organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,4R,5R)-1,3,4-Tri­phenyl-7-[(R)-1-phenyl­ethyl]-2-oxa-3,7-di­aza­spiro­[4.5]decan-10-one

aDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India, bSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, cDepartment of Physics, Madura College, Madurai 625 011, India, and dDepartment of Food science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: nilanthalakshman@yahoo.co.uk

(Received 4 December 2007; accepted 17 December 2007; online 21 December 2007)

In the title compound, C33H32N2O2, the polysubstituted piperidine ring adopts a chair conformation. The isoxazolidine ring is in an envelope conformation. In the crystal structure, intra- and inter­molecular C—H⋯π inter­actions involving the phenyl rings are observed.

Related literature

For related literature, see: Ali Dondas et al. (2001[Ali Dondas, H., Cummins, J. E., Grigg, R. & Thornton-Pett, M. (2001). Tetrahedron, 57, 7951-7964.]); Alibés et al. (2003[Alibés, R., Blanco, P., de March, P., Figueredo, M., Font, J., Álvarez-Larena, A. & Piniella, J. F. (2003). Tetrahedron Lett. 44, 523-525.]); Blanarikova-Hlobilova et al. (2003[Blanarikova-Hlobilova, I., Pronayova, N. & Koman, M. (2003). Collect. Czech. Chem. Commun. 68, 951-964.]); Carda et al. (2000[Carda, M., Portoles, R., Murga, J., Uriel, S., Marco, J. A., Domingo, L. R., Zaragoza, R. J. & Roeper, H. (2000). J. Org. Chem. 65, 7000-7009.]); Carruthers (1990[Carruthers, W. (1990). Cycloaddition Reactions in Organic Synthesis, ch. 6. Oxford: Pergamon.]); Herrera et al. (2001[Herrera, R., Nagarajan, A., Morales, M. A., Mendez, F., Jimenez-Vazquez, H. A., Zepeda, L. G. & Tamariz, J. (2001). J. Org. Chem. 66, 1252-1263.]); Huisgen (1963[Huisgen, R. (1963). Angew. Chem. Int. Ed. Engl. 2, 565-572.]); Ishar et al. (2000[Ishar, M. P. S., Singh, G., Kumar, K. & Singh, R. (2000). Tetrahedron, 56, 7817-7828.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C33H32N2O2

  • Mr = 488.61

  • Orthorhombic, P 21 21 21

  • a = 10.589 (5) Å

  • b = 14.582 (7) Å

  • c = 17.443 (8) Å

  • V = 2693 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 273 (2) K

  • 0.20 × 0.16 × 0.12 mm

Data collection
  • Nonius MACH-3 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.986, Tmax = 0.991

  • 13617 measured reflections

  • 2701 independent reflections

  • 1899 reflections with I > 2σ(I)

  • Rint = 0.074

  • 2 standard reflections frequency: 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.118

  • S = 1.09

  • 2701 reflections

  • 335 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the phenyl rings C71–C76, C91–C96 and C81–C86, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1 0.98 2.35 2.775 (5) 106
C26—H26⋯O2 0.93 2.29 2.623 (5) 101
C82—H82⋯O2 0.93 2.43 2.757 (5) 101
C3—H3ACg1 0.97 2.90 3.659 (5) 136
C2—H2ACg2i 0.97 2.93 3.707 (5) 138
C74—H74⋯Cg3ii 0.93 2.96 3.722 (6) 141
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3-Dipolar cycloaddition is a versatile reaction for the construction of five-membered ring heterocycles of biological importance (Huisgen, 1963). Among the 1,3-dipoles, nitrones have been subjected to numerous 1,3-dipolar cycloadditions, ascribable to their stability and ease of generation (Blanarikova-Hlobilova et al., 2003; Herrera et al., 2001). The 1,3-dipolar cycloaddition of nitrones to alkenes afford isoxazolidines with generation of as many as three new contiguous stereocenters in a single step (Ishar et al., 2000; Carda et al., 2000; Ali Dondas et al., 2001; Alibés et al., 2003). These isoxazolidines can be further elaborated into polyfunctional cyclic or acyclic bioactive compounds with complete control of relative stereochemistry (Carruthers, 1990).

The molecular structure of (I) is shown in Fig.1. The five-membered isoxazolidine ring has an envelope conformation, as indicated by the Cremer & Pople (1975) puckering parameters Q = 0.454 (3) Å and φ = 3.3 (5)°. The piperidine ring adopts a chair conformation. The dihedral angle between the C21–C26 and C71–C76 phenyl rings is 77.7 (1)°. The C21–C26, C71–C76 and C81–C86 phenyl rings form dihedral angles of 35.8 (2)°, 77.5 (1)° and 72.3 (2)°, respectively, with the N2/C7/C5/C8 plane.

Weak intramolecular C—H···O and C—H···π interactions are observed in the molecular structure. The packing of molecules is governed by weak C—H···π interactions (Table 1) and van der Walls interactions. In the Table 1, Cg1, Cg2 and Cg3 denote the centroids of the C71–C76, C91–C96 and C81–C86 phenyl rings.

Related literature top

For related literature, see: Ali Dondas et al. (2001); Alibés et al. (2003); Blanarikova-Hlobilova et al. (2003); Carda et al. (2000); Carruthers (1990); Herrera et al. (2001); Huisgen (1963); Ishar et al. (2000). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of [(R)-1-phenylethyl]-3-[(E)-phenylmethylidene]tetrahydro-4(1H)- pyridinone (0.300 g, 1 mmol) and nitrone (0.244 g, 1.2 mmol) in toluene (25 ml) was refluxed for 10 h. The progress of the reaction was monitored by thin-layer chromatography (TLC) and after completion of the reaction, the solvent was evaporated in vacuo. The residue was then subjected to flash column chromatography on silica gel using petroleum ether-ethyl acetate (10:1) as eluent to obtain crystals of the title compound in 8% yield (0.040 g) along with two other products in semi-solid form.

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å, and Uiso = 1.2Ueq(C) for CH2 and CH groups, and 1.5Ueq for CH3 groups. In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and Friedel pairs were merged.

Structure description top

1,3-Dipolar cycloaddition is a versatile reaction for the construction of five-membered ring heterocycles of biological importance (Huisgen, 1963). Among the 1,3-dipoles, nitrones have been subjected to numerous 1,3-dipolar cycloadditions, ascribable to their stability and ease of generation (Blanarikova-Hlobilova et al., 2003; Herrera et al., 2001). The 1,3-dipolar cycloaddition of nitrones to alkenes afford isoxazolidines with generation of as many as three new contiguous stereocenters in a single step (Ishar et al., 2000; Carda et al., 2000; Ali Dondas et al., 2001; Alibés et al., 2003). These isoxazolidines can be further elaborated into polyfunctional cyclic or acyclic bioactive compounds with complete control of relative stereochemistry (Carruthers, 1990).

The molecular structure of (I) is shown in Fig.1. The five-membered isoxazolidine ring has an envelope conformation, as indicated by the Cremer & Pople (1975) puckering parameters Q = 0.454 (3) Å and φ = 3.3 (5)°. The piperidine ring adopts a chair conformation. The dihedral angle between the C21–C26 and C71–C76 phenyl rings is 77.7 (1)°. The C21–C26, C71–C76 and C81–C86 phenyl rings form dihedral angles of 35.8 (2)°, 77.5 (1)° and 72.3 (2)°, respectively, with the N2/C7/C5/C8 plane.

Weak intramolecular C—H···O and C—H···π interactions are observed in the molecular structure. The packing of molecules is governed by weak C—H···π interactions (Table 1) and van der Walls interactions. In the Table 1, Cg1, Cg2 and Cg3 denote the centroids of the C71–C76, C91–C96 and C81–C86 phenyl rings.

For related literature, see: Ali Dondas et al. (2001); Alibés et al. (2003); Blanarikova-Hlobilova et al. (2003); Carda et al. (2000); Carruthers (1990); Herrera et al. (2001); Huisgen (1963); Ishar et al. (2000). For ring puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
(1R,4R,5R)-1,3,4-Triphenyl-7-[(R)-1-phenylethyl]-2-oxa-3,7-\ diazaspiro[4.5]decan-10-one top
Crystal data top
C33H32N2O2F(000) = 1040
Mr = 488.61Dx = 1.205 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 10.589 (5) Åθ = 2–25°
b = 14.582 (7) ŵ = 0.08 mm1
c = 17.443 (8) ÅT = 273 K
V = 2693 (2) Å3Needle, colourless
Z = 40.20 × 0.16 × 0.12 mm
Data collection top
Nonius MACH-3
diffractometer
1899 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.074
Graphite monochromatorθmax = 25.0°, θmin = 1.8°
ω/2θ scansh = 1211
Absorption correction: ψ scan
(North et al., 1968)
k = 1716
Tmin = 0.986, Tmax = 0.991l = 2020
13617 measured reflections2 standard reflections every 60 min
2701 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0519P)2]
where P = (Fo2 + 2Fc2)/3
2701 reflections(Δ/σ)max < 0.001
335 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C33H32N2O2V = 2693 (2) Å3
Mr = 488.61Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.589 (5) ŵ = 0.08 mm1
b = 14.582 (7) ÅT = 273 K
c = 17.443 (8) Å0.20 × 0.16 × 0.12 mm
Data collection top
Nonius MACH-3
diffractometer
1899 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.074
Tmin = 0.986, Tmax = 0.9912 standard reflections every 60 min
13617 measured reflections intensity decay: none
2701 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.09Δρmax = 0.16 e Å3
2701 reflectionsΔρmin = 0.14 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.1883 (4)0.3386 (3)0.0817 (2)0.0554 (11)
H2A0.12600.29380.09780.066*
H2B0.18960.33990.02610.066*
C30.1521 (4)0.4324 (3)0.1120 (2)0.0544 (11)
H3A0.20060.47840.08470.065*
H3B0.06360.44300.10070.065*
C40.1724 (4)0.4453 (3)0.1961 (2)0.0443 (10)
C50.2865 (3)0.3966 (2)0.2314 (2)0.0390 (9)
C60.3004 (4)0.3021 (2)0.1937 (2)0.0428 (10)
H6A0.37430.27130.21420.051*
H6B0.22690.26490.20540.051*
C70.4141 (4)0.4506 (2)0.22225 (19)0.0406 (9)
H70.47730.40890.20060.049*
C80.2734 (4)0.3908 (3)0.3199 (2)0.0438 (10)
H80.22650.44440.33820.053*
C90.3577 (4)0.2247 (3)0.0750 (2)0.0481 (11)
H90.30310.17480.09280.058*
C100.4920 (4)0.2034 (3)0.0992 (2)0.0643 (13)
H10A0.49450.19320.15350.096*
H10B0.54570.25420.08640.096*
H10C0.52080.14940.07300.096*
C210.5823 (4)0.4778 (2)0.31879 (19)0.0383 (9)
C220.6625 (4)0.5250 (3)0.2706 (2)0.0528 (10)
H220.63050.55060.22580.063*
C230.7890 (4)0.5351 (3)0.2874 (2)0.0562 (11)
H230.84110.56800.25440.067*
C240.8378 (4)0.4969 (3)0.3523 (3)0.0617 (12)
H240.92330.50270.36350.074*
C250.7593 (5)0.4500 (3)0.4008 (3)0.0723 (14)
H250.79210.42390.44520.087*
C260.6322 (4)0.4408 (3)0.3848 (2)0.0590 (12)
H260.58000.40960.41880.071*
C710.4083 (4)0.5349 (3)0.1730 (2)0.0429 (9)
C720.4473 (4)0.5300 (3)0.0971 (2)0.0573 (12)
H720.48420.47640.07880.069*
C730.4319 (5)0.6035 (4)0.0490 (3)0.0742 (14)
H730.45650.59870.00210.089*
C740.3810 (5)0.6836 (4)0.0748 (3)0.0781 (16)
H740.36960.73290.04170.094*
C750.3467 (4)0.6905 (3)0.1509 (3)0.0673 (13)
H750.31500.74560.16960.081*
C760.3589 (4)0.6165 (3)0.1994 (2)0.0523 (11)
H760.33360.62160.25020.063*
C810.2124 (4)0.3053 (3)0.3508 (2)0.0453 (10)
C820.2819 (4)0.2315 (3)0.3763 (2)0.0559 (12)
H820.36960.23500.37670.067*
C830.2234 (5)0.1530 (3)0.4014 (3)0.0680 (14)
H830.27180.10370.41820.082*
C840.0949 (6)0.1466 (4)0.4019 (2)0.0737 (15)
H840.05590.09330.41910.088*
C850.0232 (5)0.2193 (4)0.3767 (3)0.0758 (15)
H850.06440.21530.37660.091*
C860.0824 (4)0.2987 (3)0.3515 (2)0.0571 (12)
H860.03390.34810.33490.068*
C910.3510 (4)0.2279 (3)0.0116 (2)0.0496 (11)
C920.3106 (5)0.1525 (3)0.0517 (3)0.0711 (14)
H920.28240.10110.02530.085*
C930.3112 (6)0.1519 (5)0.1306 (3)0.099 (2)
H930.28460.09980.15680.119*
C940.3506 (6)0.2269 (6)0.1706 (3)0.103 (2)
H940.35130.22590.22390.124*
C950.3891 (5)0.3036 (5)0.1320 (3)0.0862 (17)
H950.41330.35590.15880.103*
C960.3919 (4)0.3029 (4)0.0530 (2)0.0661 (13)
H960.42210.35420.02700.079*
N10.3132 (3)0.3116 (2)0.11050 (15)0.0403 (8)
N20.4506 (3)0.4721 (2)0.30247 (16)0.0423 (8)
O10.1026 (3)0.4923 (2)0.23424 (16)0.0660 (8)
O20.4005 (2)0.39618 (18)0.34690 (13)0.0483 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.045 (3)0.080 (3)0.041 (2)0.002 (3)0.006 (2)0.009 (2)
C30.037 (2)0.071 (3)0.055 (3)0.007 (2)0.009 (2)0.000 (2)
C40.039 (2)0.043 (2)0.051 (3)0.004 (2)0.004 (2)0.002 (2)
C50.041 (2)0.041 (2)0.035 (2)0.001 (2)0.0020 (17)0.0005 (18)
C60.044 (2)0.042 (2)0.042 (2)0.001 (2)0.0011 (19)0.0026 (19)
C70.040 (2)0.046 (2)0.036 (2)0.000 (2)0.0019 (18)0.0049 (19)
C80.042 (2)0.051 (2)0.039 (2)0.002 (2)0.0009 (18)0.007 (2)
C90.059 (3)0.049 (2)0.036 (2)0.006 (2)0.007 (2)0.0012 (19)
C100.074 (3)0.074 (3)0.044 (3)0.025 (3)0.009 (2)0.002 (2)
C210.045 (2)0.037 (2)0.033 (2)0.000 (2)0.0034 (19)0.0061 (18)
C220.050 (3)0.070 (3)0.038 (2)0.001 (2)0.000 (2)0.003 (2)
C230.053 (3)0.064 (3)0.052 (3)0.006 (2)0.005 (2)0.001 (2)
C240.046 (3)0.068 (3)0.071 (3)0.004 (3)0.007 (2)0.002 (3)
C250.066 (3)0.083 (3)0.068 (3)0.002 (3)0.025 (3)0.015 (3)
C260.060 (3)0.065 (3)0.052 (3)0.011 (2)0.005 (2)0.015 (2)
C710.041 (2)0.046 (2)0.042 (2)0.007 (2)0.0045 (19)0.002 (2)
C720.069 (3)0.062 (3)0.041 (3)0.009 (2)0.001 (2)0.007 (2)
C730.085 (4)0.090 (4)0.048 (3)0.012 (3)0.003 (3)0.017 (3)
C740.072 (4)0.082 (4)0.080 (4)0.012 (3)0.011 (3)0.040 (3)
C750.060 (3)0.059 (3)0.084 (4)0.001 (3)0.005 (3)0.016 (3)
C760.050 (3)0.056 (3)0.050 (3)0.007 (2)0.001 (2)0.006 (2)
C810.051 (3)0.056 (3)0.029 (2)0.004 (2)0.0061 (19)0.005 (2)
C820.055 (3)0.063 (3)0.050 (3)0.002 (3)0.009 (2)0.005 (2)
C830.087 (4)0.060 (3)0.056 (3)0.003 (3)0.005 (3)0.006 (3)
C840.095 (4)0.071 (3)0.055 (3)0.034 (4)0.010 (3)0.002 (3)
C850.058 (3)0.104 (4)0.066 (3)0.024 (3)0.002 (3)0.005 (3)
C860.049 (3)0.071 (3)0.051 (3)0.004 (3)0.003 (2)0.001 (2)
C910.051 (3)0.061 (3)0.037 (2)0.008 (2)0.002 (2)0.005 (2)
C920.084 (4)0.068 (3)0.061 (3)0.006 (3)0.009 (3)0.024 (3)
C930.105 (5)0.125 (5)0.068 (4)0.033 (5)0.027 (4)0.047 (4)
C940.105 (5)0.165 (7)0.040 (3)0.061 (5)0.010 (3)0.012 (4)
C950.086 (4)0.122 (5)0.050 (4)0.025 (4)0.010 (3)0.024 (3)
C960.070 (3)0.084 (3)0.044 (3)0.008 (3)0.004 (2)0.004 (3)
N10.0415 (19)0.0506 (18)0.0287 (18)0.0008 (17)0.0027 (14)0.0007 (15)
N20.050 (2)0.0451 (19)0.0324 (18)0.0084 (16)0.0004 (14)0.0052 (16)
O10.0558 (18)0.073 (2)0.0693 (19)0.0207 (17)0.0077 (16)0.0070 (17)
O20.0513 (17)0.0588 (17)0.0346 (14)0.0115 (15)0.0023 (13)0.0056 (14)
Geometric parameters (Å, º) top
C2—N11.468 (5)C25—C261.382 (6)
C2—C31.515 (5)C25—H250.93
C2—H2A0.97C26—H260.93
C2—H2B0.97C71—C761.379 (5)
C3—C41.495 (5)C71—C721.388 (5)
C3—H3A0.97C72—C731.372 (6)
C3—H3B0.97C72—H720.93
C4—O11.208 (4)C73—C741.363 (7)
C4—C51.530 (5)C73—H730.93
C5—C61.534 (5)C74—C751.379 (6)
C5—C81.552 (5)C74—H740.93
C5—C71.572 (5)C75—C761.376 (5)
C6—N11.465 (4)C75—H750.93
C6—H6A0.97C76—H760.93
C6—H6B0.97C81—C821.378 (5)
C7—N21.485 (4)C81—C861.380 (5)
C7—C711.502 (5)C82—C831.374 (6)
C7—H70.98C82—H820.93
C8—O21.428 (4)C83—C841.364 (7)
C8—C811.503 (5)C83—H830.93
C8—H80.98C84—C851.375 (7)
C9—N11.488 (5)C84—H840.93
C9—C911.512 (5)C85—C861.388 (6)
C9—C101.516 (6)C85—H850.93
C9—H90.98C86—H860.93
C10—H10A0.96C91—C921.372 (5)
C10—H10B0.96C91—C961.381 (6)
C10—H10C0.96C92—C931.375 (6)
C21—C261.376 (5)C92—H920.93
C21—C221.379 (5)C93—C941.363 (8)
C21—N21.425 (4)C93—H930.93
C22—C231.380 (6)C94—C951.369 (8)
C22—H220.93C94—H940.93
C23—C241.365 (5)C95—C961.378 (6)
C23—H230.93C95—H950.93
C24—C251.369 (6)C96—H960.93
C24—H240.93N2—O21.452 (4)
N1—C2—C3110.5 (3)C26—C25—H25119.5
N1—C2—H2A109.5C21—C26—C25120.4 (4)
C3—C2—H2A109.5C21—C26—H26119.8
N1—C2—H2B109.5C25—C26—H26119.8
C3—C2—H2B109.5C76—C71—C72118.4 (4)
H2A—C2—H2B108.1C76—C71—C7122.1 (3)
C4—C3—C2114.8 (3)C72—C71—C7119.4 (4)
C4—C3—H3A108.6C73—C72—C71120.5 (4)
C2—C3—H3A108.6C73—C72—H72119.8
C4—C3—H3B108.6C71—C72—H72119.8
C2—C3—H3B108.6C74—C73—C72120.9 (4)
H3A—C3—H3B107.5C74—C73—H73119.5
O1—C4—C3121.5 (4)C72—C73—H73119.5
O1—C4—C5121.7 (4)C73—C74—C75119.0 (4)
C3—C4—C5116.7 (3)C73—C74—H74120.5
C4—C5—C6108.7 (3)C75—C74—H74120.5
C4—C5—C8110.8 (3)C76—C75—C74120.6 (5)
C6—C5—C8112.7 (3)C76—C75—H75119.7
C4—C5—C7113.9 (3)C74—C75—H75119.7
C6—C5—C7108.9 (3)C75—C76—C71120.5 (4)
C8—C5—C7101.9 (3)C75—C76—H76119.8
N1—C6—C5110.4 (3)C71—C76—H76119.8
N1—C6—H6A109.6C82—C81—C86118.4 (4)
C5—C6—H6A109.6C82—C81—C8122.2 (4)
N1—C6—H6B109.6C86—C81—C8119.3 (4)
C5—C6—H6B109.6C83—C82—C81120.8 (4)
H6A—C6—H6B108.1C83—C82—H82119.6
N2—C7—C71112.1 (3)C81—C82—H82119.6
N2—C7—C5103.5 (3)C84—C83—C82120.6 (5)
C71—C7—C5115.7 (3)C84—C83—H83119.7
N2—C7—H7108.4C82—C83—H83119.7
C71—C7—H7108.4C83—C84—C85119.7 (5)
C5—C7—H7108.4C83—C84—H84120.1
O2—C8—C81109.4 (3)C85—C84—H84120.1
O2—C8—C5103.9 (3)C84—C85—C86119.7 (5)
C81—C8—C5116.1 (3)C84—C85—H85120.2
O2—C8—H8109.0C86—C85—H85120.2
C81—C8—H8109.0C81—C86—C85120.7 (5)
C5—C8—H8109.0C81—C86—H86119.6
N1—C9—C91112.0 (3)C85—C86—H86119.6
N1—C9—C10110.8 (3)C92—C91—C96117.7 (4)
C91—C9—C10109.2 (3)C92—C91—C9120.0 (4)
N1—C9—H9108.3C96—C91—C9122.2 (4)
C91—C9—H9108.3C91—C92—C93121.0 (5)
C10—C9—H9108.3C91—C92—H92119.5
C9—C10—H10A109.5C93—C92—H92119.5
C9—C10—H10B109.5C94—C93—C92120.6 (6)
H10A—C10—H10B109.5C94—C93—H93119.7
C9—C10—H10C109.5C92—C93—H93119.7
H10A—C10—H10C109.5C93—C94—C95119.6 (5)
H10B—C10—H10C109.5C93—C94—H94120.2
C26—C21—C22117.9 (4)C95—C94—H94120.2
C26—C21—N2121.3 (4)C94—C95—C96119.6 (6)
C22—C21—N2120.6 (3)C94—C95—H95120.2
C21—C22—C23121.5 (4)C96—C95—H95120.2
C21—C22—H22119.2C95—C96—C91121.5 (5)
C23—C22—H22119.2C95—C96—H96119.3
C24—C23—C22120.0 (4)C91—C96—H96119.3
C24—C23—H23120.0C6—N1—C2106.3 (3)
C22—C23—H23120.0C6—N1—C9111.2 (3)
C23—C24—C25119.2 (4)C2—N1—C9111.8 (3)
C23—C24—H24120.4C21—N2—O2107.2 (3)
C25—C24—H24120.4C21—N2—C7117.1 (3)
C24—C25—C26121.0 (4)O2—N2—C7104.3 (2)
C24—C25—H25119.5C8—O2—N2102.2 (3)
N1—C2—C3—C447.1 (5)O2—C8—C81—C8221.0 (5)
C2—C3—C4—O1145.8 (4)C5—C8—C81—C8296.2 (4)
C2—C3—C4—C534.6 (5)O2—C8—C81—C86161.1 (3)
O1—C4—C5—C6142.2 (3)C5—C8—C81—C8681.7 (5)
C3—C4—C5—C638.3 (4)C86—C81—C82—C830.5 (6)
O1—C4—C5—C817.9 (5)C8—C81—C82—C83177.4 (4)
C3—C4—C5—C8162.6 (3)C81—C82—C83—C840.4 (7)
O1—C4—C5—C796.3 (4)C82—C83—C84—C850.3 (7)
C3—C4—C5—C783.3 (4)C83—C84—C85—C860.4 (7)
C4—C5—C6—N157.2 (4)C82—C81—C86—C850.6 (6)
C8—C5—C6—N1179.7 (3)C8—C81—C86—C85177.4 (3)
C7—C5—C6—N167.4 (4)C84—C85—C86—C810.5 (7)
C4—C5—C7—N2116.1 (3)N1—C9—C91—C92139.4 (4)
C6—C5—C7—N2122.4 (3)C10—C9—C91—C9297.5 (5)
C8—C5—C7—N23.2 (3)N1—C9—C91—C9644.8 (5)
C4—C5—C7—C716.9 (4)C10—C9—C91—C9678.4 (5)
C6—C5—C7—C71114.5 (3)C96—C91—C92—C930.2 (7)
C8—C5—C7—C71126.3 (3)C9—C91—C92—C93175.9 (4)
C4—C5—C8—O2147.5 (3)C91—C92—C93—C940.9 (9)
C6—C5—C8—O290.5 (4)C92—C93—C94—C950.4 (9)
C7—C5—C8—O226.0 (4)C93—C94—C95—C962.3 (9)
C4—C5—C8—C8192.2 (4)C94—C95—C96—C913.1 (8)
C6—C5—C8—C8129.7 (5)C92—C91—C96—C951.8 (7)
C7—C5—C8—C81146.2 (3)C9—C91—C96—C95177.8 (4)
C26—C21—C22—C230.2 (6)C5—C6—N1—C271.9 (4)
N2—C21—C22—C23176.7 (4)C5—C6—N1—C9166.2 (3)
C21—C22—C23—C240.9 (6)C3—C2—N1—C664.9 (4)
C22—C23—C24—C251.0 (6)C3—C2—N1—C9173.7 (3)
C23—C24—C25—C260.1 (7)C91—C9—N1—C6170.6 (3)
C22—C21—C26—C251.1 (6)C10—C9—N1—C667.2 (4)
N2—C21—C26—C25177.6 (4)C91—C9—N1—C252.0 (4)
C24—C25—C26—C211.0 (7)C10—C9—N1—C2174.1 (3)
N2—C7—C71—C7640.4 (5)C26—C21—N2—O221.8 (4)
C5—C7—C71—C7678.0 (4)C22—C21—N2—O2161.8 (3)
N2—C7—C71—C72143.3 (4)C26—C21—N2—C7138.4 (3)
C5—C7—C71—C7298.4 (4)C22—C21—N2—C745.2 (5)
C76—C71—C72—C732.7 (6)C71—C7—N2—C2185.5 (4)
C7—C71—C72—C73173.8 (4)C5—C7—N2—C21149.1 (3)
C71—C72—C73—C741.6 (7)C71—C7—N2—O2156.3 (3)
C72—C73—C74—C751.0 (8)C5—C7—N2—O231.0 (3)
C73—C74—C75—C762.5 (7)C81—C8—O2—N2170.9 (3)
C74—C75—C76—C711.4 (7)C5—C8—O2—N246.2 (3)
C72—C71—C76—C751.2 (6)C21—N2—O2—C8173.9 (3)
C7—C71—C76—C75175.2 (4)C7—N2—O2—C849.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.982.352.775 (5)106
C26—H26···O20.932.292.623 (5)101
C82—H82···O20.932.432.757 (5)101
C3—H3A···Cg10.972.903.659 (5)136
C2—H2A···Cg2i0.972.933.707 (5)138
C74—H74···Cg3ii0.932.963.722 (6)141
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+3/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC33H32N2O2
Mr488.61
Crystal system, space groupOrthorhombic, P212121
Temperature (K)273
a, b, c (Å)10.589 (5), 14.582 (7), 17.443 (8)
V3)2693 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerNonius MACH-3
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.986, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
13617, 2701, 1899
Rint0.074
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.118, 1.09
No. of reflections2701
No. of parameters335
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.14

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.982.352.775 (5)106
C26—H26···O20.932.292.623 (5)101
C82—H82···O20.932.432.757 (5)101
C3—H3A···Cg10.972.903.659 (5)136
C2—H2A···Cg2i0.972.933.707 (5)138
C74—H74···Cg3ii0.932.963.722 (6)141
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+3/2, y, z+1/2.
 

Acknowledgements

SP thanks the CSIR, New Delhi, for a Major Research Project.

References

First citationAlibés, R., Blanco, P., de March, P., Figueredo, M., Font, J., Álvarez-Larena, A. & Piniella, J. F. (2003). Tetrahedron Lett. 44, 523–525.  Google Scholar
First citationAli Dondas, H., Cummins, J. E., Grigg, R. & Thornton-Pett, M. (2001). Tetrahedron, 57, 7951–7964.  CSD CrossRef CAS Google Scholar
First citationBlanarikova-Hlobilova, I., Pronayova, N. & Koman, M. (2003). Collect. Czech. Chem. Commun. 68, 951–964.  Web of Science CSD CrossRef CAS Google Scholar
First citationCarda, M., Portoles, R., Murga, J., Uriel, S., Marco, J. A., Domingo, L. R., Zaragoza, R. J. & Roeper, H. (2000). J. Org. Chem. 65, 7000–7009.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCarruthers, W. (1990). Cycloaddition Reactions in Organic Synthesis, ch. 6. Oxford: Pergamon.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHerrera, R., Nagarajan, A., Morales, M. A., Mendez, F., Jimenez-Vazquez, H. A., Zepeda, L. G. & Tamariz, J. (2001). J. Org. Chem. 66, 1252–1263.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuisgen, R. (1963). Angew. Chem. Int. Ed. Engl. 2, 565–572.  CrossRef Google Scholar
First citationIshar, M. P. S., Singh, G., Kumar, K. & Singh, R. (2000). Tetrahedron, 56, 7817–7828.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds