organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(Z)-(4-Di­ethyl­amino-6-oxo­cyclo­hexa-2,4-dien-1-yl­­idene)methyl­amino]benzoic acid

aDepartment of Chemistry, Sambhram Institute of Technology, Bangalore 560 098, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, dDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India, and eDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 5 November 2007; accepted 29 November 2007; online 6 December 2007)

The title compound, C18H20N2O3, crystallizes as the keto tautomer, unlike the vast majority of similar structures that have been reported that contain the hydr­oxy tautomer. There are two strong hydrogen bonds in the crystal structure, both accepted by the same carbonyl group: one intra­molecular N—H⋯O and one inter­molecular O—H⋯O. As a result, the carbonyl C=O distance is long, at 1.310 (2) Å, which may suggest the mol­ecule has a significant zwitterionic character. The dihedral angle between the benzene ring planes is 15.05 (7)°. As a result of the intramolecular hydrogen bond, the bridging C—C=N—C group is almost coplanar with the benzene ring that has the diethylamino substituent [dihedral angle 2.35 (15)°].

Related literature

For related structures, see: Büyükgüngör et al. (2007[Büyükgüngör, O., Odabaşoğlu, M., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1996-o1998.]); Odabaşoğlu et al. (2007[Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1916-o1918.]); Yathirajan et al. (2007[Yathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o936-o938.]). For biological applications, see Hodnett & Dunn (1970[Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768-770.]); Misra et al. (1981[Misra, V. S., Singh, S., Agarwal, R. & Chaudhary, K. C. (1981). J. Chem. Soc. Pak. 3, 209-213.]); Agarwal et al. (1983[Agarwal, R., Chaudhary, K. C. & Misra, V. S. (1983). Indian J. Chem. 22B, 308-310.]); Varma et al. (1986[Varma, R. S., Prakash, R., Khan, M. M. & Ali, A. (1986). Indian Drugs, 23, 345-349.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]). For related literature, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N2O3

  • Mr = 312.36

  • Monoclinic, P 21 /n

  • a = 9.0904 (13) Å

  • b = 9.8993 (9) Å

  • c = 17.8208 (19) Å

  • β = 100.068 (2)°

  • V = 1579.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 (1) K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • KUMA KM4CCD diffractometer

  • Absorption correction: none

  • 12993 measured reflections

  • 3514 independent reflections

  • 2464 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.124

  • S = 0.98

  • 3514 reflections

  • 283 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O10 0.91 (2) 1.81 (2) 2.578 (2) 140 (2)
O1A2—H1A2⋯O10i 1.07 (3) 1.40 (3) 2.467 (1) 173 (2)
C5—H5⋯O1A1ii 0.98 (2) 2.48 (2) 3.449 (2) 174 (2)
C8—H8⋯O1A1iii 0.96 (2) 2.63 (2) 3.436 (2) 142 (1)
C11—H11⋯O1A2iv 0.98 (2) 2.60 (2) 3.244 (2) 124 (1)
C16—H16A⋯O1A1v 1.00 (2) 2.60 (2) 3.570 (2) 163 (1)
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (iii) -x+2, -y, -z+2; (iv) x, y+1, z; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrystAlisCCD (Version 1.171.29.9) and CrysAlis RED (Version 1.171.29.9). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrystAlisCCD (Version 1.171.29.9) and CrysAlis RED (Version 1.171.29.9). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: XP (Siemens, 1989[Siemens (1989). XP. Release 3.4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases are used as substrates in the preparation of number of industrial and biologically active compounds via ring closure, cycloaddition and replacement reactions. Some Schiff base derivatives were reported to possess antimicrobial, anti-inflammatory and central nervous system activities. Moreover, Schiff bases are also known to have biological activities such as antimicrobial, antifungal, antitumor and as herbicides (e.g. Hodnett et al., 1970, Singh & Dash, 1988, Varma et al., (1986)). In the course of our studies of Schiff bases (e.g. Büyükgüngör et al., 2007; Odabaşoğlu et al., 2007; Yathirajan et al., 2007), the title compound, C18H20N2O3 was synthesized and its crystal structure is reported.

The title compound crystallizes as the keto-tautomer (Fig. 1), unlike the majority of the similar compounds. In the CSD (Allen, 2002) the hydroxy tautomers were found in 218 compounds while the keto ones only in 17 compounds (Version Nov. 2006, updates up to August 2007; only organic compounds). In this case the presence of the certain tautomer is proven by the succesful location and refinement of the hydrogen atom bonded to N7 nitrogen atom (Fig. 2a). Short and relatively linear intramolecular N—H···O hydrogen bond forms an almost planar (maximum deviation 0.017 (1) Å) six-membered ring. The same O10 oxygen atom which accepts the intramolecular hydrogen bond is involved in a very short (O···O distance is 2.467 (1) Å) intermolecular O—H···O hydrogen bond. As a result the C10—O10 bond of 1.310 (2)Å is significantly longer than a typical C?O double bond. CSD search results show that such elongation is typical for similar compounds, the mean C—O distance being 1.348 (17)Å for hydroxy tautomers, but it may also be as large as 1.299 (17)Å also for the keto-tautomers. Together with the observation of bond lengths around N7 atom this implies some degree of zwitterionic character of the molecule, with partial positive charge at N7—H7 group and negative at O10 atom. These perturbations disturb also the benzene ring. The ring A (C1 - C6) is closer to planarity than the ring B (C9 - C14). Maximum deviations from the least-squares planes are 0.0103 (11)Å for ring A and 0.0219 (12)Å for ring B. Also the bond lengths and angles are much more uniform within the ring A than in ring B.

The conformation of the molecule is described by the dihedral angles between benzene ring planes of 15.05 (7)°. As a result of the intramolecular hydrogen bond, the bridging C—C?N—C group is almost coplanar with the ring B (dihedral angle 2.35 (15)°). The COO group is significantly, by 21.73 (10)°, twisted with respect to its parent ring's plane. On the other end of the molecule, the C—N—C fragment is twisted by 17.0 (2)°, while the terminal C—C bonds are almost perpendicular to the CNC plane.

In the crystal structure the molecules are connected by strong intermolecular O—H···O hydrogen bonds into tapes along the y-direction. The O—H bond is significantly elongated, to 1.07 (3)Å due to the formation of the hydrogen bond (cf. Fig. 2 b). The tapes are connected by relatively strong inter-tape C—H···O hydrogen bonds into the layers (Fig. 3). Some additional C—H···O interactions (Table 1) also play a role in the building of the crystal structure.

Related literature top

For related structures, see: Büyükgüngör et al. (2007); Odabaşoğlu et al. (2007); Yathirajan et al. (2007). For biological applications, see Hodnett & Dunn (1970); Misra et al. (1981); Agarwal et al. (1983); Varma et al. (1986); Singh & Dash (1988).

For related literature, see: Allen (2002); Farrugia (1999).

Experimental top

A mixture of 3-aminobenzoic acid (1.37 g, 0.01 mol) and 4-(diethylamino)-2-hydroxybenzaldehyde (1.92 g, 0.01 mol) in 25 ml of absolute ethanol containing 2 drops of 4 M sulfuric acid was refluxed for about 5 h. On cooling, the separated solid was filtered and recrystallized from DMF (m.p.: 483–485 K). The expected product was 3-({(1E)-[4-(diethylamino)-2-hydroxyphenyl]methylene}amino)benzoic acid, but the obtained product was the tautomeric form 3-({(Z)-[4-(diethylamino)-6-oxocyclohexa-2,4-dien-1-ylidene]methyl} amino)benzoic acid. Analysis for C18H20N2O3: Found (Calculated): C: 69.12 (69.21); H: 6.38 (6.45); N: 8.90% (8.97%).

Refinement top

The hydrogen atoms were located in the difference Fourier maps and refined as 'riding model'. Isotropic displacement parameters for hydrogen atoms were set at 1.2 (1.3 for methyl group) times the Ueq values of appropriate carrier atoms.

Structure description top

Schiff bases are used as substrates in the preparation of number of industrial and biologically active compounds via ring closure, cycloaddition and replacement reactions. Some Schiff base derivatives were reported to possess antimicrobial, anti-inflammatory and central nervous system activities. Moreover, Schiff bases are also known to have biological activities such as antimicrobial, antifungal, antitumor and as herbicides (e.g. Hodnett et al., 1970, Singh & Dash, 1988, Varma et al., (1986)). In the course of our studies of Schiff bases (e.g. Büyükgüngör et al., 2007; Odabaşoğlu et al., 2007; Yathirajan et al., 2007), the title compound, C18H20N2O3 was synthesized and its crystal structure is reported.

The title compound crystallizes as the keto-tautomer (Fig. 1), unlike the majority of the similar compounds. In the CSD (Allen, 2002) the hydroxy tautomers were found in 218 compounds while the keto ones only in 17 compounds (Version Nov. 2006, updates up to August 2007; only organic compounds). In this case the presence of the certain tautomer is proven by the succesful location and refinement of the hydrogen atom bonded to N7 nitrogen atom (Fig. 2a). Short and relatively linear intramolecular N—H···O hydrogen bond forms an almost planar (maximum deviation 0.017 (1) Å) six-membered ring. The same O10 oxygen atom which accepts the intramolecular hydrogen bond is involved in a very short (O···O distance is 2.467 (1) Å) intermolecular O—H···O hydrogen bond. As a result the C10—O10 bond of 1.310 (2)Å is significantly longer than a typical C?O double bond. CSD search results show that such elongation is typical for similar compounds, the mean C—O distance being 1.348 (17)Å for hydroxy tautomers, but it may also be as large as 1.299 (17)Å also for the keto-tautomers. Together with the observation of bond lengths around N7 atom this implies some degree of zwitterionic character of the molecule, with partial positive charge at N7—H7 group and negative at O10 atom. These perturbations disturb also the benzene ring. The ring A (C1 - C6) is closer to planarity than the ring B (C9 - C14). Maximum deviations from the least-squares planes are 0.0103 (11)Å for ring A and 0.0219 (12)Å for ring B. Also the bond lengths and angles are much more uniform within the ring A than in ring B.

The conformation of the molecule is described by the dihedral angles between benzene ring planes of 15.05 (7)°. As a result of the intramolecular hydrogen bond, the bridging C—C?N—C group is almost coplanar with the ring B (dihedral angle 2.35 (15)°). The COO group is significantly, by 21.73 (10)°, twisted with respect to its parent ring's plane. On the other end of the molecule, the C—N—C fragment is twisted by 17.0 (2)°, while the terminal C—C bonds are almost perpendicular to the CNC plane.

In the crystal structure the molecules are connected by strong intermolecular O—H···O hydrogen bonds into tapes along the y-direction. The O—H bond is significantly elongated, to 1.07 (3)Å due to the formation of the hydrogen bond (cf. Fig. 2 b). The tapes are connected by relatively strong inter-tape C—H···O hydrogen bonds into the layers (Fig. 3). Some additional C—H···O interactions (Table 1) also play a role in the building of the crystal structure.

For related structures, see: Büyükgüngör et al. (2007); Odabaşoğlu et al. (2007); Yathirajan et al. (2007). For biological applications, see Hodnett & Dunn (1970); Misra et al. (1981); Agarwal et al. (1983); Varma et al. (1986); Singh & Dash (1988).

For related literature, see: Allen (2002); Farrugia (1999).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1989); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoids representation (50% probability level) of the molecule with the atom labelling scheme, iIntramolecular hydrogen bond is depicted in dashed line.
[Figure 2] Fig. 2. Difference Fourier map slices calculated for a model without the hydrogen atoms involved in intramolecular hydrogen bonds: (a) H7, (b) H1A2 (Farrugia, 1999). Solid lines: positive values, dashed: negative; contour level: 0.04 e\%A^-3^.
[Figure 3] Fig. 3. The hydrogen-bonded layer as seen approximately along the c axis. Symmetry codes: (i) x,y,z (ii) x,-1 + y,z (iii) x,1 + y,z (iv) 5/2 - x,1/2 + y,5/2 - z (v) 5/2 - x,-1/2 + y,5/2 - z.
3-[(Z)-(4-Diethylamino-6-oxocyclohexa-2,4-dien-1- ylidene)methylamino]benzoic acid top
Crystal data top
C18H20N2O3F(000) = 664
Mr = 312.36Dx = 1.314 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5056 reflections
a = 9.0904 (13) Åθ = 3–24°
b = 9.8993 (9) ŵ = 0.09 mm1
c = 17.8208 (19) ÅT = 295 K
β = 100.068 (2)°Block, purple
V = 1579.0 (3) Å30.3 × 0.2 × 0.2 mm
Z = 4
Data collection top
KUMA KM4CCD four-circle
diffractometer
2464 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 28.0°, θmin = 2.4°
Detector resolution: 8.1929 pixels mm-1h = 1111
ω scank = 1212
12993 measured reflectionsl = 2321
3514 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.063P)2 + 0.4649P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.003
3514 reflectionsΔρmax = 0.25 e Å3
283 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (8)
Crystal data top
C18H20N2O3V = 1579.0 (3) Å3
Mr = 312.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0904 (13) ŵ = 0.09 mm1
b = 9.8993 (9) ÅT = 295 K
c = 17.8208 (19) Å0.3 × 0.2 × 0.2 mm
β = 100.068 (2)°
Data collection top
KUMA KM4CCD four-circle
diffractometer
2464 reflections with I > 2σ(I)
12993 measured reflectionsRint = 0.020
3514 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.25 e Å3
3514 reflectionsΔρmin = 0.17 e Å3
283 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.03151 (16)0.06899 (14)1.12525 (8)0.0326 (3)
C1A1.00497 (17)0.07858 (14)1.10991 (8)0.0353 (3)
O1A11.09883 (14)0.16365 (11)1.13287 (7)0.0535 (3)
O1A20.87299 (13)0.10532 (11)1.07198 (7)0.0509 (3)
H1A20.850 (3)0.211 (3)1.0667 (14)0.098 (8)*
C20.94453 (17)0.16506 (14)1.08096 (8)0.0330 (3)
H20.8663 (17)0.1354 (16)1.0377 (9)0.035 (4)*
C30.96859 (17)0.30147 (14)1.09759 (8)0.0347 (3)
C41.07595 (18)0.34076 (15)1.15860 (9)0.0401 (4)
H41.0907 (18)0.4382 (18)1.1696 (9)0.043 (4)*
C51.16149 (19)0.24488 (17)1.20297 (9)0.0432 (4)
H51.234 (2)0.2745 (18)1.2469 (10)0.050 (5)*
C61.14098 (17)0.10890 (16)1.18570 (9)0.0388 (3)
H61.2029 (19)0.0408 (19)1.2189 (10)0.048 (5)*
N70.88185 (16)0.40373 (12)1.05574 (7)0.0401 (3)
H70.887 (2)0.489 (2)1.0747 (11)0.065 (6)*
C80.78879 (19)0.39282 (15)0.99049 (9)0.0411 (4)
H80.7807 (19)0.3078 (19)0.9646 (10)0.051 (5)*
C90.70296 (19)0.49992 (14)0.95604 (9)0.0398 (4)
C100.71045 (18)0.63293 (14)0.99024 (8)0.0372 (3)
O100.80433 (15)0.65435 (10)1.05372 (6)0.0485 (3)
C110.62075 (19)0.73538 (15)0.95329 (9)0.0392 (4)
H110.6353 (18)0.8253 (17)0.9767 (9)0.041 (4)*
C120.53163 (17)0.71697 (15)0.88196 (9)0.0388 (4)
C130.5272 (2)0.58514 (17)0.84767 (10)0.0482 (4)
H130.466 (2)0.5678 (18)0.7969 (11)0.054 (5)*
C140.6085 (2)0.48282 (16)0.88451 (10)0.0482 (4)
H140.602 (2)0.392 (2)0.8607 (10)0.059 (5)*
N150.45111 (16)0.82021 (13)0.84509 (8)0.0449 (3)
C160.3912 (2)0.8173 (2)0.76261 (10)0.0495 (4)
H16A0.457 (2)0.7599 (18)0.7356 (10)0.054 (4)*
H16B0.394 (2)0.908 (2)0.7398 (10)0.054 (4)*
C170.2318 (2)0.7704 (3)0.74366 (13)0.0670 (6)
H17A0.228 (3)0.675 (3)0.7658 (15)0.098 (5)*
H17B0.200 (3)0.773 (3)0.6867 (16)0.098 (5)*
H17C0.161 (3)0.833 (3)0.7715 (15)0.098 (5)*
C180.4280 (2)0.94628 (17)0.88460 (10)0.0442 (4)
H18A0.4192 (18)0.9237 (17)0.9378 (10)0.045 (3)*
H18B0.334 (2)0.9777 (17)0.8604 (10)0.045 (3)*
C190.5467 (2)1.05246 (19)0.88190 (13)0.0552 (5)
H19A0.647 (2)1.021 (2)0.9066 (12)0.071 (4)*
H19B0.523 (2)1.138 (2)0.9093 (12)0.071 (4)*
H19C0.549 (2)1.075 (2)0.8283 (13)0.071 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0348 (8)0.0296 (7)0.0333 (7)0.0018 (6)0.0059 (6)0.0005 (6)
C1A0.0403 (8)0.0294 (7)0.0354 (7)0.0035 (6)0.0047 (6)0.0014 (6)
O1A10.0530 (7)0.0334 (6)0.0680 (8)0.0117 (5)0.0068 (6)0.0036 (5)
O1A20.0482 (7)0.0247 (6)0.0722 (8)0.0033 (5)0.0105 (6)0.0060 (5)
C20.0366 (8)0.0272 (7)0.0338 (7)0.0008 (6)0.0021 (6)0.0013 (5)
C30.0417 (8)0.0271 (7)0.0361 (7)0.0003 (6)0.0090 (6)0.0001 (6)
C40.0453 (9)0.0298 (8)0.0445 (9)0.0059 (6)0.0061 (7)0.0067 (6)
C50.0408 (9)0.0453 (9)0.0410 (9)0.0053 (7)0.0001 (7)0.0081 (7)
C60.0365 (8)0.0386 (8)0.0395 (8)0.0031 (7)0.0017 (6)0.0005 (6)
N70.0538 (8)0.0219 (6)0.0418 (7)0.0012 (6)0.0009 (6)0.0000 (5)
C80.0562 (10)0.0224 (7)0.0436 (8)0.0012 (7)0.0053 (7)0.0022 (6)
C90.0525 (9)0.0240 (7)0.0405 (8)0.0010 (7)0.0020 (7)0.0010 (6)
C100.0470 (9)0.0256 (7)0.0371 (8)0.0022 (6)0.0022 (7)0.0021 (6)
O100.0707 (8)0.0234 (5)0.0433 (6)0.0011 (5)0.0131 (6)0.0034 (4)
C110.0502 (9)0.0243 (7)0.0407 (8)0.0022 (6)0.0009 (7)0.0047 (6)
C120.0407 (9)0.0317 (7)0.0423 (8)0.0012 (6)0.0021 (7)0.0018 (6)
C130.0555 (11)0.0379 (9)0.0449 (9)0.0005 (8)0.0087 (8)0.0082 (7)
C140.0636 (11)0.0276 (8)0.0489 (9)0.0003 (7)0.0026 (8)0.0076 (7)
N150.0495 (8)0.0375 (7)0.0436 (7)0.0080 (6)0.0031 (6)0.0014 (6)
C160.0528 (11)0.0497 (10)0.0452 (9)0.0063 (8)0.0059 (8)0.0031 (8)
C170.0530 (12)0.0885 (17)0.0554 (12)0.0000 (11)0.0018 (10)0.0032 (11)
C180.0447 (10)0.0390 (8)0.0480 (9)0.0116 (7)0.0058 (8)0.0012 (7)
C190.0618 (12)0.0410 (10)0.0636 (12)0.0016 (9)0.0128 (10)0.0003 (9)
Geometric parameters (Å, º) top
C1—C61.390 (2)C10—C111.393 (2)
C1—C21.391 (2)C11—C121.395 (2)
C1—C1A1.498 (2)C11—H110.982 (17)
C1A—O1A11.2177 (18)C12—N151.3578 (19)
C1A—O1A21.2972 (19)C12—C131.439 (2)
O1A2—H1A21.07 (3)C13—C141.354 (2)
C2—C31.392 (2)C13—H130.991 (18)
C2—H20.998 (16)C14—H141.00 (2)
C3—C41.384 (2)N15—C181.466 (2)
C3—N71.4132 (19)N15—C161.476 (2)
C4—C51.384 (2)C16—C171.503 (3)
C4—H40.989 (17)C16—H16A1.004 (19)
C5—C61.386 (2)C16—H16B0.990 (19)
C5—H50.975 (18)C17—H17A1.03 (3)
C6—H61.002 (18)C17—H17B1.01 (3)
N7—C81.317 (2)C17—H17C1.07 (3)
N7—H70.91 (2)C18—C191.513 (3)
C8—C91.394 (2)C18—H18A0.990 (18)
C8—H80.956 (19)C18—H18B0.942 (18)
C9—C141.417 (2)C19—H19A0.99 (2)
C9—C101.448 (2)C19—H19B1.02 (2)
C10—O101.3097 (18)C19—H19C0.99 (2)
C6—C1—C2120.30 (13)N15—C12—C11121.38 (14)
C6—C1—C1A119.30 (13)N15—C12—C13120.31 (14)
C2—C1—C1A120.38 (13)C11—C12—C13118.31 (14)
O1A1—C1A—O1A2124.32 (14)C14—C13—C12120.03 (15)
O1A1—C1A—C1122.15 (14)C14—C13—H13119.0 (11)
O1A2—C1A—C1113.51 (13)C12—C13—H13120.9 (11)
C1A—O1A2—H1A2113.4 (13)C13—C14—C9122.70 (15)
C1—C2—C3119.34 (14)C13—C14—H14119.1 (11)
C1—C2—H2119.7 (9)C9—C14—H14118.2 (11)
C3—C2—H2121.0 (9)C12—N15—C18121.24 (13)
C4—C3—C2120.21 (14)C12—N15—C16122.74 (14)
C4—C3—N7117.72 (13)C18—N15—C16115.87 (13)
C2—C3—N7122.02 (14)N15—C16—C17113.77 (16)
C3—C4—C5120.31 (14)N15—C16—H16A110.0 (10)
C3—C4—H4118.8 (9)C17—C16—H16A110.3 (10)
C5—C4—H4120.8 (10)N15—C16—H16B111.0 (11)
C4—C5—C6119.92 (15)C17—C16—H16B106.3 (11)
C4—C5—H5119.0 (11)H16A—C16—H16B105.0 (15)
C6—C5—H5121.0 (11)C16—C17—H17A106.9 (15)
C5—C6—C1119.89 (15)C16—C17—H17B108.2 (15)
C5—C6—H6118.8 (10)H17A—C17—H17B113 (2)
C1—C6—H6121.2 (10)C16—C17—H17C110.5 (14)
C8—N7—C3128.32 (13)H17A—C17—H17C107 (2)
C8—N7—H7113.0 (13)H17B—C17—H17C112 (2)
C3—N7—H7118.7 (13)N15—C18—C19114.44 (15)
N7—C8—C9123.38 (14)N15—C18—H18A108.1 (10)
N7—C8—H8118.8 (11)C19—C18—H18A111.4 (10)
C9—C8—H8117.8 (11)N15—C18—H18B104.8 (11)
C8—C9—C14120.66 (14)C19—C18—H18B110.6 (11)
C8—C9—C10121.66 (14)H18A—C18—H18B107.1 (14)
C14—C9—C10117.65 (14)C18—C19—H19A111.7 (13)
O10—C10—C11121.99 (13)C18—C19—H19B110.3 (12)
O10—C10—C9119.11 (13)H19A—C19—H19B107.8 (18)
C11—C10—C9118.86 (14)C18—C19—H19C109.2 (13)
C10—C11—C12122.32 (13)H19A—C19—H19C109.2 (17)
C10—C11—H11115.8 (10)H19B—C19—H19C108.5 (17)
C12—C11—H11121.3 (9)
C6—C1—C1A—O1A121.1 (2)C14—C9—C10—O10175.35 (15)
C2—C1—C1A—O1A1160.84 (14)C8—C9—C10—C11179.40 (15)
C6—C1—C1A—O1A2157.39 (14)C14—C9—C10—C112.7 (2)
C2—C1—C1A—O1A220.7 (2)O10—C10—C11—C12173.43 (15)
C6—C1—C2—C30.2 (2)C9—C10—C11—C124.5 (2)
C1A—C1—C2—C3178.28 (13)C10—C11—C12—N15176.43 (16)
C1—C2—C3—C41.3 (2)C10—C11—C12—C133.3 (3)
C1—C2—C3—N7178.63 (13)N15—C12—C13—C14179.57 (17)
C2—C3—C4—C50.8 (2)C11—C12—C13—C140.1 (3)
N7—C3—C4—C5178.23 (14)C12—C13—C14—C91.6 (3)
C3—C4—C5—C60.8 (2)C8—C9—C14—C13177.61 (18)
C4—C5—C6—C11.9 (2)C10—C9—C14—C130.3 (3)
C2—C1—C6—C51.4 (2)C11—C12—N15—C1813.4 (2)
C1A—C1—C6—C5176.68 (14)C13—C12—N15—C18166.90 (16)
C4—C3—N7—C8170.02 (16)C11—C12—N15—C16162.02 (16)
C2—C3—N7—C812.6 (3)C13—C12—N15—C1617.7 (3)
C3—N7—C8—C9176.68 (15)C12—N15—C16—C1795.6 (2)
N7—C8—C9—C14177.89 (16)C18—N15—C16—C1788.7 (2)
N7—C8—C9—C100.0 (3)C12—N15—C18—C1989.8 (2)
C8—C9—C10—O102.6 (2)C16—N15—C18—C1986.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O100.91 (2)1.81 (2)2.578 (2)140 (2)
O1A2—H1A2···O10i1.07 (3)1.40 (3)2.467 (1)173 (2)
C5—H5···O1A1ii0.98 (2)2.48 (2)3.449 (2)174 (2)
C8—H8···O1A1iii0.96 (2)2.63 (2)3.436 (2)142 (1)
C11—H11···O1A2iv0.98 (2)2.60 (2)3.244 (2)124 (1)
C16—H16A···O1A1v1.00 (2)2.60 (2)3.570 (2)163 (1)
Symmetry codes: (i) x, y1, z; (ii) x+5/2, y+1/2, z+5/2; (iii) x+2, y, z+2; (iv) x, y+1, z; (v) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H20N2O3
Mr312.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)9.0904 (13), 9.8993 (9), 17.8208 (19)
β (°) 100.068 (2)
V3)1579.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerKUMA KM4CCD four-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12993, 3514, 2464
Rint0.020
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.124, 0.98
No. of reflections3514
No. of parameters283
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.17

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1989).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O100.91 (2)1.81 (2)2.578 (2)140 (2)
O1A2—H1A2···O10i1.07 (3)1.40 (3)2.467 (1)173 (2)
C5—H5···O1A1ii0.98 (2)2.48 (2)3.449 (2)174 (2)
C8—H8···O1A1iii0.96 (2)2.63 (2)3.436 (2)142 (1)
C11—H11···O1A2iv0.98 (2)2.60 (2)3.244 (2)124 (1)
C16—H16A···O1A1v1.00 (2)2.60 (2)3.570 (2)163 (1)
Symmetry codes: (i) x, y1, z; (ii) x+5/2, y+1/2, z+5/2; (iii) x+2, y, z+2; (iv) x, y+1, z; (v) x1/2, y+1/2, z1/2.
 

Acknowledgements

MTS thanks Sambhram Institute of Technology for the research facilities.

References

First citationAgarwal, R., Chaudhary, K. C. & Misra, V. S. (1983). Indian J. Chem. 22B, 308–310.  CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBüyükgüngör, O., Odabaşoğlu, M., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1996–o1998.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768–770.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMisra, V. S., Singh, S., Agarwal, R. & Chaudhary, K. C. (1981). J. Chem. Soc. Pak. 3, 209–213.  CAS Google Scholar
First citationOdabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1916–o1918.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrystAlisCCD (Version 1.171.29.9) and CrysAlis RED (Version 1.171.29.9). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1989). XP. Release 3.4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationVarma, R. S., Prakash, R., Khan, M. M. & Ali, A. (1986). Indian Drugs, 23, 345–349.  CAS Google Scholar
First citationYathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o936–o938.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds