organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-(1,3-Dioxolan-2-ylmeth­yl)-1,3-di­methyl­purine-2,6(1H,3H)-dione tri­chloro­acetic acid solvate

aCollege of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and bCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: apharm@sina.com

(Received 23 October 2007; accepted 14 December 2007; online 21 December 2007)

In the title compound, C11H14N4O4·C2HCl3O2, the dioxolane ring adopts an envelope conformation. Doxophylline [7-(1,3-dioxolan-2-yl-meth­yl)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione] and trichloro­acetic acid mol­ecules are linked by O—H⋯N and C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Chen et al. (2006[Chen, H. X., Tu, B., Shu, Z., Ma, X. J. & Jin, Z. M. (2007). Acta Cryst. E63, o726-o727.], 2007[Chen, Z.-H., Tu, B. & Jin, Z.-M. (2007). Acta Cryst. E63, o2676-o2677.]); Feng et al. (2007[Feng, W.-J., Ma, X.-J., Shu, Z. & Jin, Z.-M. (2007). Acta Cryst. E63, o3609.]); Franzone et al. (1981[Franzone, J. S., Reboani, C. & Fonzo, D. (1981). Farmacol. Sci. 36, 201-219.]); Li et al. (1995[Li, C. H., Luo, Z. & Li, Z. H. (1995). Chin. J. Pharm. 26, 385-386.]); Villani et al. (1997[Villani, F., De Maria, P., Ronchi, E. & Galimberti, M. (1997). Int. J. Clin. Pharmacol. Ther. 35, 107-111.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N4O4·C2HCl3O2

  • Mr = 429.64

  • Triclinic, [P \overline 1]

  • a = 5.656 (3) Å

  • b = 10.825 (5) Å

  • c = 14.962 (7) Å

  • α = 93.217 (9)°

  • β = 91.090 (8)°

  • γ = 101.725 (9)°

  • V = 895.1 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 293 (2) K

  • 0.38 × 0.28 × 0.17 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.818, Tmax = 0.912

  • 4717 measured reflections

  • 3124 independent reflections

  • 2915 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.167

  • S = 1.15

  • 3124 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯N4 0.82 1.82 2.635 (4) 176
C5—H5⋯O5 0.93 2.48 3.079 (5) 123
C7—H7⋯O1i 0.98 2.44 3.410 (5) 171
C10—H10B⋯O2ii 0.96 2.51 3.351 (3) 147
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Doxophylline, 2-(7'-theophyllinemethyl)1,3-dioxolane, is a theophylline derivative which shows interesting bronchodilating activity (Franzone et al., 1981; Villani et al., 1997). Previously, we have reported some compounds containing doxophylline (Chen et al., 2006; Chen et al., 2007; Feng et al., 2007).

Association of one doxophylline and one trichloroacetic acid molecule leads to the title compound (Fig. 1). The geometric features of the purine ring system are similar to those in doxophylline (Chen et al., 2006;Chen et al., 2007; Feng et al., 2007).

As shown in Fig. 2, the O6—H6···N4 hydrogen bond between trichloroacetic acid and doxophylline molecule is one of the essential forces in crystal formation. In addtion the weak hydrogen bonds of C7—H7···O1i, C10—H10B···O2ii and C5—H5···O5 help to increase the stability of the crystal (Table 2 & Fig. 2).

Related literature top

For related literature, see: Chen et al. (2006, 2007); Feng et al. (2007); Franzone et al. (1981); Li et al. (1995); Villani et al. (1997).

Experimental top

Doxophylline was synthesized according with a published procedure (Li et al., 1995), from theophylline by subsitution, oxidation and condensation. Trichloroacetic acid (10 mmol) was added to a solution of doxophylline (10 mm l) in ethanol (20 ml). The mixture was heated to boiling and a clear solution was obtained. Crystals of the title compound were formed by gradual evaporation of ethanol over a period of one week at 293 K.

Refinement top

All of the H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.82 (hydroxy), 0.93 (C5—H5), 0.96 (methyl), 0.97 (methylene) and 0.98Å (methine), with Uiso(H) = 1.2–1.5 Ueq(C) and Uiso(H) = 1.5 Ueq(O).

Structure description top

Doxophylline, 2-(7'-theophyllinemethyl)1,3-dioxolane, is a theophylline derivative which shows interesting bronchodilating activity (Franzone et al., 1981; Villani et al., 1997). Previously, we have reported some compounds containing doxophylline (Chen et al., 2006; Chen et al., 2007; Feng et al., 2007).

Association of one doxophylline and one trichloroacetic acid molecule leads to the title compound (Fig. 1). The geometric features of the purine ring system are similar to those in doxophylline (Chen et al., 2006;Chen et al., 2007; Feng et al., 2007).

As shown in Fig. 2, the O6—H6···N4 hydrogen bond between trichloroacetic acid and doxophylline molecule is one of the essential forces in crystal formation. In addtion the weak hydrogen bonds of C7—H7···O1i, C10—H10B···O2ii and C5—H5···O5 help to increase the stability of the crystal (Table 2 & Fig. 2).

For related literature, see: Chen et al. (2006, 2007); Feng et al. (2007); Franzone et al. (1981); Li et al. (1995); Villani et al. (1997).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL(Bruker, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit with atomic labelling, showing 30% probability displacement ellipsoids. Hydrogen bonds are illustrated in broken lines.
[Figure 2] Fig. 2. A view of a portion of the crystal packing. Hydrogen bonds are illustrated in broken lines.
7-(1,3-Dioxolan-2-ylmethyl)-1,3-dimethylpurine-2,6(1H,3H)-dione trichloroacetic acid solvate top
Crystal data top
C11H14N4O4·C2HCl3O2Z = 2
Mr = 429.64F(000) = 440
Triclinic, P1Dx = 1.594 Mg m3
a = 5.656 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.825 (5) ÅCell parameters from 1931 reflections
c = 14.962 (7) Åθ = 2.4–24.7°
α = 93.217 (9)°µ = 0.55 mm1
β = 91.090 (8)°T = 293 K
γ = 101.725 (9)°Block, colorless
V = 895.1 (8) Å30.38 × 0.28 × 0.17 mm
Data collection top
Bruker APEX area-detector
diffractometer
3124 independent reflections
Radiation source: fine-focus sealed tube2915 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 66
Tmin = 0.818, Tmax = 0.912k = 1210
4717 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0594P)2 + 1.1669P]
where P = (Fo2 + 2Fc2)/3
3124 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C11H14N4O4·C2HCl3O2γ = 101.725 (9)°
Mr = 429.64V = 895.1 (8) Å3
Triclinic, P1Z = 2
a = 5.656 (3) ÅMo Kα radiation
b = 10.825 (5) ŵ = 0.55 mm1
c = 14.962 (7) ÅT = 293 K
α = 93.217 (9)°0.38 × 0.28 × 0.17 mm
β = 91.090 (8)°
Data collection top
Bruker APEX area-detector
diffractometer
3124 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2915 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.912Rint = 0.015
4717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.15Δρmax = 0.32 e Å3
3124 reflectionsΔρmin = 0.41 e Å3
238 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.5096 (2)0.72892 (10)0.71995 (10)0.0764 (4)
Cl21.8985 (2)0.61490 (16)0.77278 (12)0.1021 (6)
Cl31.7335 (3)0.59298 (13)0.58909 (10)0.0997 (6)
O10.3256 (5)0.0373 (3)0.80906 (17)0.0546 (7)
O20.3073 (6)0.0976 (3)0.5250 (2)0.0733 (9)
O30.4973 (4)0.1851 (3)0.96858 (18)0.0602 (8)
O40.8810 (5)0.2918 (3)0.99418 (19)0.0623 (8)
O51.4500 (7)0.4439 (4)0.7965 (2)0.1070 (15)
O61.3136 (5)0.4325 (3)0.65695 (18)0.0636 (8)
H61.20450.37770.67410.095*
N10.3188 (5)0.0331 (3)0.66788 (19)0.0419 (7)
N20.6381 (6)0.1835 (3)0.61213 (18)0.0449 (7)
N30.8290 (5)0.1395 (3)0.83050 (18)0.0405 (7)
N40.9777 (5)0.2545 (3)0.71822 (18)0.0430 (7)
C10.4252 (6)0.0310 (3)0.7528 (2)0.0393 (8)
C20.4147 (7)0.1040 (4)0.5965 (2)0.0478 (9)
C30.7539 (6)0.1868 (3)0.6938 (2)0.0366 (7)
C40.6551 (6)0.1155 (3)0.7615 (2)0.0359 (7)
C51.0141 (6)0.2218 (3)0.8011 (2)0.0453 (9)
C60.8182 (7)0.0864 (4)0.9184 (2)0.0503 (9)
C70.7322 (7)0.1697 (4)0.9889 (2)0.0556 (10)
C80.4837 (8)0.3052 (6)1.0101 (4)0.0819 (16)
C90.7308 (9)0.3811 (5)1.0075 (4)0.0873 (16)
C100.0798 (7)0.0510 (4)0.6519 (3)0.0571 (10)
C110.7596 (9)0.2537 (4)0.5391 (3)0.0668 (12)
C121.4565 (7)0.4789 (4)0.7231 (3)0.0495 (9)
C131.6453 (7)0.5977 (4)0.7006 (3)0.0510 (9)
H51.15510.25350.83500.054*
H6A0.97760.07440.93600.060*
H6B0.71000.00420.91440.060*
H70.73540.13251.04700.067*
H8A0.43260.29691.07140.098*
H8B0.37080.34380.97740.098*
H9A0.74450.43730.95880.105*
H9B0.77470.43121.06340.105*
H10A0.09890.13710.64470.086*
H10B0.00500.02890.59860.086*
H10C0.02000.04180.70200.086*
H11A0.80420.34180.55770.100*
H11B0.65210.24280.48750.100*
H11C0.90190.22230.52420.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0576 (7)0.0484 (6)0.1235 (11)0.0101 (5)0.0154 (6)0.0069 (6)
Cl20.0387 (6)0.1176 (12)0.1433 (14)0.0071 (7)0.0153 (7)0.0424 (10)
Cl30.1202 (12)0.0764 (9)0.0881 (9)0.0186 (8)0.0608 (9)0.0041 (7)
O10.0479 (15)0.0548 (16)0.0536 (16)0.0104 (12)0.0042 (12)0.0136 (13)
O20.072 (2)0.090 (2)0.0536 (17)0.0053 (17)0.0215 (15)0.0125 (16)
O30.0333 (14)0.082 (2)0.0569 (16)0.0045 (13)0.0028 (12)0.0057 (15)
O40.0353 (14)0.079 (2)0.0644 (18)0.0036 (14)0.0027 (12)0.0114 (15)
O50.104 (3)0.112 (3)0.075 (2)0.056 (2)0.026 (2)0.045 (2)
O60.0586 (18)0.069 (2)0.0498 (16)0.0202 (14)0.0089 (13)0.0087 (14)
N10.0351 (15)0.0415 (16)0.0468 (17)0.0035 (12)0.0024 (12)0.0012 (13)
N20.0542 (18)0.0444 (17)0.0354 (15)0.0063 (14)0.0030 (13)0.0088 (13)
N30.0389 (16)0.0432 (16)0.0365 (15)0.0000 (13)0.0013 (12)0.0077 (12)
N40.0443 (17)0.0416 (16)0.0383 (16)0.0031 (13)0.0063 (12)0.0038 (12)
C10.0368 (18)0.0346 (17)0.0459 (19)0.0054 (14)0.0054 (15)0.0030 (15)
C20.047 (2)0.050 (2)0.045 (2)0.0095 (17)0.0058 (16)0.0038 (16)
C30.0375 (18)0.0328 (17)0.0380 (17)0.0035 (14)0.0047 (14)0.0021 (13)
C40.0342 (17)0.0352 (17)0.0378 (17)0.0054 (13)0.0032 (13)0.0033 (14)
C50.0369 (19)0.050 (2)0.044 (2)0.0031 (16)0.0009 (15)0.0002 (16)
C60.047 (2)0.056 (2)0.047 (2)0.0045 (17)0.0028 (16)0.0192 (17)
C70.045 (2)0.081 (3)0.038 (2)0.000 (2)0.0019 (16)0.0173 (19)
C80.048 (3)0.111 (4)0.079 (3)0.006 (3)0.002 (2)0.024 (3)
C90.056 (3)0.091 (4)0.107 (4)0.005 (3)0.005 (3)0.022 (3)
C100.042 (2)0.056 (2)0.068 (3)0.0014 (18)0.0051 (18)0.005 (2)
C110.082 (3)0.073 (3)0.041 (2)0.002 (2)0.007 (2)0.019 (2)
C120.043 (2)0.048 (2)0.054 (2)0.0007 (17)0.0092 (17)0.0112 (18)
C130.038 (2)0.050 (2)0.063 (2)0.0029 (17)0.0123 (17)0.0080 (18)
Geometric parameters (Å, º) top
Cl1—C131.760 (4)N4—C51.331 (5)
Cl2—C131.750 (4)N4—C31.359 (4)
Cl3—C131.752 (4)C1—C41.429 (5)
O1—C11.222 (4)C4—C31.366 (5)
O2—C21.212 (4)C5—H50.9300
O3—C71.402 (5)C6—C71.501 (6)
O3—C81.426 (6)C6—H6A0.9700
O4—C71.413 (5)C6—H6B0.9700
O4—C91.419 (6)C7—H70.9800
O5—C121.181 (5)C8—C91.472 (7)
O6—C121.278 (5)C8—H8A0.9700
O6—H60.8200C8—H8B0.9700
N1—C11.398 (4)C9—H9A0.9700
N1—C21.403 (5)C9—H9B0.9700
N1—C101.475 (5)C10—H10A0.9600
N2—C31.371 (4)C10—H10B0.9600
N2—C21.384 (5)C10—H10C0.9600
N2—C111.468 (5)C11—H11A0.9600
N3—C51.330 (4)C11—H11B0.9600
N3—C41.388 (4)C11—H11C0.9600
N3—C61.462 (4)C12—C131.553 (5)
C1—N1—C2127.5 (3)O3—C8—H8A110.8
C1—N1—C10115.6 (3)O3—C8—H8B110.8
C2—N1—C10116.9 (3)O4—C7—C6110.6 (3)
C2—N2—C11120.1 (3)O4—C7—H7109.5
C3—N2—C2119.3 (3)O4—C9—C8105.2 (4)
C3—N2—C11120.4 (3)O4—C9—H9A110.7
C3—C4—N3105.3 (3)O4—C9—H9B110.7
C3—C4—C1123.0 (3)O5—C12—O6126.9 (4)
C4—N3—C6128.3 (3)O5—C12—C13119.8 (4)
C4—C3—N2122.3 (3)O6—C12—C13113.1 (3)
C5—N3—C4106.2 (3)N1—C1—C4111.3 (3)
C5—N3—C6125.5 (3)N1—C10—H10A109.5
C5—N4—C3104.1 (3)N1—C10—H10B109.5
C6—C7—H7109.5N1—C10—H10C109.5
C7—O3—C8104.9 (3)N2—C2—N1116.6 (3)
C7—O4—C9108.0 (3)N2—C11—H11A109.5
C7—C6—H6A109.1N2—C11—H11B109.5
C7—C6—H6B109.1N2—C11—H11C109.5
C8—C9—H9A110.7N3—C4—C1131.6 (3)
C8—C9—H9B110.7N3—C5—N4113.3 (3)
C9—C8—H8A110.8N3—C5—H5123.3
C9—C8—H8B110.8N3—C6—C7112.3 (3)
C12—O6—H6109.5N3—C6—H6A109.1
C12—C13—Cl2109.4 (3)N3—C6—H6B109.1
C12—C13—Cl3113.0 (3)N4—C3—C4111.1 (3)
Cl2—C13—Cl3109.9 (2)N4—C3—N2126.6 (3)
C12—C13—Cl1107.0 (3)N4—C5—H5123.3
Cl2—C13—Cl1108.7 (2)H6A—C6—H6B107.9
Cl3—C13—Cl1108.6 (2)H8A—C8—H8B108.9
O1—C1—N1121.5 (3)H9A—C9—H9B108.8
O1—C1—C4127.2 (3)H10A—C10—H10B109.5
O2—C2—N2121.3 (4)H10A—C10—H10C109.5
O2—C2—N1122.1 (4)H10B—C10—H10C109.5
O3—C7—O4106.5 (3)H11A—C11—H11B109.5
O3—C7—C6111.3 (3)H11A—C11—H11C109.5
O3—C7—H7109.5H11B—C11—H11C109.5
O3—C8—C9104.8 (4)
C1—C4—C3—N4177.2 (3)C9—O4—C7—O319.5 (4)
C1—C4—C3—N20.6 (5)C9—O4—C7—C6140.7 (4)
C1—N1—C2—O2179.3 (4)C10—N1—C1—O10.6 (5)
C1—N1—C2—N21.6 (5)C10—N1—C1—C4179.9 (3)
C2—N1—C1—O1178.2 (3)C10—N1—C2—O20.4 (6)
C2—N1—C1—C41.2 (5)C10—N1—C2—N2179.5 (3)
C2—N2—C3—N4176.5 (3)C11—N2—C3—N42.5 (5)
C2—N2—C3—C41.0 (5)C11—N2—C3—C4175.0 (4)
C3—N2—C2—O2179.5 (4)C11—N2—C2—O25.5 (6)
C3—N2—C2—N11.4 (5)C11—N2—C2—N1175.4 (3)
C3—N4—C5—N30.4 (4)N1—C1—C4—C30.7 (5)
C4—N3—C5—N40.1 (4)N1—C1—C4—N3176.0 (3)
C4—N3—C6—C794.6 (4)N3—C4—C3—N40.9 (4)
C5—N3—C6—C785.8 (4)N3—C4—C3—N2177.0 (3)
C5—N3—C4—C30.6 (4)N3—C6—C7—O361.6 (4)
C5—N3—C4—C1176.4 (4)N3—C6—C7—O456.6 (4)
C5—N4—C3—C40.8 (4)O1—C1—C4—C3178.8 (3)
C5—N4—C3—N2176.9 (3)O1—C1—C4—N33.5 (6)
C6—N3—C5—N4179.6 (3)O3—C8—C9—O419.2 (6)
C6—N3—C4—C3179.2 (3)O5—C12—C13—Cl227.5 (5)
C6—N3—C4—C13.3 (6)O5—C12—C13—Cl3150.4 (4)
C7—O3—C8—C931.3 (5)O5—C12—C13—Cl190.1 (5)
C7—O4—C9—C80.1 (5)O6—C12—C13—Cl2155.6 (3)
C8—O3—C7—O431.7 (4)O6—C12—C13—Cl332.7 (4)
C8—O3—C7—C6152.3 (4)O6—C12—C13—Cl186.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···N40.821.822.635 (4)176
C5—H5···O50.932.483.079 (5)123
C7—H7···O1i0.982.443.410 (5)171
C10—H10B···O2ii0.962.513.351 (3)147
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC11H14N4O4·C2HCl3O2
Mr429.64
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.656 (3), 10.825 (5), 14.962 (7)
α, β, γ (°)93.217 (9), 91.090 (8), 101.725 (9)
V3)895.1 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.38 × 0.28 × 0.17
Data collection
DiffractometerBruker APEX area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.818, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
4717, 3124, 2915
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.167, 1.15
No. of reflections3124
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.41

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL(Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···N40.821.822.635 (4)175.9
C5—H5···O50.932.483.079 (5)122.6
C7—H7···O1i0.982.443.410 (5)171.0
C10—H10B···O2ii0.962.513.351 (3)146.9
Symmetry codes: (i) x+1, y, z+2; (ii) x, y, z+1.
 

References

First citationBruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z.-H., Tu, B. & Jin, Z.-M. (2007). Acta Cryst. E63, o2676–o2677.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, H. X., Tu, B., Shu, Z., Ma, X. J. & Jin, Z. M. (2007). Acta Cryst. E63, o726–o727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFeng, W.-J., Ma, X.-J., Shu, Z. & Jin, Z.-M. (2007). Acta Cryst. E63, o3609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFranzone, J. S., Reboani, C. & Fonzo, D. (1981). Farmacol. Sci. 36, 201–219.  CAS Google Scholar
First citationLi, C. H., Luo, Z. & Li, Z. H. (1995). Chin. J. Pharm. 26, 385–386.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationVillani, F., De Maria, P., Ronchi, E. & Galimberti, M. (1997). Int. J. Clin. Pharmacol. Ther. 35, 107–111.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds