organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl [hydr­­oxy(2-nitro­phen­yl)­meth­yl]phospho­nate

aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: cbbbccn@yahoo.com.cn

(Received 9 November 2007; accepted 26 November 2007; online 6 December 2007)

In the title mol­ecule, C11H16NO6P, the nitro group is twisted out of the mean plane of the benzene ring at 29.91 (3)°. The two ethyl groups are disordered between two orientations in the ratios 0.784 (7)/0.216 (7) and 0.733 (6)/0.267 (6). Inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For general background, see: Allen et al. (1978[Allen, J. G., Atherton, F. R., Hall, M. J., Hassall, C. H., Holmes, S. W., Lambert, R. W., Nisbet, L. J. & Ringrose, P. S. (1978). Nature (London), 272, 56-58.]); Hirschmann et al. (1994[Hirschmann, R., Smith, A. B., Taylor, C. M., Benkovic, P. A., Taylor, S., Yager, K. M., Sprengler, P. A. & Benkovic, S. J. (1994). Science, 265, 234-237.]).

[Scheme 1]

Experimental

Crystal data
  • C11H16NO6P

  • Mr = 289.22

  • Triclinic, [P \overline 1]

  • a = 7.5659 (13) Å

  • b = 8.3844 (15) Å

  • c = 12.557 (2) Å

  • α = 73.356 (3)°

  • β = 87.391 (3)°

  • γ = 64.432 (3)°

  • V = 685.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 291 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: none

  • 6168 measured reflections

  • 2800 independent reflections

  • 2381 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.157

  • S = 1.05

  • 2800 reflections

  • 193 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4i 0.82 (1) 1.857 (11) 2.671 (3) 174 (4)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Phosphonates, especially enantiomerically pure forms, are particularly important in connection with their remarkable biological activities. They have been used as enzyme inhibitors, antibacterial agents, anti-HIV agents, botryticides, and haptens for catalytic antibodies (Allen et al., 1978; Hirschmann et al., 1994). In this regard, the preparation of various optically active phosphonates with a diversity of structures is highly desirable for drug discovery and medicinal chemistry. The title compound (I) was obtained in the reaction of diphenylphosphite with an aromatic aldehyde in the presence of triethylamine.

In (I) (Fig. 1), the nitro group is twisted out of the mean plane of benzene ring at 29.91 (3)°. In the crystal (Fig. 2), intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2).

Related literature top

For general background, see: Allen et al. (1978); Hirschmann et al. (1994).

Experimental top

To a solution of 2-nitrobenzylaldehyde(1 mmol) in tetrahydrofuran(0.6 ml) was added diphenyl phosphite(1 mmol) at 0°C. After 15 minutes, triethylamine (0.1 ml) was added, and the reaction mixture was stirred for 2 h at 0°C. The resulting solution was washed with saturated NaHCO3 solution, extracted with dichloromethane and dried over MgSO4. The solution was filtered and purified by column chroatography on silica gel, using ehtyl acetate and petroleum as eluant to afford the title compound. Crystals of (I) suitable for X-ray data collection were obtained by slow evaporation of a chloroform and methanol solution in ratio of 100:1 at 293 K.

Refinement top

C-bound H atoms were initially located in difference maps and then constrained to their ideal positions (C–H = 0.93–0.98 Å), and refined as riding with Uiso(H)=1.2–1.5Ueq(C). The hydroxy atom H3A was located on difference map and refined with bond restraint O–H = 0.82 (1) Å, and with the Uiso(H) =1.5Ueq(O). Two ethyl groups were treated as disordered between two orientations with the refined occupancies of 0.786 (7)/0.214 (7) [C8—C9/C8'-C9'] and 0.727 (6)/0.273 (6) [C10—C11/C10'-C11'], respectively.

Structure description top

Phosphonates, especially enantiomerically pure forms, are particularly important in connection with their remarkable biological activities. They have been used as enzyme inhibitors, antibacterial agents, anti-HIV agents, botryticides, and haptens for catalytic antibodies (Allen et al., 1978; Hirschmann et al., 1994). In this regard, the preparation of various optically active phosphonates with a diversity of structures is highly desirable for drug discovery and medicinal chemistry. The title compound (I) was obtained in the reaction of diphenylphosphite with an aromatic aldehyde in the presence of triethylamine.

In (I) (Fig. 1), the nitro group is twisted out of the mean plane of benzene ring at 29.91 (3)°. In the crystal (Fig. 2), intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2).

For general background, see: Allen et al. (1978); Hirschmann et al. (1994).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius. The minor parts of disordered ethyl groups are omitted.
[Figure 2] Fig. 2. A portion of crystal packing showing the hydrogen-bonded (dashed lines) dimers in (I). H atoms not invloved in hydrogen bonds have been omitted for clarity.
Diethyl [hydroxy(2-nitrophenyl)methyl]phosphonate top
Crystal data top
C11H16NO6PZ = 2
Mr = 289.22F(000) = 304
Triclinic, P1Dx = 1.401 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5659 (13) ÅCell parameters from 3014 reflections
b = 8.3844 (15) Åθ = 2.8–28.0°
c = 12.557 (2) ŵ = 0.22 mm1
α = 73.356 (3)°T = 291 K
β = 87.391 (3)°Block, colourless
γ = 64.432 (3)°0.30 × 0.20 × 0.20 mm
V = 685.6 (2) Å3
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2381 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 26.5°, θmin = 1.7°
φ and ω scansh = 99
6168 measured reflectionsk = 1010
2800 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0955P)2 + 0.1438P]
where P = (Fo2 + 2Fc2)/3
2800 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C11H16NO6Pγ = 64.432 (3)°
Mr = 289.22V = 685.6 (2) Å3
Triclinic, P1Z = 2
a = 7.5659 (13) ÅMo Kα radiation
b = 8.3844 (15) ŵ = 0.22 mm1
c = 12.557 (2) ÅT = 291 K
α = 73.356 (3)°0.30 × 0.20 × 0.20 mm
β = 87.391 (3)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2381 reflections with I > 2σ(I)
6168 measured reflectionsRint = 0.020
2800 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.38 e Å3
2800 reflectionsΔρmin = 0.20 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.33556 (9)0.33802 (9)0.13960 (4)0.0648 (2)
C10.6327 (3)0.2053 (3)0.31083 (16)0.0521 (4)
C20.5564 (3)0.2596 (3)0.40485 (16)0.0548 (5)
C30.6201 (4)0.1419 (3)0.51225 (18)0.0691 (6)
H30.56400.18190.57280.083*
C40.7655 (4)0.0332 (3)0.5291 (2)0.0760 (6)
H40.81030.11250.60120.091*
C50.8460 (4)0.0924 (3)0.4386 (2)0.0782 (7)
H50.94550.21150.44950.094*
C60.7784 (3)0.0256 (3)0.3323 (2)0.0676 (5)
H60.83280.01710.27230.081*
N10.4048 (3)0.4469 (3)0.39566 (16)0.0673 (5)
C70.5651 (3)0.3239 (3)0.19053 (16)0.0574 (5)
H70.54810.44910.18390.069*
C80.0059 (6)0.5738 (7)0.1961 (3)0.0961 (13)0.784 (7)
H8A0.04690.60010.12080.115*0.784 (7)
H8B0.03540.67440.19870.115*0.784 (7)
C90.1387 (9)0.5585 (11)0.2750 (7)0.1132 (17)0.784 (7)
H9A0.17310.46370.26880.170*0.784 (7)
H9B0.25430.67460.25840.170*0.784 (7)
H9C0.08330.52710.34960.170*0.784 (7)
C100.2216 (8)0.0840 (9)0.1406 (5)0.1275 (19)0.733 (6)
H10A0.18650.03090.21290.153*0.733 (6)
H10B0.10720.19750.10390.153*0.733 (6)
C110.2598 (15)0.0343 (12)0.0801 (5)0.133 (2)0.733 (6)
H11A0.27440.02370.00460.199*0.733 (6)
H11B0.15310.06770.08110.199*0.733 (6)
H11C0.37920.14360.11150.199*0.733 (6)
C8'0.024 (2)0.471 (3)0.2069 (13)0.0961 (13)0.216 (7)
H8C0.06150.51260.12740.115*0.216 (7)
H8D0.06360.37350.24120.115*0.216 (7)
C9'0.112 (4)0.604 (4)0.247 (3)0.1132 (17)0.216 (7)
H9D0.16370.56240.31480.170*0.216 (7)
H9E0.21740.70160.19410.170*0.216 (7)
H9F0.02090.64820.26190.170*0.216 (7)
C10'0.340 (2)0.050 (2)0.0838 (15)0.1275 (19)0.267 (6)
H10C0.25550.14600.01940.153*0.267 (6)
H10D0.46230.02450.05790.153*0.267 (6)
C11'0.254 (5)0.055 (4)0.1332 (16)0.133 (2)0.267 (6)
H11D0.31950.12790.20640.199*0.267 (6)
H11E0.26130.13480.09010.199*0.267 (6)
H11F0.11880.02210.13940.199*0.267 (6)
O10.2928 (3)0.4664 (3)0.46827 (17)0.0988 (6)
O20.3979 (3)0.5760 (2)0.31795 (16)0.0925 (6)
O30.7091 (3)0.2488 (3)0.12000 (14)0.0823 (5)
H3A0.711 (6)0.338 (3)0.072 (2)0.123*
O40.2695 (3)0.4578 (3)0.02454 (13)0.0976 (7)
O50.1853 (2)0.3993 (2)0.22587 (12)0.0713 (4)
O60.3792 (3)0.1322 (3)0.15899 (16)0.0909 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0644 (4)0.0939 (5)0.0463 (3)0.0471 (3)0.0061 (2)0.0157 (3)
C10.0521 (10)0.0583 (10)0.0551 (10)0.0320 (8)0.0044 (8)0.0172 (8)
C20.0544 (11)0.0607 (11)0.0555 (10)0.0299 (9)0.0010 (8)0.0181 (8)
C30.0756 (15)0.0867 (15)0.0526 (11)0.0434 (13)0.0008 (10)0.0178 (10)
C40.0763 (15)0.0768 (14)0.0667 (14)0.0378 (13)0.0155 (11)0.0005 (11)
C50.0650 (14)0.0618 (12)0.0967 (18)0.0248 (11)0.0065 (13)0.0101 (12)
C60.0627 (13)0.0669 (12)0.0765 (14)0.0292 (10)0.0083 (10)0.0249 (11)
N10.0710 (12)0.0710 (11)0.0634 (11)0.0281 (9)0.0009 (9)0.0288 (9)
C70.0570 (11)0.0715 (12)0.0523 (10)0.0357 (10)0.0109 (8)0.0193 (9)
C80.069 (2)0.089 (3)0.091 (2)0.0168 (18)0.0057 (17)0.001 (2)
C90.070 (3)0.132 (5)0.152 (5)0.049 (2)0.049 (3)0.061 (4)
C100.105 (4)0.176 (5)0.175 (5)0.095 (4)0.042 (3)0.107 (4)
C110.192 (5)0.146 (4)0.114 (5)0.114 (4)0.006 (6)0.048 (5)
C8'0.069 (2)0.089 (3)0.091 (2)0.0168 (18)0.0057 (17)0.001 (2)
C9'0.070 (3)0.132 (5)0.152 (5)0.049 (2)0.049 (3)0.061 (4)
C10'0.105 (4)0.176 (5)0.175 (5)0.095 (4)0.042 (3)0.107 (4)
C11'0.192 (5)0.146 (4)0.114 (5)0.114 (4)0.006 (6)0.048 (5)
O10.0921 (14)0.1054 (14)0.0858 (12)0.0239 (11)0.0255 (11)0.0433 (11)
O20.1164 (16)0.0613 (9)0.0886 (12)0.0296 (10)0.0086 (11)0.0210 (9)
O30.0725 (11)0.1066 (14)0.0690 (10)0.0401 (10)0.0278 (8)0.0296 (9)
O40.0928 (13)0.1595 (19)0.0495 (9)0.0782 (13)0.0003 (8)0.0059 (10)
O50.0563 (9)0.0873 (10)0.0569 (8)0.0282 (8)0.0041 (7)0.0067 (7)
O60.0959 (14)0.1074 (14)0.1021 (14)0.0641 (12)0.0083 (10)0.0463 (11)
Geometric parameters (Å, º) top
P1—O41.4653 (18)C9—H9B0.9600
P1—O61.556 (2)C9—H9C0.9600
P1—O51.5598 (16)C10—C111.345 (9)
P1—C71.822 (2)C10—O61.461 (5)
C1—C61.386 (3)C10—H10A0.9700
C1—C21.398 (3)C10—H10B0.9700
C1—C71.518 (3)C11—H11A0.9600
C2—C31.383 (3)C11—H11B0.9600
C2—N11.466 (3)C11—H11C0.9600
C3—C41.364 (4)C8'—C9'1.26 (3)
C3—H30.9300C8'—O51.435 (15)
C4—C51.381 (4)C8'—H8C0.9700
C4—H40.9300C8'—H8D0.9700
C5—C61.375 (3)C9'—H9D0.9600
C5—H50.9300C9'—H9E0.9600
C6—H60.9300C9'—H9F0.9600
N1—O11.213 (3)C10'—C11'1.31 (3)
N1—O21.215 (3)C10'—O61.426 (13)
C7—O31.417 (2)C10'—H10C0.9700
C7—H70.9800C10'—H10D0.9700
C8—O51.463 (4)C11'—H11D0.9600
C8—C91.465 (7)C11'—H11E0.9600
C8—H8A0.9700C11'—H11F0.9600
C8—H8B0.9700O3—H3A0.817 (10)
C9—H9A0.9600
O4—P1—O6115.38 (12)H8A—C8—H8B108.3
O4—P1—O5114.16 (11)C11—C10—O6116.7 (6)
O6—P1—O5103.70 (10)C11—C10—H10A108.1
O4—P1—C7112.67 (10)O6—C10—H10A108.1
O6—P1—C7103.71 (10)C11—C10—H10B108.1
O5—P1—C7106.13 (9)O6—C10—H10B108.1
C6—C1—C2115.53 (19)H10A—C10—H10B107.3
C6—C1—C7118.91 (18)C9'—C8'—O5111 (2)
C2—C1—C7125.53 (17)C9'—C8'—H8C109.4
C3—C2—C1122.48 (19)O5—C8'—H8C109.4
C3—C2—N1115.65 (18)C9'—C8'—H8D109.4
C1—C2—N1121.86 (17)O5—C8'—H8D109.4
C4—C3—C2119.8 (2)H8C—C8'—H8D108.0
C4—C3—H3120.1C8'—C9'—H9D109.5
C2—C3—H3120.1C8'—C9'—H9E109.5
C3—C4—C5119.7 (2)H9D—C9'—H9E109.5
C3—C4—H4120.2C8'—C9'—H9F109.5
C5—C4—H4120.2H9D—C9'—H9F109.5
C6—C5—C4119.7 (2)H9E—C9'—H9F109.5
C6—C5—H5120.1C11'—C10'—O6110.4 (15)
C4—C5—H5120.1C11'—C10'—H10C109.6
C5—C6—C1122.8 (2)O6—C10'—H10C109.6
C5—C6—H6118.6C11'—C10'—H10D109.6
C1—C6—H6118.6O6—C10'—H10D109.6
O1—N1—O2122.7 (2)H10C—C10'—H10D108.1
O1—N1—C2117.8 (2)C10'—C11'—H11D109.5
O2—N1—C2119.50 (19)C10'—C11'—H11E109.5
O3—C7—C1109.76 (17)H11D—C11'—H11E109.5
O3—C7—P1106.87 (14)C10'—C11'—H11F109.5
C1—C7—P1113.49 (13)H11D—C11'—H11F109.5
O3—C7—H7108.9H11E—C11'—H11F109.5
C1—C7—H7108.9C7—O3—H3A106 (3)
P1—C7—H7108.9C8'—O5—P1125.3 (7)
O5—C8—C9109.0 (4)C8—O5—P1122.36 (19)
O5—C8—H8A109.9C10'—O6—C1045.2 (6)
C9—C8—H8A109.9C10'—O6—P1128.7 (8)
O5—C8—H8B109.9C10—O6—P1120.3 (3)
C9—C8—H8B109.9
C6—C1—C2—C30.6 (3)O6—P1—C7—C156.38 (16)
C7—C1—C2—C3177.55 (19)O5—P1—C7—C152.54 (17)
C6—C1—C2—N1178.54 (19)C9'—C8'—O5—C839.6 (17)
C7—C1—C2—N13.3 (3)C9'—C8'—O5—P1139.1 (16)
C1—C2—C3—C41.3 (3)C9—C8—O5—C8'49.1 (11)
N1—C2—C3—C4177.8 (2)C9—C8—O5—P1156.6 (4)
C2—C3—C4—C50.9 (4)O4—P1—O5—C8'39.3 (10)
C3—C4—C5—C60.2 (4)O6—P1—O5—C8'87.1 (10)
C4—C5—C6—C11.0 (4)C7—P1—O5—C8'164.0 (10)
C2—C1—C6—C50.6 (3)O4—P1—O5—C87.3 (3)
C7—C1—C6—C5178.8 (2)O6—P1—O5—C8133.7 (3)
C3—C2—N1—O129.3 (3)C7—P1—O5—C8117.4 (3)
C1—C2—N1—O1151.6 (2)C11'—C10'—O6—C1035.3 (18)
C3—C2—N1—O2149.4 (2)C11'—C10'—O6—P1131.9 (19)
C1—C2—N1—O229.8 (3)C11—C10—O6—C10'16.3 (12)
C6—C1—C7—O319.2 (2)C11—C10—O6—P1132.5 (6)
C2—C1—C7—O3162.69 (18)O4—P1—O6—C10'8.9 (8)
C6—C1—C7—P1100.3 (2)O5—P1—O6—C10'116.7 (8)
C2—C1—C7—P177.8 (2)C7—P1—O6—C10'132.6 (8)
O4—P1—C7—O360.70 (19)O4—P1—O6—C1063.6 (3)
O6—P1—C7—O364.75 (16)O5—P1—O6—C1062.0 (3)
O5—P1—C7—O3173.68 (13)C7—P1—O6—C10172.7 (3)
O4—P1—C7—C1178.17 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4i0.82 (1)1.86 (1)2.671 (3)174 (4)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H16NO6P
Mr289.22
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.5659 (13), 8.3844 (15), 12.557 (2)
α, β, γ (°)73.356 (3), 87.391 (3), 64.432 (3)
V3)685.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 4K CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6168, 2800, 2381
Rint0.020
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.157, 1.05
No. of reflections2800
No. of parameters193
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.20

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4i0.82 (1)1.857 (11)2.671 (3)174 (4)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

We thank Dr Xiang-Gao Meng for the X-ray data collection.

References

First citationAllen, J. G., Atherton, F. R., Hall, M. J., Hassall, C. H., Holmes, S. W., Lambert, R. W., Nisbet, L. J. & Ringrose, P. S. (1978). Nature (London), 272, 56–58.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2001). SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHirschmann, R., Smith, A. B., Taylor, C. M., Benkovic, P. A., Taylor, S., Yager, K. M., Sprengler, P. A. & Benkovic, S. J. (1994). Science, 265, 234–237.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds