metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­manganese(II)]-μ-pyridine-2,4,6-tri­carboxyl­ato-κ5N,O2,O6:O4,O4′]

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: xuhj@seu.edu.cn

(Received 7 November 2007; accepted 12 November 2007; online 6 December 2007)

In the title compound, [Mn(C8H2NO6)(H2O)2]n, each pyridine-2,4,6-tricarboxyl­ate (tpc) ligand bridges two MnII ions with the formation of polymeric chains located on a twofold rotation axis. Each MnII ion is coordinated by two O and one N atoms from one tpc ligand, two O atoms from another ligand and two water mol­ecules in a distorted penta­gonal–bipyramidal geometry. The Mn—N [2.243 (2) Å] and Mn—O [2.206 (2)–2.3123 (16) Å] bond lengths are normal. The coordinated water mol­ecules link neighbouring polymeric chains via O—H⋯O hydrogen bonds into a two-dimensional framework parallel to the bc plane.

Related literature

For the structures and potential applications of inorganic–organic hybrid coordination polymers, see: Evans & Lin (2002[Evans, O. R. & Lin, W. B. (2002). Acc. Chem. Res. 35, 511-522.]); Gao et al. (2005[Gao, H.-L., Ding, B., Yi, L., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2005). Inorg. Chem. Commun. 8, 151-154.]); Kil & Myunghyun (2000[Kil, S. M. & Myunghyun, P. S. (2000). J. Am. Chem. Soc. 122, 6834-6840.]). For the structures and properties of compounds containing pyridine-2,4,6-tricarboxylicate, see: Mehmet et al. (2006[Mehmet, V., Yigit, K. B., Brian, M. & John, C. M. (2006). Cryst. Growth & Des., 6, 63-69.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Sujit et al. (2004[Sujit, K. G., Savitha, G. & Parimal, K. B. (2004). Inorg. Chem. 43, 5495-5497.]); Syper et al. (1980[Syper, L., Kloc, K. & Mlochowski, J. (1980). Tetrahedron, 36, 123-129.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C8H2NO6)(H2O)2]

  • Mr = 299.08

  • Monoclinic, C 2/c

  • a = 11.406 (2) Å

  • b = 9.1463 (18) Å

  • c = 10.155 (2) Å

  • β = 107.76 (3)°

  • V = 1008.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 293 (2) K

  • 0.15 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.874, Tmax = 1.000 (expected range = 0.817–0.935)

  • 5072 measured reflections

  • 1155 independent reflections

  • 1109 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.089

  • S = 1.01

  • 1155 reflections

  • 84 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O3i 0.96 2.02 2.853 (2) 144
O1W—H1WC⋯O1ii 0.96 2.18 2.858 (2) 127
O1W—H1WC⋯O4iii 0.96 2.18 3.000 (2) 142
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) -x, -y, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1999[Sheldrick, G. M. (1999). SHELXTL/PC. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of inorganic-organic hybrid coordination polymers has been a field of rapid growth in supramolecular and material chemistry because of the formation of fascinating structures and their potential application such as ion-exchange, adsorption, catalytic, fluorescence and magnetic materials (Moulton et al., 2001; Evans et al., 2002; Kil et al., 2000). Pyridine-2, 4, 6-tricarboxylic acid (H3tpc) is a good building unit for constructing MOFs due to the existence of both N and O atoms in the ligands, which are used along with bridging ligand to bind metal centres, which can link 3 d, 4f, and 3 d-4f metal ions. However, there are only several of reports on the infinite one-dimensional, two-dimensional and three-dimensional coordination solids assembled by H3tpc (Gao et al., 2005); Mehmet et al., 2006); Sujit et al., 2004). In this paper, we report the crystal structure of the title compound prepared from MnCl2.4H2O and pyridine-2, 4, 6-tricarboxylic acid.

In (I) (Fig. 1), each metal ion is heptacoordinated and exhibits a distorted pentagonal bipyramidal geometry, in which the tpc3- ligand is bonded equatorially through the pyridine-2, 4, 6-tricarboxylic acid (NO4 donor set), while two water molecules occupy the axial sites. Each carboxylic acid group at the 2, 6-position of the tpcH3 ligand is only bound to one metal ion and the carboxylic groups at the 4-position adopt chelate mode. The coordinated water molecules link two neighboring one-dimensional chains by the intermolecular hydrogen bonds to form two-dimensional framework (Fig.2).

Related literature top

For the structures and potential applications of inorganic–organic hybrid coordination polymers, see: Evans & Lin (2002); Gao et al. (2005); Kil & Myunghyun (2000). For the structures and properties of compounds containing pyridine-2,4,6-tricarboxylic acids, see: Mehmet et al. (2006); Moulton & Zaworotko (2001); Sujit et al. (2004); Syper et al. (1980).

Experimental top

The ligand, tpcH3, was synthesized according to the reported literature (Syper et al., 1980). A mixture of tpcH3 (25 mg, 0.12 mmol), MnCl2.4H2O (45 mg, 0.22 mmol), five drops of EtOH, a few drops of water and two drops of hydrochloric acidsealed in a glass tube was kept at 160 °C. Yellow crystals suitable for X-ray analysis were obtained after 4 days.

Refinement top

All H atoms were geometrically positioned (O—H 0.96 Å, C—H 0.93 Å) and were allowed to ride on the parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Structure description top

The construction of inorganic-organic hybrid coordination polymers has been a field of rapid growth in supramolecular and material chemistry because of the formation of fascinating structures and their potential application such as ion-exchange, adsorption, catalytic, fluorescence and magnetic materials (Moulton et al., 2001; Evans et al., 2002; Kil et al., 2000). Pyridine-2, 4, 6-tricarboxylic acid (H3tpc) is a good building unit for constructing MOFs due to the existence of both N and O atoms in the ligands, which are used along with bridging ligand to bind metal centres, which can link 3 d, 4f, and 3 d-4f metal ions. However, there are only several of reports on the infinite one-dimensional, two-dimensional and three-dimensional coordination solids assembled by H3tpc (Gao et al., 2005); Mehmet et al., 2006); Sujit et al., 2004). In this paper, we report the crystal structure of the title compound prepared from MnCl2.4H2O and pyridine-2, 4, 6-tricarboxylic acid.

In (I) (Fig. 1), each metal ion is heptacoordinated and exhibits a distorted pentagonal bipyramidal geometry, in which the tpc3- ligand is bonded equatorially through the pyridine-2, 4, 6-tricarboxylic acid (NO4 donor set), while two water molecules occupy the axial sites. Each carboxylic acid group at the 2, 6-position of the tpcH3 ligand is only bound to one metal ion and the carboxylic groups at the 4-position adopt chelate mode. The coordinated water molecules link two neighboring one-dimensional chains by the intermolecular hydrogen bonds to form two-dimensional framework (Fig.2).

For the structures and potential applications of inorganic–organic hybrid coordination polymers, see: Evans & Lin (2002); Gao et al. (2005); Kil & Myunghyun (2000). For the structures and properties of compounds containing pyridine-2,4,6-tricarboxylic acids, see: Mehmet et al. (2006); Moulton & Zaworotko (2001); Sujit et al. (2004); Syper et al. (1980).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 1999).

Figures top
[Figure 1] Fig. 1. A portion of polymeric chain in (I), showing the atomic numbering scheme and displacement ellipoids drawn at the 30% probability level [symmetry codes: (A) -x, y, 1/2 - z; (B) x, y + 1, z; (C) -x, y + 1, 1/2 - z].
[Figure 2] Fig. 2. A portion of the crystal packing viewed along the a axis. Dashed lines denote O—H···O hydrogen bonds. H atoms were omitted for clarity.
catena-Poly[[diaquamanganese(II)]-µ-pyridine-2,4,6-tricarboxylato- κ5N,O2,O6:O4,O4'] top
Crystal data top
[Mn(C8H2NO6)(H2O)2]F(000) = 600
Mr = 299.08Dx = 1.969 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5380 reflections
a = 11.406 (2) Åθ = 3.2–27.5°
b = 9.1463 (18) ŵ = 1.35 mm1
c = 10.155 (2) ÅT = 293 K
β = 107.76 (3)°Block, colorless
V = 1008.9 (3) Å30.15 × 0.05 × 0.05 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
1155 independent reflections
Radiation source: fine-focus sealed tube1109 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.874, Tmax = 1.000l = 1313
5072 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0473P)2 + 2.4P]
where P = (Fo2 + 2Fc2)/3
1155 reflections(Δ/σ)max < 0.001
84 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Mn(C8H2NO6)(H2O)2]V = 1008.9 (3) Å3
Mr = 299.08Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.406 (2) ŵ = 1.35 mm1
b = 9.1463 (18) ÅT = 293 K
c = 10.155 (2) Å0.15 × 0.05 × 0.05 mm
β = 107.76 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1155 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1109 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 1.000Rint = 0.023
5072 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.01Δρmax = 0.45 e Å3
1155 reflectionsΔρmin = 0.49 e Å3
84 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.57159 (4)0.25000.02459 (17)
O10.06002 (17)0.34882 (16)0.31586 (18)0.0349 (4)
O1W0.14376 (17)0.58998 (18)0.04818 (18)0.0365 (4)
H1WB0.21760.54320.05320.055*
H1WC0.11600.54320.02150.055*
O30.20027 (14)0.15346 (16)0.04948 (16)0.0281 (3)
O40.13754 (15)0.34426 (15)0.14530 (17)0.0291 (4)
N10.00000.1832 (2)0.25000.0195 (5)
C10.00000.2830 (3)0.25000.0239 (6)
C20.00000.1182 (3)0.25000.0192 (5)
C30.07379 (18)0.0412 (2)0.1868 (2)0.0201 (4)
H3A0.12390.09010.14410.024*
C40.07040 (17)0.1104 (2)0.18927 (19)0.0187 (4)
C50.14191 (18)0.2120 (2)0.1247 (2)0.0206 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0370 (3)0.0115 (2)0.0320 (3)0.0000.0205 (2)0.000
O10.0548 (10)0.0144 (7)0.0455 (9)0.0032 (6)0.0302 (8)0.0026 (6)
O1W0.0445 (10)0.0296 (8)0.0384 (9)0.0064 (7)0.0174 (8)0.0046 (7)
O30.0368 (8)0.0203 (7)0.0383 (8)0.0020 (6)0.0280 (7)0.0003 (6)
O40.0412 (8)0.0149 (7)0.0425 (9)0.0005 (6)0.0293 (7)0.0012 (6)
N10.0271 (11)0.0121 (10)0.0246 (11)0.0000.0159 (9)0.000
C10.0344 (15)0.0116 (12)0.0267 (13)0.0000.0111 (11)0.000
C20.0263 (13)0.0115 (11)0.0219 (12)0.0000.0104 (10)0.000
C30.0262 (9)0.0144 (8)0.0245 (9)0.0017 (7)0.0151 (8)0.0001 (7)
C40.0237 (9)0.0148 (9)0.0217 (9)0.0001 (7)0.0130 (7)0.0009 (7)
C50.0243 (9)0.0169 (9)0.0247 (9)0.0001 (7)0.0138 (7)0.0029 (7)
Geometric parameters (Å, º) top
Mn1—O1Wi2.206 (2)O4—Mn1iv2.2807 (15)
Mn1—O1W2.206 (2)N1—C4i1.331 (2)
Mn1—N1ii2.243 (2)N1—C41.331 (2)
Mn1—O4iii2.2807 (15)N1—Mn1iv2.243 (2)
Mn1—O4ii2.2807 (15)C1—O1i1.248 (2)
Mn1—O12.3123 (16)C1—C21.507 (4)
Mn1—O1i2.3123 (16)C2—C3i1.395 (2)
O1—C11.248 (2)C2—C31.395 (2)
O1W—H1WB0.9600C3—C41.387 (3)
O1W—H1WC0.9600C3—H3A0.9300
O3—C51.274 (2)C4—C51.511 (2)
O4—C51.232 (2)
O1Wi—Mn1—O1W171.25 (9)Mn1—O1W—H1WB109.4
O1Wi—Mn1—N1ii85.63 (4)Mn1—O1W—H1WC109.4
O1W—Mn1—N1ii85.63 (4)H1WB—O1W—H1WC109.5
O1Wi—Mn1—O4iii87.89 (7)C5—O4—Mn1iv118.68 (12)
O1W—Mn1—O4iii89.16 (7)C4i—N1—C4119.9 (2)
N1ii—Mn1—O4iii70.28 (4)C4i—N1—Mn1iv120.03 (11)
O1Wi—Mn1—O4ii89.16 (7)C4—N1—Mn1iv120.03 (11)
O1W—Mn1—O4ii87.89 (7)O1—C1—O1i122.3 (3)
N1ii—Mn1—O4ii70.28 (4)O1—C1—C2118.85 (13)
O4iii—Mn1—O4ii140.55 (7)O1i—C1—C2118.85 (13)
O1Wi—Mn1—O190.01 (6)C3i—C2—C3119.3 (2)
O1W—Mn1—O197.71 (6)C3i—C2—C1120.33 (12)
N1ii—Mn1—O1151.78 (4)C3—C2—C1120.33 (12)
O4iii—Mn1—O181.72 (5)C4—C3—C2118.18 (17)
O4ii—Mn1—O1137.62 (5)C4—C3—H3A120.9
O1Wi—Mn1—O1i97.71 (6)C2—C3—H3A120.9
O1W—Mn1—O1i90.01 (6)N1—C4—C3122.19 (17)
N1ii—Mn1—O1i151.78 (4)N1—C4—C5112.04 (16)
O4iii—Mn1—O1i137.62 (5)C3—C4—C5125.77 (16)
O4ii—Mn1—O1i81.72 (5)O4—C5—O3124.75 (17)
O1—Mn1—O1i56.44 (8)O4—C5—C4118.36 (17)
C1—O1—Mn190.64 (14)O3—C5—C4116.86 (16)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z; (iii) x, y+1, z+1/2; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O3v0.962.022.853 (2)144
O1W—H1WC···O1vi0.962.182.858 (2)127
O1W—H1WC···O4vii0.962.183.000 (2)142
Symmetry codes: (v) x1/2, y+1/2, z; (vi) x, y+1, z1/2; (vii) x, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C8H2NO6)(H2O)2]
Mr299.08
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)11.406 (2), 9.1463 (18), 10.155 (2)
β (°) 107.76 (3)
V3)1008.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.15 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.874, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5072, 1155, 1109
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.089, 1.01
No. of reflections1155
No. of parameters84
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.49

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O3i0.962.022.853 (2)143.5
O1W—H1WC···O1ii0.962.182.858 (2)126.6
O1W—H1WC···O4iii0.962.183.000 (2)142.3
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y+1, z1/2; (iii) x, y, z.
 

Acknowledgements

HJX acknowledges a Start-up Grant from Southeast University, China.

References

First citationEvans, O. R. & Lin, W. B. (2002). Acc. Chem. Res. 35, 511–522.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGao, H.-L., Ding, B., Yi, L., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2005). Inorg. Chem. Commun. 8, 151–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationKil, S. M. & Myunghyun, P. S. (2000). J. Am. Chem. Soc. 122, 6834–6840.  Google Scholar
First citationMehmet, V., Yigit, K. B., Brian, M. & John, C. M. (2006). Cryst. Growth & Des., 6, 63–69.  Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1999). SHELXTL/PC. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSujit, K. G., Savitha, G. & Parimal, K. B. (2004). Inorg. Chem. 43, 5495–5497.  Web of Science PubMed Google Scholar
First citationSyper, L., Kloc, K. & Mlochowski, J. (1980). Tetrahedron, 36, 123–129.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds