metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­[μ-1-cyclo­propyl-6-fluoro-4-oxido-7-(1-piperazin­yl)-1,4-di­hydro­quinoline-3-carboxyl­ato]nickel(II)]

aSchool of Pharmaceutical Science, Harbin Medical University, Harbin 150086, People's Republic of China, and bDepartment of Pharmacy, Qiqihar Medical University, Qiqihar 161042, People's Republic of China
*Correspondence e-mail: liuyaqin6688@126.com

(Received 24 October 2007; accepted 4 December 2007; online 12 December 2007)

In the title compound, [Ni(C17H17FN3O3)2]n, the NiII atom exists in a distorted trans-NiN2O4 octa­hedral geometry defined by two monodentate N-bonded and two bidentate O,O-bonded 1-cyclo­propyl-6-fluoro-4-oxido-7-(1-piperazin­yl)-1,4-dihydro­quinoline-3-carboxyl­ate (ciprofloxacinium) monoanions. The extended two-dimensional structure is a square grid. The Ni atom lies on a center of inversion.

Related literature

For the manganese, zinc and copper complexes of the ciprofloxacinium (cf) anion, see: Xiao et al. (2005[Xiao, D.-R., Wang, E.-B., An, H.-Y., Su, Z.-M., Li, Y.-G., Gao, L., Sun, C.-Y. & Xu, L. (2005). Chem. Eur. J. 11, 6673-6686.]); An et al. (2007[An, Z., Cui, R.-H. & Wang, R.-S. (2007). Acta Cryst. E63, m1066-m1067.]). For background on the medicinal uses of Hcf, see: Mizuki et al. (1996[Mizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. 37, Suppl. A, 41-45.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C17H17FN3O3)2]

  • Mr = 719.38

  • Monoclinic, P 21 /c

  • a = 5.9999 (6) Å

  • b = 21.437 (2) Å

  • c = 13.2287 (14) Å

  • β = 101.886 (2)°

  • V = 1665.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 295 (2) K

  • 0.34 × 0.26 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.810, Tmax = 0.892

  • 8098 measured reflections

  • 2890 independent reflections

  • 2466 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.173

  • S = 1.00

  • 2890 reflections

  • 226 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.92 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O2i 0.861 (10) 2.48 (4) 3.184 (4) 139 (5)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ciprofloxacin (1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo -7-(1-piperazinyl)-3-quinoline carboxylic acid, H-cf) is a member of a class of quinolones that is used to treat infections (Mizuki et al., 1996). Manganese(II), zinc(II) and copper(II) derivatives of H-cf have been reported (Xiao et al., 2005; An et al., 2007). The title compound nickel(II) derivative is a two-dimensional coordination polymer in which the anion acts in a bridging mode (Fig. 1).

The Ni(II) atom is coordinated by four oxygen atoms and two N atoms from four cf ligands (two monodentate-N and two O,O-bidentate) to form a square grid propagating approximately in the bc plane (Fig. 2).

Related literature top

For the manganese, zinc and copper complexes of the ciprofloxacinium (cf.) anion, see: Xiao et al. (2005); An et al. (2007). For background on the medicinal uses of Hcf, see: Mizuki et al. (1996).

Experimental top

A mixture of Ni(NO3)2.6H2O (0.07 g, 0.25 mmol), ciprofloxacin hydrochloride (0.19 g, 0.5 mmol), and water (12 ml) was stirred for 30 min in air. The mixture was then transferred to a 23 ml Teflon-lined hydrothermal bomb. The bomb was kept at 433 K for 72 h under autogenous pressure. Green single crystals of the title compound suitable for X-ray analysis were obtained from the reaction mixture after cooling. Green blocks of (I) with a yield of 21%. Anal. Calc. for C34H34F2N6O6Ni: C 56.77, H 4.73, N 11.69%, O 13.36; Found: C 56.73, H 4.78, N 11.64%, O 13.40.

Refinement top

The carbon-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference map and refined with a distance restraint of 0.86 (1) Å and the constraint Uiso(H) = 1.2Ueq(N).

Structure description top

Ciprofloxacin (1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo -7-(1-piperazinyl)-3-quinoline carboxylic acid, H-cf) is a member of a class of quinolones that is used to treat infections (Mizuki et al., 1996). Manganese(II), zinc(II) and copper(II) derivatives of H-cf have been reported (Xiao et al., 2005; An et al., 2007). The title compound nickel(II) derivative is a two-dimensional coordination polymer in which the anion acts in a bridging mode (Fig. 1).

The Ni(II) atom is coordinated by four oxygen atoms and two N atoms from four cf ligands (two monodentate-N and two O,O-bidentate) to form a square grid propagating approximately in the bc plane (Fig. 2).

For the manganese, zinc and copper complexes of the ciprofloxacinium (cf.) anion, see: Xiao et al. (2005); An et al. (2007). For background on the medicinal uses of Hcf, see: Mizuki et al. (1996).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, extended to show the Ni coordination, showing 50% displacement ellipsoids and the atom-numbering scheme [symmetry codes: (i)x, y, z; (ii)-x, y + 1/2, -z + 1/2; (iii)-x, -y, -z; (iv)x, -y - 1/2, z - 1/2]
[Figure 2] Fig. 2. A view of part of a two-dimensional polymeric sheet in the crystal of the title compound showing the square-grid connectivity.
Poly[bis[µ-1-cyclopropyl-6-fluoro-4-oxido-7-(1-piperazinyl)-1,4-δihydroquinoline-3-carboxylato]nickel(II)] top
Crystal data top
[Ni(C17H17FN3O3)2]F(000) = 748
Mr = 719.38Dx = 1.435 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.9999 (6) ÅCell parameters from 2967 reflections
b = 21.437 (2) Åθ = 2.5–27.3°
c = 13.2287 (14) ŵ = 0.65 mm1
β = 101.886 (2)°T = 295 K
V = 1665.0 (3) Å3Block, green
Z = 20.34 × 0.26 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
2890 independent reflections
Radiation source: fine-focus sealed tube2466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 67
Tmin = 0.810, Tmax = 0.892k = 2521
8098 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.1083P)2 + 3.3784P]
where P = (Fo2 + 2Fc2)/3
2890 reflections(Δ/σ)max = 0.008
226 parametersΔρmax = 1.92 e Å3
1 restraintΔρmin = 0.43 e Å3
Crystal data top
[Ni(C17H17FN3O3)2]V = 1665.0 (3) Å3
Mr = 719.38Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.9999 (6) ŵ = 0.65 mm1
b = 21.437 (2) ÅT = 295 K
c = 13.2287 (14) Å0.34 × 0.26 × 0.18 mm
β = 101.886 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2890 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2466 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 0.892Rint = 0.030
8098 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 1.92 e Å3
2890 reflectionsΔρmin = 0.43 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.50000.50000.0191 (2)
F10.7020 (4)0.74254 (11)0.67877 (19)0.0407 (6)
O10.2122 (4)0.48858 (11)0.6010 (2)0.0254 (6)
O20.3432 (6)0.49499 (14)0.7453 (3)0.0489 (9)
O30.1687 (4)0.56702 (11)0.59535 (18)0.0246 (5)
N10.0052 (5)0.65173 (14)0.8485 (2)0.0275 (7)
N20.5762 (5)0.81201 (14)0.8367 (2)0.0266 (7)
N30.7552 (5)0.93356 (13)0.9140 (2)0.0244 (6)
C10.2146 (6)0.51226 (17)0.6881 (3)0.0261 (8)
C20.0603 (6)0.56768 (15)0.7245 (3)0.0236 (7)
C30.1042 (6)0.59953 (17)0.8074 (3)0.0274 (8)
H30.21880.58410.83830.033*
C40.1761 (6)0.67679 (16)0.8044 (3)0.0242 (7)
C50.2833 (6)0.73317 (17)0.8400 (3)0.0264 (8)
H50.23700.75420.89370.032*
C60.4567 (6)0.75847 (16)0.7975 (3)0.0243 (7)
C70.5192 (6)0.72338 (17)0.7174 (3)0.0253 (8)
C80.4147 (6)0.67009 (16)0.6793 (3)0.0251 (7)
H80.46050.64980.62490.030*
C90.2363 (6)0.64486 (16)0.7215 (3)0.0232 (7)
C100.1164 (6)0.58960 (15)0.6756 (3)0.0216 (7)
C110.0674 (7)0.6856 (2)0.9317 (3)0.0345 (9)
H110.13860.72620.91240.041*
C120.0698 (10)0.6814 (3)1.0393 (4)0.0550 (13)
H12A0.08340.71871.08170.066*
H12B0.20350.65481.05120.066*
C130.1585 (10)0.6507 (3)1.0120 (4)0.0632 (16)
H13A0.16290.60551.00750.076*
H13B0.28290.66941.03790.076*
C140.6114 (8)0.86219 (18)0.7651 (3)0.0360 (9)
H14A0.47030.88500.74250.043*
H14B0.65430.84410.70470.043*
C150.7969 (7)0.90671 (18)0.8177 (3)0.0347 (9)
H15A0.94090.88460.83240.042*
H15B0.81050.94030.77030.042*
C160.7067 (9)0.8829 (2)0.9801 (3)0.0464 (12)
H16A0.66340.90081.04060.056*
H16B0.84520.85911.00350.056*
C170.5196 (8)0.8385 (2)0.9285 (3)0.0458 (12)
H17A0.50180.80540.97620.055*
H17B0.37640.86090.91040.055*
H3N0.641 (6)0.9588 (19)0.902 (4)0.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0266 (4)0.0117 (4)0.0186 (4)0.0001 (2)0.0035 (3)0.0027 (2)
F10.0451 (13)0.0358 (13)0.0491 (14)0.0169 (10)0.0284 (11)0.0146 (11)
O10.0311 (13)0.0194 (12)0.0252 (13)0.0048 (10)0.0042 (10)0.0037 (10)
O20.067 (2)0.0467 (19)0.0417 (18)0.0339 (15)0.0306 (17)0.0182 (13)
O30.0307 (13)0.0206 (12)0.0240 (12)0.0021 (10)0.0090 (10)0.0075 (10)
N10.0331 (16)0.0258 (16)0.0263 (16)0.0096 (12)0.0123 (13)0.0114 (12)
N20.0389 (17)0.0178 (14)0.0245 (15)0.0098 (12)0.0101 (13)0.0055 (12)
N30.0304 (16)0.0155 (14)0.0268 (15)0.0031 (11)0.0044 (12)0.0007 (12)
C10.0301 (19)0.0209 (17)0.0271 (19)0.0049 (14)0.0055 (15)0.0005 (14)
C20.0299 (18)0.0164 (17)0.0236 (17)0.0038 (13)0.0040 (14)0.0030 (13)
C30.0317 (18)0.0248 (18)0.0267 (18)0.0058 (14)0.0081 (15)0.0016 (15)
C40.0285 (18)0.0204 (17)0.0246 (18)0.0042 (14)0.0077 (14)0.0044 (14)
C50.0320 (19)0.0224 (17)0.0260 (18)0.0060 (15)0.0088 (15)0.0087 (14)
C60.0286 (18)0.0185 (17)0.0251 (18)0.0042 (14)0.0044 (14)0.0041 (14)
C70.0291 (18)0.0239 (18)0.0253 (18)0.0054 (14)0.0108 (14)0.0036 (14)
C80.0312 (18)0.0216 (17)0.0241 (17)0.0019 (14)0.0092 (14)0.0039 (14)
C90.0257 (17)0.0217 (17)0.0227 (17)0.0029 (13)0.0058 (13)0.0039 (13)
C100.0261 (17)0.0156 (16)0.0221 (17)0.0016 (13)0.0024 (13)0.0002 (13)
C110.040 (2)0.033 (2)0.034 (2)0.0064 (17)0.0166 (17)0.0116 (17)
C120.078 (3)0.056 (3)0.030 (2)0.009 (3)0.009 (2)0.014 (2)
C130.094 (4)0.063 (3)0.046 (3)0.029 (3)0.045 (3)0.017 (2)
C140.058 (3)0.0240 (19)0.0253 (19)0.0120 (17)0.0057 (18)0.0016 (15)
C150.050 (2)0.029 (2)0.029 (2)0.0149 (17)0.0159 (17)0.0059 (16)
C160.074 (3)0.039 (2)0.029 (2)0.035 (2)0.018 (2)0.0119 (18)
C170.064 (3)0.041 (2)0.040 (2)0.032 (2)0.028 (2)0.0232 (19)
Geometric parameters (Å, º) top
Ni1—O32.038 (2)C5—C61.391 (5)
Ni1—O3i2.038 (2)C5—H50.9300
Ni1—O1i2.041 (3)C6—C71.411 (5)
Ni1—O12.041 (3)C7—C81.350 (5)
Ni1—N3ii2.189 (3)C8—C91.412 (5)
Ni1—N3iii2.189 (3)C8—H80.9300
F1—C71.365 (4)C9—C101.453 (5)
O1—C11.261 (5)C11—C131.491 (6)
O2—C11.243 (5)C11—C121.492 (7)
O3—C101.264 (4)C11—H110.9800
N1—C31.353 (5)C12—C131.495 (7)
N1—C41.387 (5)C12—H12A0.9700
N1—C111.459 (5)C12—H12B0.9700
N2—C61.396 (4)C13—H13A0.9700
N2—C171.443 (5)C13—H13B0.9700
N2—C141.476 (5)C14—C151.521 (5)
N3—C161.461 (5)C14—H14A0.9700
N3—C151.466 (5)C14—H14B0.9700
N3—Ni1iv2.189 (3)C15—H15A0.9700
N3—H3N0.861 (10)C15—H15B0.9700
C1—C21.522 (5)C16—C171.521 (6)
C2—C31.363 (5)C16—H16A0.9700
C2—C101.430 (5)C16—H16B0.9700
C3—H30.9300C17—H17A0.9700
C4—C51.404 (5)C17—H17B0.9700
C4—C91.402 (5)
O3—Ni1—O3i180.00 (9)C7—C8—H8119.7
O3—Ni1—O1i91.34 (10)C9—C8—H8119.7
O3i—Ni1—O1i88.66 (10)C4—C9—C8117.4 (3)
O3—Ni1—O188.66 (10)C4—C9—C10122.7 (3)
O3i—Ni1—O191.34 (10)C8—C9—C10119.8 (3)
O1i—Ni1—O1180.000 (1)O3—C10—C2126.1 (3)
O3—Ni1—N3ii93.30 (11)O3—C10—C9118.4 (3)
O3i—Ni1—N3ii86.70 (11)C2—C10—C9115.4 (3)
O1i—Ni1—N3ii91.38 (11)N1—C11—C13119.9 (4)
O1—Ni1—N3ii88.62 (11)N1—C11—C12119.9 (4)
O3—Ni1—N3iii86.70 (11)C13—C11—C1260.2 (3)
O3i—Ni1—N3iii93.30 (11)N1—C11—H11115.3
O1i—Ni1—N3iii88.62 (11)C13—C11—H11115.3
O1—Ni1—N3iii91.38 (11)C12—C11—H11115.3
N3ii—Ni1—N3iii180.000 (1)C11—C12—C1359.9 (3)
C1—O1—Ni1132.5 (2)C11—C12—H12A117.8
C10—O3—Ni1127.7 (2)C13—C12—H12A117.8
C3—N1—C4119.4 (3)C11—C12—H12B117.8
C3—N1—C11121.3 (3)C13—C12—H12B117.8
C4—N1—C11119.1 (3)H12A—C12—H12B114.9
C6—N2—C17116.4 (3)C11—C13—C1260.0 (3)
C6—N2—C14119.4 (3)C11—C13—H13A117.8
C17—N2—C14110.0 (3)C12—C13—H13A117.8
C16—N3—C15108.6 (3)C11—C13—H13B117.8
C16—N3—Ni1iv111.6 (2)C12—C13—H13B117.8
C15—N3—Ni1iv119.4 (2)H13A—C13—H13B114.9
C16—N3—H3N109 (4)N2—C14—C15110.6 (3)
C15—N3—H3N111 (4)N2—C14—H14A109.5
Ni1iv—N3—H3N96 (4)C15—C14—H14A109.5
O2—C1—O1124.1 (3)N2—C14—H14B109.5
O2—C1—C2116.9 (3)C15—C14—H14B109.5
O1—C1—C2118.9 (3)H14A—C14—H14B108.1
C3—C2—C10118.9 (3)N3—C15—C14113.8 (3)
C3—C2—C1116.1 (3)N3—C15—H15A108.8
C10—C2—C1124.9 (3)C14—C15—H15A108.8
N1—C3—C2125.4 (3)N3—C15—H15B108.8
N1—C3—H3117.3C14—C15—H15B108.8
C2—C3—H3117.3H15A—C15—H15B107.7
N1—C4—C5121.3 (3)N3—C16—C17114.6 (4)
N1—C4—C9118.1 (3)N3—C16—H16A108.6
C5—C4—C9120.6 (3)C17—C16—H16A108.6
C6—C5—C4121.9 (3)N3—C16—H16B108.6
C6—C5—H5119.0C17—C16—H16B108.6
C4—C5—H5119.0H16A—C16—H16B107.6
C5—C6—N2122.7 (3)N2—C17—C16110.1 (3)
C5—C6—C7115.6 (3)N2—C17—H17A109.6
N2—C6—C7121.4 (3)C16—C17—H17A109.6
C8—C7—F1117.5 (3)N2—C17—H17B109.6
C8—C7—C6123.8 (3)C16—C17—H17B109.6
F1—C7—C6118.6 (3)H17A—C17—H17B108.2
C7—C8—C9120.5 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y+3/2, z1/2; (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O2v0.86 (1)2.48 (4)3.184 (4)139 (5)
Symmetry code: (v) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni(C17H17FN3O3)2]
Mr719.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)5.9999 (6), 21.437 (2), 13.2287 (14)
β (°) 101.886 (2)
V3)1665.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.34 × 0.26 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.810, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
8098, 2890, 2466
Rint0.030
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.173, 1.00
No. of reflections2890
No. of parameters226
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.92, 0.43

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O2i0.861 (10)2.48 (4)3.184 (4)139 (5)
Symmetry code: (i) x, y+1/2, z+3/2.
 

Acknowledgements

The authors acknowledge financial support by the Science Foundation of Qiqihar Medical University (grant No. 20044405).

References

First citationAn, Z., Cui, R.-H. & Wang, R.-S. (2007). Acta Cryst. E63, m1066–m1067.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. 37, Suppl. A, 41-45.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationXiao, D.-R., Wang, E.-B., An, H.-Y., Su, Z.-M., Li, Y.-G., Gao, L., Sun, C.-Y. & Xu, L. (2005). Chem. Eur. J. 11, 6673–6686.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds