0381 (12)0.0494 (14)0.0273 (11)0.0220 (10)
O60.1113 (17)0.0439 (12)0.0450 (12)0.0406 (12)0.0357 (12)0.0174 (10)
O70.0684 (13)0.0426 (11)0.0432 (11)0.0319 (10)0.0213 (9)0.0185 (9)
O80.0940 (16)0.0526 (13)0.0508 (13)0.0424 (12)0.0278 (12)0.0222 (11)
O90.0649 (14)0.0559 (13)0.0523 (13)0.0294 (11)0.0210 (11)0.0185 (10)
O100.0650 (14)0.0575 (14)0.0714 (15)0.0288 (12)0.0174 (13)0.0375 (13)
O110.0738 (14)0.0496 (13)0.0485 (13)0.0278 (12)0.0303 (10)0.0168 (11)
O120.0593 (14)0.0522 (13)0.0956 (16)0.0269 (12)0.0253 (14)0.0371 (13)
N10.0532 (14)0.0373 (13)0.0330 (13)0.0209 (11)0.0183 (11)0.0146 (11)
N20.0461 (14)0.0429 (13)0.0334 (13)0.0182 (11)0.0158 (10)0.0157 (11)
N30.0494 (14)0.0353 (13)0.0382 (13)0.0191 (11)0.0202 (11)0.0157 (11)
N40.0444 (13)0.0343 (12)0.0326 (13)0.0145 (10)0.0158 (10)0.0107 (10)
C10.0433 (16)0.0346 (15)0.0330 (15)0.0160 (12)0.0144 (12)0.0139 (12)
C20.0541 (17)0.0385 (15)0.0367 (16)0.0246 (14)0.0139 (13)0.0155 (13)
C30.0493 (17)0.0365 (16)0.0343 (15)0.0152 (13)0.0132 (13)0.0164 (13)
C40.0484 (17)0.0315 (15)0.0395 (16)0.0143 (13)0.0195 (13)0.0133 (13)
C50.0668 (19)0.0341 (16)0.0479 (17)0.0263 (14)0.0255 (15)0.0213 (14)
C60.0663 (19)0.0428 (17)0.0372 (16)0.0245 (15)0.0196 (14)0.0218 (14)
C70.0511 (17)0.0421 (17)0.0423 (17)0.0221 (14)0.0210 (13)0.0236 (14)
C80.0419 (16)0.0460 (17)0.0465 (17)0.0165 (13)0.0189 (13)0.0240 (15)
C90.0363 (15)0.0448 (17)0.0320 (15)0.0082 (13)0.0118 (12)0.0154 (13)
C100.0476 (17)0.0429 (17)0.0414 (17)0.0103 (14)0.0208 (14)0.0150 (14)
C110.066 (2)0.0478 (19)0.059 (2)0.0121 (16)0.0345 (17)0.0141 (16)
C120.074 (2)0.060 (2)0.043 (2)0.0081 (19)0.0279 (18)0.0009 (18)
C130.063 (2)0.083 (3)0.0344 (19)0.005 (2)0.0102 (15)0.0223 (19)
C140.0486 (18)0.067 (2)0.0442 (18)0.0118 (16)0.0135 (15)0.0269 (17)
C150.0498 (16)0.0331 (15)0.0353 (15)0.0158 (13)0.0191 (13)0.0144 (13)
C160.0624 (19)0.0397 (16)0.0397 (16)0.0274 (14)0.0214 (14)0.0182 (14)
C170.066 (2)0.0400 (17)0.0391 (17)0.0231 (15)0.0198 (15)0.0183 (14)
C180.072 (2)0.0326 (16)0.0368 (16)0.0193 (15)0.0221 (14)0.0108 (13)
C190.094 (2)0.0401 (17)0.0498 (19)0.0364 (17)0.0301 (17)0.0202 (15)
C200.082 (2)0.0402 (17)0.0418 (17)0.0300 (16)0.0247 (15)0.0211 (14)
C210.0483 (17)0.0343 (15)0.0379 (16)0.0162 (13)0.0199 (13)0.0181 (13)
C220.0368 (15)0.0391 (16)0.0443 (17)0.0139 (13)0.0146 (13)0.0172 (14)
C230.0358 (15)0.0408 (16)0.0365 (16)0.0082 (13)0.0110 (12)0.0143 (13)
C240.0454 (17)0.0419 (17)0.0424 (17)0.0091 (14)0.0170 (13)0.0139 (14)
C250.068 (2)0.0479 (19)0.052 (2)0.0184 (16)0.0275 (17)0.0067 (16)
C260.064 (2)0.064 (2)0.043 (2)0.0083 (19)0.0207 (17)0.0015 (17)
C270.056 (2)0.082 (3)0.0359 (18)0.0100 (19)0.0089 (15)0.0192 (18)
C280.0489 (18)0.0583 (19)0.0454 (18)0.0160 (15)0.0149 (14)0.0245 (16)
C290.066 (3)0.096 (3)0.126 (3)0.015 (2)0.010 (2)0.043 (3)
Geometric parameters (Å, º) top
O1—C31.367 (3)C6—H6A0.93
O1—H10.82C8—C91.440 (3)
O2—C41.365 (3)C8—H8A0.93
O2—H20.82C9—C101.390 (4)
O3—C71.234 (3)C9—C141.392 (3)
O4—C101.363 (3)C10—C111.386 (4)
O4—H40.82C11—C121.372 (4)
O5—C171.368 (3)C11—H110.93
O5—H50.82C12—C131.365 (4)
O6—C181.368 (3)C12—H120.93
O6—H60.82C13—C141.380 (4)
O7—C211.240 (3)C13—H130.93
O8—C241.361 (3)C14—H140.93
O8—H80.82C15—C161.384 (3)
O9—C291.416 (3)C15—C201.388 (3)
O9—H90.82C15—C211.484 (3)
O10—H10A0.846 (10)C16—C171.375 (3)
O10—H10B0.85 (2)C16—H160.93
O11—H11B0.85 (3)C17—C181.378 (4)
O11—H11A0.85 (2)C18—C191.370 (4)
O12—H12B0.85 (2)C19—C201.381 (4)
O12—H12A0.85 (2)C19—H190.93
N1—C71.341 (3)C20—H200.93
N1—N21.372 (3)C22—C231.447 (3)
N1—H1A0.91 (3)C22—H220.93
N2—C81.272 (3)C23—C281.388 (3)
N3—C211.340 (3)C23—C241.407 (4)
N3—N41.378 (3)C24—C251.379 (4)
N3—H30.90 (3)C25—C261.367 (4)
N4—C221.273 (3)C25—H250.93
C1—C61.387 (3)C26—C271.379 (4)
C1—C21.387 (3)C26—H260.93
C1—C71.481 (3)C27—C281.376 (4)
C2—C31.372 (3)C27—H270.93
C2—H2A0.93C28—H280.93
C3—C41.388 (3)C29—H29A0.96
C4—C51.373 (3)C29—H29B0.96
C5—C61.383 (3)C29—H29C0.96
C5—H5A0.93
C3—O1—H1109.5C12—C13—C14120.4 (3)
C4—O2—H2109.5C12—C13—H13119.8
C10—O4—H4109.5C14—C13—H13119.8
C17—O5—H5109.5C13—C14—C9120.6 (3)
C18—O6—H6109.5C13—C14—H14119.7
C24—O8—H8109.5C9—C14—H14119.7
C29—O9—H9109.5C16—C15—C20118.5 (2)
H10A—O10—H10B108 (2)C16—C15—C21116.7 (2)
H11B—O11—H11A107 (2)C20—C15—C21124.7 (2)
H12B—O12—H12A108 (2)C17—C16—C15121.4 (3)
C7—N1—N2117.5 (2)C17—C16—H16119.3
C7—N1—H1A123.7 (19)C15—C16—H16119.3
N2—N1—H1A118.7 (19)O5—C17—C16123.3 (3)
C8—N2—N1119.1 (2)O5—C17—C18117.2 (2)
C21—N3—N4117.2 (2)C16—C17—C18119.5 (3)
C21—N3—H3124.4 (19)O6—C18—C19119.2 (3)
N4—N3—H3118.0 (18)O6—C18—C17120.9 (2)
C22—N4—N3118.1 (2)C19—C18—C17119.9 (3)
C6—C1—C2118.0 (2)C18—C19—C20120.8 (3)
C6—C1—C7125.4 (2)C18—C19—H19119.6
C2—C1—C7116.6 (2)C20—C19—H19119.6
C3—C2—C1122.0 (3)C19—C20—C15119.9 (3)
C3—C2—H2A119.0C19—C20—H20120.0
C1—C2—H2A119.0C15—C20—H20120.0
O1—C3—C2123.7 (2)O7—C21—N3120.5 (2)
O1—C3—C4117.0 (2)O7—C21—C15120.6 (2)
C2—C3—C4119.3 (2)N3—C21—C15118.9 (2)
O2—C4—C5118.8 (2)N4—C22—C23119.9 (3)
O2—C4—C3121.6 (2)N4—C22—H22120.1
C5—C4—C3119.6 (2)C23—C22—H22120.1
C4—C5—C6120.7 (3)C28—C23—C24117.7 (3)
C4—C5—H5A119.7C28—C23—C22120.0 (3)
C6—C5—H5A119.7C24—C23—C22122.3 (2)
C5—C6—C1120.4 (2)O8—C24—C25117.9 (3)
C5—C6—H6A119.8O8—C24—C23121.7 (2)
C1—C6—H6A119.8C25—C24—C23120.4 (3)
O3—C7—N1121.3 (2)C26—C25—C24120.0 (3)
O3—C7—C1120.6 (2)C26—C25—H25120.0
N1—C7—C1118.1 (2)C24—C25—H25120.0
N2—C8—C9120.3 (3)C25—C26—C27121.0 (3)
N2—C8—H8A119.8C25—C26—H26119.5
C9—C8—H8A119.8C27—C26—H26119.5
C10—C9—C14118.2 (3)C28—C27—C26119.1 (3)
C10—C9—C8121.8 (2)C28—C27—H27120.4
C14—C9—C8120.0 (3)C26—C27—H27120.4
O4—C10—C11117.7 (3)C27—C28—C23121.7 (3)
O4—C10—C9121.7 (2)C27—C28—H28119.2
C11—C10—C9120.6 (3)C23—C28—H28119.2
C12—C11—C10120.0 (3)O9—C29—H29A109.5
C12—C11—H11120.0O9—C29—H29B109.5
C10—C11—H11120.0H29A—C29—H29B109.5
C13—C12—C11120.2 (3)O9—C29—H29C109.5
C13—C12—H12119.9H29A—C29—H29C109.5
C11—C12—H12119.9H29B—C29—H29C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10B···O7i0.85 (2)1.96 (1)2.793 (3)168 (3)
O10—H10A···O6ii0.85 (1)2.10 (1)2.938 (3)173 (3)
O11—H11A···O80.85 (2)2.09 (1)2.925 (3)170 (3)
O12—H12A···O11iii0.85 (2)1.94 (1)2.770 (3)165 (3)
N1—H1A···O100.91 (3)1.96 (3)2.844 (3)167 (3)
O12—H12B···O2iv0.85 (2)2.04 (1)2.889 (3)177 (3)
O11—H11B···O9v0.85 (3)1.95 (3)2.765 (3)162 (3)
N3—H3···O120.90 (3)1.96 (3)2.845 (3)165 (3)
O8—H8···N40.821.872.589 (3)146
O6—H6···O9vi0.822.042.834 (3)161
O5—H5···O3vi0.821.862.670 (3)170
O4—H4···N20.821.842.561 (3)146
O2—H2···O10.822.292.725 (3)114
O2—H2···O11vii0.821.932.703 (3)158
O1—H1···O7vii0.821.882.695 (3)172
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x, y1, z1; (v) x, y+1, z; (vi) x, y, z1; (vii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H12N2O4·0.5CH4O·1.5H2O
Mr315.30
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.707 (2), 11.994 (2), 14.103 (3)
α, β, γ (°)111.56 (3), 103.13 (3), 104.72 (3)
V3)1522.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.982, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
9348, 6429, 2812
Rint0.030
(sin θ/λ)max1)0.637
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.144, 0.97
No. of reflections6429
No. of parameters438
No. of restraints11
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.21

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10B···O7i0.85 (2)1.96 (1)2.793 (3)168 (3)
O10—H10A···O6ii0.85 (1)2.10 (1)2.938 (3)173 (3)
O11—H11A···O80.85 (2)2.09 (1)2.925 (3)170 (3)
O12—H12A···O11iii0.85 (2)1.94 (1)2.770 (3)165 (3)
N1—H1A···O100.91 (3)1.96 (3)2.844 (3)167 (3)
O12—H12B···O2iv0.85 (2)2.04 (1)2.889 (3)177 (3)
O11—H11B···O9v0.85 (3)1.95 (3)2.765 (3)162 (3)
N3—H3···O120.90 (3)1.96 (3)2.845 (3)165 (3)
O8—H8···N40.821.872.589 (3)146
O6—H6···O9vi0.822.042.834 (3)161
O5—H5···O3vi0.821.862.670 (3)170
O4—H4···N20.821.842.561 (3)146
O2—H2···O10.822.292.725 (3)114
O2—H2···O11vii0.821.932.703 (3)158
O1—H1···O7vii0.821.882.695 (3)172
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x, y1, z1; (v) x, y+1, z; (vi) x, y, z1; (vii) x, y, z+1.
 

Acknowledgements

This project is supported by a research grant from Dalian Medical University.

References

First citationBrückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100–6106.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART (Version 5.625), SAINT (Version 6.01). SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiao, Y.-P. (2007). Acta Cryst. E63, m1453–m1454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.  CSD CrossRef IUCr Journals Google Scholar
First citationHarrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410–411.  Web of Science CSD CrossRef Google Scholar
First citationHuang, S.-S., Zhou, Q. & Diao, Y.-P. (2007). Acta Cryst. E63, o4659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds