metal-organic compounds
Bis(nonafluorobutanesulfonato-κO)dioxidotris(tetrahydrofuran-κO)uranium(VI)
aResearch Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-34, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
*Correspondence e-mail: yikeda@nr.titech.ac.jp
In the title compound, [U(C4F9O3S)O2(C4H8O)3], each UVI ion is located on a twofold rotation axis and is seven-coordinated by two terminal O atoms in the axial positions [U—O = 1.737 (5) Å] and five O atoms from two monodentate nonafluorobutanesulfonate (NfO−) and three tetrahydrofuran ligands in the equatorial plane [U—O = 2.388 (5)–2.411 (4) Å] in a pentagonal–bipyramidal geometry. The crystal packing exhibits weak intermolecular C—H⋯O hydrogen bonds involving the non-coordinated O atoms of the NfO− ligands.
Related literature
For related crystal structures, see: Alcock et al. (1993); Berthet et al. (2000); Charpin et al. (1987); Oldham et al. (2006); Rebizant et al. (1987); Thuéry et al. (1995); Wilkerson et al. (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 2006); cell PROCESS-AUTO; data reduction: CrystalStructure (MSC/Rigaku, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.
Supporting information
https://doi.org/10.1107/S1600536807065865/cv2371sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807065865/cv2371Isup2.hkl
All manipulations for the preparation of the title compound I were performed in a
filled by dry argon gas. Uranium(VI) trioxide (0.37 g) was mixed with nonafluorobutanesulfonic anhydride (Nf2O, 5.0 g) in a round-bottom flask. The mixture was refluxed under the inert atmosphere for 24 h, and then volatiles were evaporated under reduced pressure. The greenish-yellow residue was dissolved in tetrahydrofuran (THF, 2 ml), and gently warmed. After storing the THF solution at room temperature overnight, the yellow crystals of I deposited. This compound is highly hygroscopic. It should be kept in the THF mother liquor or paraffin oil, and immediately immersed in the cold nitrogen gas flow after mounting on the glass fiber.IR spectra of I and KNfO in KBr were measured by SHIMADZU FTIR-8400S equipped with a diffuse reflectance attachment.
All hydrogen atoms were geometrically positioned (C—H 0.99 Å) and refined as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C).
In preparation of uranyl(VI) compounds, a source of uranyl(VI) ion should contain only easily exchangeable ligands. In most cases, uranyl(VI) nitrate or chloride hydrates are convenient for this purpose. However, in syntheses of water-sensitive uranyl(VI) compounds, for instance
and use of anhydrous starting materials must be required. To solve this problem, Berthet and co-workers proposed a preparation method of an anhydrous uranyl(VI) trifluoromethanesulfonate (UO2(TfO)2) from a reaction of UO3 with trifluoromethanesulfonic anhydride (Berthet et al. 2000).We followed and modified Berthet's process for preparation of a novel anhydrous uranyl(VI) salt. We tried to synthesize uranyl(VI) nonafluorobutanesulfonate from UO3 and nonafluorobutanesulfonic anhydride. The obtained crystals from tetrahydrofuran (THF) solution were of the title compound, UO2(NfO)2(THF)3 (I, NfO- = n-C4F9SO3-). In this paper, we report its structure.
The molecular structure and packing diagram of I are shown in Figs. 1 and 2, respectively. The U atom in I is surrounded by seven O atoms; two O are at the axial positions, and the remaining five O from NfO- and THF are in the equatorial plane. As a result, the coordination geometry around U in I is pentagonal bipyramidal. Two NfO- anions in I are unidentate and non-adjacent. The ONfO–U–OTHF and OTHF–U–OTHF bond angles are almost equal to 72°. Furthermore, the ONfO···OTHF and OTHF···OTHF distances are quite similar to each other [mean: 2.82 (2) Å]. In addition, deviations of the coordinating O atoms in NfO- and THF from the mean equatorial plane are small (< 0.07 Å). These results indicate that the equatorial plane is close to the ideal pentagon. Bond length between U and the axial O is 1.737 (5) Å, which is comparable with most uranyl(VI) compounds. The U–ONfO bond length (2.388 (5) Å) is identical to those found in other uranyl(VI) complexes with alkylated and perfluoroalkylated sulfonates (Oldham et al. 2006, Berthet et al. 2000, Thuéry et al. 1995, Alcock et al. 1993). The average U–OTHF bond length is 2.41 (1) Å, which is similar to those in the reported uranyl–THF complexes (Oldham et al. 2006, Rebizant et al. 1987, Wilkerson et al. 1999, Charpin et al. 1987). Intermolecular short contacts are observed between C–H of THF and the non-coordinating O of NfO-. The C···O distances are 3.57 and 3.41 Å, and the C–H···O angles are 158.7 and 158.0° as summarized in Table 2. Therefore, these contacts can be regarded as weak intermolecular hydrogen bonds.
Figure 3 shows the IR spectrum of I (solid line) in KBr together with that of a potassium salt of NfO- (KNfO, dashed line). Characteristic asymmetric stretching of UO22+ was observed at 947 cm-1. Other spectral feature except for the band at 1610 cm-1 shows good agreement with that of KNfO, indicating the presence of NfO- in I. The peak at 1610 cm-1 may be due to the coordinated THF.
As described above, the anhydrous uranyl(VI) source must be needed in the preparation of the water-sensitive uranyl(VI) compounds. We believe that compound I provides an alternative selection of the anhydrous uranyl(VI) salts as the starting material.
The related crystal structures were published - UO2(TfO)2(THF)3 (Oldham et al. 2006), UO2(TfO)2(pyridine)3 (Berthet et al. 2000), UO2(TfO)2(OH2)3.benzo-15-crown -5 (Thuéry et al. 1995), UO2(RSO3)2(OH2) (R = Et, p-tolyl, mesityl; Alcock et al. 1993), UO2Br2(THF)3 (Rebizant et al. 1987), UO2Cl2(THF)3 (Wilkerson et al. 1999), and [UO2Cl(THF)2]2(µ-Cl)2 (Charpin et al. 1987).
For related crystal structures, see: Alcock et al. (1993); Berthet et al. (2000); Charpin et al. (1987); Oldham et al. (2006); Rebizant et al. (1987); Thuéry et al. (1995); Wilkerson et al. (1999).
Data collection: PROCESS-AUTO (Rigaku, 2006); cell
PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (MSC/Rigaku, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (MSC/Rigaku, 2006).[U(C4F9O3S)O2(C4H8O)3] | F(000) = 2072 |
Mr = 1084.54 | Dx = 2.135 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71075 Å |
Hall symbol: -C 2yc | Cell parameters from 17062 reflections |
a = 23.803 (12) Å | θ = 3.2–27.5° |
b = 11.197 (5) Å | µ = 5.08 mm−1 |
c = 12.919 (5) Å | T = 93 K |
β = 101.46 (4)° | Block, yellow |
V = 3375 (3) Å3 | 0.50 × 0.30 × 0.20 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 3839 independent reflections |
Radiation source: fine-focus sealed tube | 3492 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.079 |
Detector resolution: 10.00 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
ω scans | h = −30→30 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −13→14 |
Tmin = 0.185, Tmax = 0.430 | l = −16→16 |
12094 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0574P)2 + 32.741P] where P = (Fo2 + 2Fc2)/3 |
3839 reflections | (Δ/σ)max < 0.001 |
237 parameters | Δρmax = 1.64 e Å−3 |
0 restraints | Δρmin = −2.31 e Å−3 |
0 constraints |
[U(C4F9O3S)O2(C4H8O)3] | V = 3375 (3) Å3 |
Mr = 1084.54 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 23.803 (12) Å | µ = 5.08 mm−1 |
b = 11.197 (5) Å | T = 93 K |
c = 12.919 (5) Å | 0.50 × 0.30 × 0.20 mm |
β = 101.46 (4)° |
Rigaku R-AXIS RAPID diffractometer | 3839 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 3492 reflections with I > 2σ(I) |
Tmin = 0.185, Tmax = 0.430 | Rint = 0.079 |
12094 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0574P)2 + 32.741P] where P = (Fo2 + 2Fc2)/3 |
3839 reflections | Δρmax = 1.64 e Å−3 |
237 parameters | Δρmin = −2.31 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
U1 | 0.0000 | 0.12170 (3) | 0.7500 | 0.02259 (12) | |
S1 | 0.09505 (8) | 0.22653 (15) | 0.58244 (13) | 0.0294 (3) | |
F1 | 0.1486 (2) | 0.3833 (4) | 0.7156 (4) | 0.0422 (11) | |
F2 | 0.20365 (19) | 0.2469 (4) | 0.6672 (4) | 0.0395 (10) | |
F3 | 0.13671 (19) | 0.4996 (4) | 0.5399 (4) | 0.0419 (10) | |
F4 | 0.1690 (2) | 0.3527 (4) | 0.4567 (3) | 0.0398 (10) | |
F5 | 0.2474 (2) | 0.4856 (4) | 0.6850 (4) | 0.0464 (11) | |
F6 | 0.2730 (2) | 0.3752 (3) | 0.5638 (4) | 0.0390 (10) | |
F7 | 0.2196 (3) | 0.6645 (5) | 0.5544 (7) | 0.080 (2) | |
F8 | 0.3022 (2) | 0.5971 (5) | 0.5425 (5) | 0.0563 (14) | |
F9 | 0.2304 (3) | 0.5585 (7) | 0.4199 (5) | 0.081 (2) | |
O1 | −0.0415 (2) | 0.1211 (4) | 0.6231 (4) | 0.0282 (10) | |
O2 | 0.0820 (2) | 0.1855 (4) | 0.6840 (4) | 0.0335 (11) | |
O3 | 0.1141 (3) | 0.1326 (4) | 0.5233 (5) | 0.0417 (13) | |
O4 | 0.0536 (2) | 0.3089 (5) | 0.5265 (4) | 0.0358 (11) | |
O5 | 0.0000 | 0.3367 (5) | 0.7500 | 0.0299 (14) | |
O6 | 0.0527 (2) | −0.0532 (4) | 0.7166 (3) | 0.0241 (9) | |
C1 | 0.1587 (3) | 0.3193 (6) | 0.6320 (5) | 0.0279 (13) | |
C2 | 0.1734 (3) | 0.4081 (6) | 0.5496 (6) | 0.0318 (14) | |
C3 | 0.2351 (3) | 0.4587 (6) | 0.5806 (6) | 0.0312 (14) | |
C4 | 0.2464 (4) | 0.5727 (8) | 0.5205 (8) | 0.051 (2) | |
C5 | −0.0373 (4) | 0.4110 (6) | 0.6716 (5) | 0.0350 (16) | |
H5A | −0.0775 | 0.3835 | 0.6607 | 0.042* | |
H5B | −0.0246 | 0.4094 | 0.6031 | 0.042* | |
C6 | −0.0309 (4) | 0.5352 (7) | 0.7194 (7) | 0.050 (2) | |
H6A | −0.0582 | 0.5480 | 0.7670 | 0.060* | |
H6B | −0.0370 | 0.5974 | 0.6639 | 0.060* | |
C7 | 0.1132 (3) | −0.0750 (6) | 0.7639 (5) | 0.0309 (14) | |
H7A | 0.1196 | −0.0711 | 0.8419 | 0.037* | |
H7B | 0.1382 | −0.0158 | 0.7386 | 0.037* | |
C8 | 0.1247 (4) | −0.1995 (6) | 0.7276 (6) | 0.0368 (16) | |
H8A | 0.1657 | −0.2103 | 0.7255 | 0.044* | |
H8B | 0.1130 | −0.2609 | 0.7743 | 0.044* | |
C9 | 0.0880 (3) | −0.2052 (6) | 0.6184 (6) | 0.0361 (16) | |
H9A | 0.0789 | −0.2888 | 0.5966 | 0.043* | |
H9B | 0.1073 | −0.1663 | 0.5661 | 0.043* | |
C10 | 0.0343 (3) | −0.1371 (6) | 0.6301 (5) | 0.0303 (14) | |
H10A | 0.0179 | −0.0940 | 0.5641 | 0.036* | |
H10B | 0.0049 | −0.1925 | 0.6470 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
U1 | 0.0297 (2) | 0.01924 (17) | 0.01910 (17) | 0.000 | 0.00560 (12) | 0.000 |
S1 | 0.0323 (9) | 0.0291 (8) | 0.0281 (7) | −0.0095 (7) | 0.0091 (6) | −0.0037 (6) |
F1 | 0.048 (3) | 0.048 (3) | 0.033 (2) | −0.019 (2) | 0.015 (2) | −0.0128 (18) |
F2 | 0.029 (2) | 0.038 (2) | 0.048 (2) | −0.0002 (18) | −0.0007 (18) | 0.0190 (19) |
F3 | 0.033 (2) | 0.030 (2) | 0.063 (3) | 0.0040 (17) | 0.010 (2) | 0.011 (2) |
F4 | 0.043 (3) | 0.049 (2) | 0.027 (2) | −0.008 (2) | 0.0061 (18) | 0.0002 (18) |
F5 | 0.044 (3) | 0.048 (3) | 0.046 (2) | −0.018 (2) | 0.006 (2) | −0.009 (2) |
F6 | 0.031 (2) | 0.033 (2) | 0.054 (3) | 0.0030 (17) | 0.011 (2) | 0.0047 (18) |
F7 | 0.058 (4) | 0.032 (2) | 0.156 (7) | 0.003 (3) | 0.037 (4) | 0.025 (3) |
F8 | 0.040 (3) | 0.046 (3) | 0.082 (4) | −0.014 (2) | 0.010 (3) | 0.022 (3) |
F9 | 0.069 (4) | 0.107 (5) | 0.061 (4) | −0.032 (4) | −0.002 (3) | 0.050 (4) |
O1 | 0.031 (3) | 0.024 (2) | 0.033 (2) | 0.0025 (18) | 0.015 (2) | 0.0033 (17) |
O2 | 0.044 (3) | 0.031 (2) | 0.028 (2) | −0.002 (2) | 0.014 (2) | 0.0048 (19) |
O3 | 0.042 (3) | 0.039 (3) | 0.049 (3) | −0.014 (2) | 0.020 (3) | −0.017 (2) |
O4 | 0.033 (3) | 0.043 (3) | 0.030 (2) | −0.006 (2) | 0.003 (2) | 0.006 (2) |
O5 | 0.038 (4) | 0.016 (3) | 0.032 (3) | 0.000 | −0.003 (3) | 0.000 |
O6 | 0.025 (2) | 0.023 (2) | 0.026 (2) | −0.0016 (17) | 0.0078 (17) | −0.0046 (17) |
C1 | 0.031 (4) | 0.027 (3) | 0.026 (3) | −0.002 (3) | 0.008 (3) | −0.001 (2) |
C2 | 0.030 (4) | 0.027 (3) | 0.037 (4) | −0.003 (3) | 0.004 (3) | 0.002 (3) |
C3 | 0.025 (3) | 0.027 (3) | 0.040 (4) | −0.006 (3) | 0.002 (3) | 0.003 (3) |
C4 | 0.040 (5) | 0.035 (4) | 0.078 (6) | −0.006 (3) | 0.010 (4) | 0.022 (4) |
C5 | 0.049 (5) | 0.027 (3) | 0.029 (3) | 0.002 (3) | 0.008 (3) | 0.006 (3) |
C6 | 0.070 (6) | 0.026 (3) | 0.058 (5) | 0.005 (4) | 0.024 (5) | 0.002 (3) |
C7 | 0.025 (3) | 0.034 (3) | 0.033 (3) | 0.000 (3) | 0.004 (3) | −0.006 (3) |
C8 | 0.041 (4) | 0.026 (3) | 0.041 (4) | 0.013 (3) | 0.003 (3) | 0.004 (3) |
C9 | 0.042 (4) | 0.033 (3) | 0.034 (4) | 0.011 (3) | 0.008 (3) | −0.005 (3) |
C10 | 0.034 (4) | 0.030 (3) | 0.023 (3) | 0.002 (3) | −0.003 (3) | −0.005 (2) |
U1—O1 | 1.737 (5) | O6—C10 | 1.460 (7) |
U1—O1i | 1.737 (5) | O6—C7 | 1.468 (8) |
U1—O2 | 2.388 (5) | C1—C2 | 1.546 (9) |
U1—O2i | 2.388 (5) | C2—C3 | 1.550 (10) |
U1—O5 | 2.407 (6) | C3—C4 | 1.545 (10) |
U1—O6 | 2.411 (4) | C5—C6 | 1.517 (10) |
U1—O6i | 2.411 (4) | C5—H5A | 0.9900 |
S1—O3 | 1.426 (5) | C5—H5B | 0.9900 |
S1—O4 | 1.437 (6) | C6—C6i | 1.53 (2) |
S1—O2 | 1.480 (5) | C6—H6A | 0.9900 |
S1—C1 | 1.844 (7) | C6—H6B | 0.9900 |
F1—C1 | 1.358 (7) | C7—C8 | 1.512 (9) |
F2—C1 | 1.347 (8) | C7—H7A | 0.9900 |
F3—C2 | 1.337 (8) | C7—H7B | 0.9900 |
F4—C2 | 1.337 (8) | C8—C9 | 1.505 (10) |
F5—C3 | 1.355 (8) | C8—H8A | 0.9900 |
F6—C3 | 1.347 (8) | C8—H8B | 0.9900 |
F7—C4 | 1.329 (12) | C9—C10 | 1.522 (10) |
F8—C4 | 1.329 (10) | C9—H9A | 0.9900 |
F9—C4 | 1.289 (12) | C9—H9B | 0.9900 |
O5—C5i | 1.466 (8) | C10—H10A | 0.9900 |
O5—C5 | 1.466 (8) | C10—H10B | 0.9900 |
O1—U1—O1i | 179.6 (3) | F6—C3—C4 | 107.7 (6) |
O1—U1—O2 | 90.9 (2) | F5—C3—C4 | 107.0 (6) |
O1i—U1—O2 | 89.2 (2) | F6—C3—C2 | 109.5 (5) |
O1—U1—O2i | 89.2 (2) | F5—C3—C2 | 110.2 (6) |
O1i—U1—O2i | 90.9 (2) | C4—C3—C2 | 115.0 (6) |
O2—U1—O2i | 145.2 (2) | F9—C4—F8 | 108.9 (8) |
O1—U1—O5 | 90.22 (13) | F9—C4—F7 | 111.2 (8) |
O1i—U1—O5 | 90.22 (13) | F8—C4—F7 | 107.1 (8) |
O2—U1—O5 | 72.58 (12) | F9—C4—C3 | 111.1 (7) |
O2i—U1—O5 | 72.58 (12) | F8—C4—C3 | 109.2 (7) |
O1—U1—O6 | 92.67 (18) | F7—C4—C3 | 109.2 (7) |
O1i—U1—O6 | 86.97 (18) | O5—C5—C6 | 103.9 (6) |
O2—U1—O6 | 71.83 (15) | O5—C5—H5A | 111.0 |
O2i—U1—O6 | 142.95 (15) | C6—C5—H5A | 111.0 |
O5—U1—O6 | 144.33 (10) | O5—C5—H5B | 111.0 |
O1—U1—O6i | 86.97 (18) | C6—C5—H5B | 111.0 |
O1i—U1—O6i | 92.67 (18) | H5A—C5—H5B | 109.0 |
O2—U1—O6i | 142.95 (15) | C5—C6—C6i | 102.7 (6) |
O2i—U1—O6i | 71.83 (15) | C5—C6—H6A | 111.2 |
O5—U1—O6i | 144.34 (10) | C6i—C6—H6A | 111.2 |
O6—U1—O6i | 71.3 (2) | C5—C6—H6B | 111.2 |
O3—S1—O4 | 117.7 (4) | C6i—C6—H6B | 111.2 |
O3—S1—O2 | 113.0 (3) | H6A—C6—H6B | 109.1 |
O4—S1—O2 | 113.6 (3) | O6—C7—C8 | 104.3 (5) |
O3—S1—C1 | 105.9 (3) | O6—C7—H7A | 110.9 |
O4—S1—C1 | 104.4 (3) | C8—C7—H7A | 110.9 |
O2—S1—C1 | 99.8 (3) | O6—C7—H7B | 110.9 |
S1—O2—U1 | 137.7 (3) | C8—C7—H7B | 110.9 |
C5i—O5—C5 | 110.8 (7) | H7A—C7—H7B | 108.9 |
C5i—O5—U1 | 124.6 (4) | C9—C8—C7 | 102.9 (5) |
C5—O5—U1 | 124.6 (4) | C9—C8—H8A | 111.2 |
C10—O6—C7 | 109.4 (5) | C7—C8—H8A | 111.2 |
C10—O6—U1 | 124.9 (4) | C9—C8—H8B | 111.2 |
C7—O6—U1 | 124.3 (4) | C7—C8—H8B | 111.2 |
F2—C1—F1 | 107.7 (6) | H8A—C8—H8B | 109.1 |
F2—C1—C2 | 110.3 (6) | C8—C9—C10 | 103.2 (5) |
F1—C1—C2 | 108.0 (5) | C8—C9—H9A | 111.1 |
F2—C1—S1 | 108.7 (4) | C10—C9—H9A | 111.1 |
F1—C1—S1 | 108.0 (5) | C8—C9—H9B | 111.1 |
C2—C1—S1 | 114.0 (5) | C10—C9—H9B | 111.1 |
F3—C2—F4 | 109.8 (6) | H9A—C9—H9B | 109.1 |
F3—C2—C1 | 108.9 (6) | O6—C10—C9 | 105.5 (6) |
F4—C2—C1 | 109.4 (5) | O6—C10—H10A | 110.6 |
F3—C2—C3 | 108.2 (5) | C9—C10—H10A | 110.6 |
F4—C2—C3 | 107.7 (6) | O6—C10—H10B | 110.6 |
C1—C2—C3 | 112.9 (6) | C9—C10—H10B | 110.6 |
F6—C3—F5 | 107.2 (6) | H10A—C10—H10B | 108.8 |
O3—S1—O2—U1 | −94.6 (5) | O4—S1—C1—C2 | −44.4 (5) |
O4—S1—O2—U1 | 42.7 (5) | O2—S1—C1—C2 | −162.0 (5) |
C1—S1—O2—U1 | 153.3 (4) | F2—C1—C2—F3 | −161.5 (6) |
O1—U1—O2—S1 | 7.9 (4) | F1—C1—C2—F3 | −44.1 (8) |
O1i—U1—O2—S1 | −172.5 (4) | S1—C1—C2—F3 | 76.0 (6) |
O2i—U1—O2—S1 | −82.1 (4) | F2—C1—C2—F4 | 78.6 (7) |
O5—U1—O2—S1 | −82.1 (4) | F1—C1—C2—F4 | −164.0 (6) |
O6—U1—O2—S1 | 100.4 (4) | S1—C1—C2—F4 | −44.0 (7) |
O6i—U1—O2—S1 | 94.0 (5) | F2—C1—C2—C3 | −41.3 (8) |
O1—U1—O5—C5i | −167.8 (4) | F1—C1—C2—C3 | 76.1 (7) |
O1i—U1—O5—C5i | 12.2 (4) | S1—C1—C2—C3 | −163.8 (5) |
O2—U1—O5—C5i | −76.9 (4) | F3—C2—C3—F6 | −163.8 (6) |
O2i—U1—O5—C5i | 103.1 (4) | F4—C2—C3—F6 | −45.2 (7) |
O6—U1—O5—C5i | −72.9 (4) | C1—C2—C3—F6 | 75.6 (7) |
O6i—U1—O5—C5i | 107.1 (4) | F3—C2—C3—F5 | 78.6 (7) |
O1—U1—O5—C5 | 12.2 (4) | F4—C2—C3—F5 | −162.8 (5) |
O1i—U1—O5—C5 | −167.8 (4) | C1—C2—C3—F5 | −42.0 (8) |
O2—U1—O5—C5 | 103.1 (4) | F3—C2—C3—C4 | −42.4 (9) |
O2i—U1—O5—C5 | −76.9 (4) | F4—C2—C3—C4 | 76.2 (8) |
O6—U1—O5—C5 | 107.1 (4) | C1—C2—C3—C4 | −163.0 (7) |
O6i—U1—O5—C5 | −72.9 (4) | F6—C3—C4—F9 | 71.4 (9) |
O1—U1—O6—C10 | −17.9 (5) | F5—C3—C4—F9 | −173.7 (7) |
O1i—U1—O6—C10 | 161.8 (5) | C2—C3—C4—F9 | −51.0 (10) |
O2—U1—O6—C10 | −108.0 (5) | F6—C3—C4—F8 | −48.6 (10) |
O2i—U1—O6—C10 | 74.4 (5) | F5—C3—C4—F8 | 66.2 (9) |
O5—U1—O6—C10 | −112.0 (4) | C2—C3—C4—F8 | −171.0 (7) |
O6i—U1—O6—C10 | 68.0 (4) | F6—C3—C4—F7 | −165.5 (7) |
O1—U1—O6—C7 | 147.0 (5) | F5—C3—C4—F7 | −50.6 (9) |
O1i—U1—O6—C7 | −33.3 (5) | C2—C3—C4—F7 | 72.1 (9) |
O2—U1—O6—C7 | 56.9 (4) | C5i—O5—C5—C6 | −12.6 (4) |
O2i—U1—O6—C7 | −120.8 (5) | U1—O5—C5—C6 | 167.4 (4) |
O5—U1—O6—C7 | 52.9 (5) | O5—C5—C6—C6i | 32.4 (9) |
O6i—U1—O6—C7 | −127.1 (5) | C10—O6—C7—C8 | −18.3 (7) |
O3—S1—C1—F2 | −42.9 (5) | U1—O6—C7—C8 | 174.8 (4) |
O4—S1—C1—F2 | −167.8 (4) | O6—C7—C8—C9 | 34.8 (7) |
O2—S1—C1—F2 | 74.6 (5) | C7—C8—C9—C10 | −37.8 (8) |
O3—S1—C1—F1 | −159.5 (5) | C7—O6—C10—C9 | −5.4 (7) |
O4—S1—C1—F1 | 75.6 (5) | U1—O6—C10—C9 | 161.4 (4) |
O2—S1—C1—F1 | −41.9 (5) | C8—C9—C10—O6 | 27.0 (7) |
O3—S1—C1—C2 | 80.5 (6) |
Symmetry code: (i) −x, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6B···O4ii | 0.99 | 2.63 | 3.57 (1) | 159 |
C7—H7A···O3iii | 0.99 | 2.47 | 3.409 (9) | 158 |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) x, −y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [U(C4F9O3S)O2(C4H8O)3] |
Mr | 1084.54 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 93 |
a, b, c (Å) | 23.803 (12), 11.197 (5), 12.919 (5) |
β (°) | 101.46 (4) |
V (Å3) | 3375 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.08 |
Crystal size (mm) | 0.50 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.185, 0.430 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12094, 3839, 3492 |
Rint | 0.079 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.125, 1.13 |
No. of reflections | 3839 |
No. of parameters | 237 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0574P)2 + 32.741P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.64, −2.31 |
Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (MSC/Rigaku, 2006), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6B···O4i | 0.990 | 2.631 | 3.57 (1) | 158.7 |
C7—H7A···O3ii | 0.990 | 2.471 | 3.409 (9) | 158.0 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y, z+1/2. |
Footnotes
‡This author's last name has been changed from Mizuoka.
References
Alcock, N. W., Kemp, T. J. & Leciejewicz, J. (1993). Inorg. Chim. Acta, 203, 81–86. CSD CrossRef CAS Web of Science Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Berthet, J. C., Lance, M., Nierlich, M. & Ephritikhine, M. (2000). Eur. J. Inorg. Chem. pp. 1969–1973. CrossRef Google Scholar
Charpin, P., Lance, M., Nierlich, M., Vigner, D. & Baudin, C. (1987). Acta Cryst. C43, 1832–1833. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
MSC/Rigaku (2006). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Oldham, S. M., Scott, B. L. & Oldham, W. J. Jr (2006). Appl. Organomet. Chem. 20, 39–43. Web of Science CSD CrossRef CAS Google Scholar
Rebizant, J., Van den Bossche, G., Spirlet, M. R. & Goffart, J. (1987). Acta Cryst. C43, 1298–1300. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Thuéry, P., Nierlich, M., Keller, N., Lance, M. & Vigner, J.-D. (1995). Acta Cryst. C51, 1300–1302. CSD CrossRef Web of Science IUCr Journals Google Scholar
Wilkerson, M. P., Burns, C. J., Paine, R. T. & Scott, B. L. (1999). Inorg. Chem. 38, 4156–4158. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In preparation of uranyl(VI) compounds, a source of uranyl(VI) ion should contain only easily exchangeable ligands. In most cases, uranyl(VI) nitrate or chloride hydrates are convenient for this purpose. However, in syntheses of water-sensitive uranyl(VI) compounds, for instance alkoxides and amides, use of anhydrous starting materials must be required. To solve this problem, Berthet and co-workers proposed a preparation method of an anhydrous uranyl(VI) trifluoromethanesulfonate (UO2(TfO)2) from a reaction of UO3 with trifluoromethanesulfonic anhydride (Berthet et al. 2000).
We followed and modified Berthet's process for preparation of a novel anhydrous uranyl(VI) salt. We tried to synthesize uranyl(VI) nonafluorobutanesulfonate from UO3 and nonafluorobutanesulfonic anhydride. The obtained crystals from tetrahydrofuran (THF) solution were of the title compound, UO2(NfO)2(THF)3 (I, NfO- = n-C4F9SO3-). In this paper, we report its structure.
The molecular structure and packing diagram of I are shown in Figs. 1 and 2, respectively. The U atom in I is surrounded by seven O atoms; two O are at the axial positions, and the remaining five O from NfO- and THF are in the equatorial plane. As a result, the coordination geometry around U in I is pentagonal bipyramidal. Two NfO- anions in I are unidentate and non-adjacent. The ONfO–U–OTHF and OTHF–U–OTHF bond angles are almost equal to 72°. Furthermore, the ONfO···OTHF and OTHF···OTHF distances are quite similar to each other [mean: 2.82 (2) Å]. In addition, deviations of the coordinating O atoms in NfO- and THF from the mean equatorial plane are small (< 0.07 Å). These results indicate that the equatorial plane is close to the ideal pentagon. Bond length between U and the axial O is 1.737 (5) Å, which is comparable with most uranyl(VI) compounds. The U–ONfO bond length (2.388 (5) Å) is identical to those found in other uranyl(VI) complexes with alkylated and perfluoroalkylated sulfonates (Oldham et al. 2006, Berthet et al. 2000, Thuéry et al. 1995, Alcock et al. 1993). The average U–OTHF bond length is 2.41 (1) Å, which is similar to those in the reported uranyl–THF complexes (Oldham et al. 2006, Rebizant et al. 1987, Wilkerson et al. 1999, Charpin et al. 1987). Intermolecular short contacts are observed between C–H of THF and the non-coordinating O of NfO-. The C···O distances are 3.57 and 3.41 Å, and the C–H···O angles are 158.7 and 158.0° as summarized in Table 2. Therefore, these contacts can be regarded as weak intermolecular hydrogen bonds.
Figure 3 shows the IR spectrum of I (solid line) in KBr together with that of a potassium salt of NfO- (KNfO, dashed line). Characteristic asymmetric stretching of UO22+ was observed at 947 cm-1. Other spectral feature except for the band at 1610 cm-1 shows good agreement with that of KNfO, indicating the presence of NfO- in I. The peak at 1610 cm-1 may be due to the coordinated THF.
As described above, the anhydrous uranyl(VI) source must be needed in the preparation of the water-sensitive uranyl(VI) compounds. We believe that compound I provides an alternative selection of the anhydrous uranyl(VI) salts as the starting material.
The related crystal structures were published - UO2(TfO)2(THF)3 (Oldham et al. 2006), UO2(TfO)2(pyridine)3 (Berthet et al. 2000), UO2(TfO)2(OH2)3.benzo-15-crown -5 (Thuéry et al. 1995), UO2(RSO3)2(OH2) (R = Et, p-tolyl, mesityl; Alcock et al. 1993), UO2Br2(THF)3 (Rebizant et al. 1987), UO2Cl2(THF)3 (Wilkerson et al. 1999), and [UO2Cl(THF)2]2(µ-Cl)2 (Charpin et al. 1987).