metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(nona­fluoro­butane­sulfonato-κO)dioxidotris(tetra­hydro­furan-κO)uranium(VI)

aResearch Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-34, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
*Correspondence e-mail: yikeda@nr.titech.ac.jp

(Received 29 November 2007; accepted 6 December 2007; online 12 December 2007)

In the title compound, [U(C4F9O3S)O2(C4H8O)3], each UVI ion is located on a twofold rotation axis and is seven-coordinated by two terminal O atoms in the axial positions [U—O = 1.737 (5) Å] and five O atoms from two monodentate nona­fluoro­butane­sulfonate (NfO) and three tetra­hydro­furan ligands in the equatorial plane [U—O = 2.388 (5)–2.411 (4) Å] in a penta­gonal–bipyramidal geometry. The crystal packing exhibits weak inter­molecular C—H⋯O hydrogen bonds involving the non-coordinated O atoms of the NfO ligands.

Related literature

For related crystal structures, see: Alcock et al. (1993[Alcock, N. W., Kemp, T. J. & Leciejewicz, J. (1993). Inorg. Chim. Acta, 203, 81-86.]); Berthet et al. (2000[Berthet, J. C., Lance, M., Nierlich, M. & Ephritikhine, M. (2000). Eur. J. Inorg. Chem. pp. 1969-1973.]); Charpin et al. (1987[Charpin, P., Lance, M., Nierlich, M., Vigner, D. & Baudin, C. (1987). Acta Cryst. C43, 1832-1833.]); Oldham et al. (2006[Oldham, S. M., Scott, B. L. & Oldham, W. J. Jr (2006). Appl. Organomet. Chem. 20, 39-43.]); Rebizant et al. (1987[Rebizant, J., Van den Bossche, G., Spirlet, M. R. & Goffart, J. (1987). Acta Cryst. C43, 1298-1300.]); Thuéry et al. (1995[Thuéry, P., Nierlich, M., Keller, N., Lance, M. & Vigner, J.-D. (1995). Acta Cryst. C51, 1300-1302.]); Wilkerson et al. (1999[Wilkerson, M. P., Burns, C. J., Paine, R. T. & Scott, B. L. (1999). Inorg. Chem. 38, 4156-4158.]).

[Scheme 1]

Experimental

Crystal data
  • [U(C4F9O3S)O2(C4H8O)3]

  • Mr = 1084.54

  • Monoclinic, C 2/c

  • a = 23.803 (12) Å

  • b = 11.197 (5) Å

  • c = 12.919 (5) Å

  • β = 101.46 (4)°

  • V = 3375 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.08 mm−1

  • T = 93 (2) K

  • 0.50 × 0.30 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.185, Tmax = 0.430

  • 12094 measured reflections

  • 3839 independent reflections

  • 3492 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.125

  • S = 1.13

  • 3839 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 1.64 e Å−3

  • Δρmin = −2.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O4i 0.99 2.63 3.57 (1) 159
C7—H7A⋯O3ii 0.99 2.47 3.409 (9) 158
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (MSC/Rigaku, 2006[MSC/Rigaku (2006). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

In preparation of uranyl(VI) compounds, a source of uranyl(VI) ion should contain only easily exchangeable ligands. In most cases, uranyl(VI) nitrate or chloride hydrates are convenient for this purpose. However, in syntheses of water-sensitive uranyl(VI) compounds, for instance alkoxides and amides, use of anhydrous starting materials must be required. To solve this problem, Berthet and co-workers proposed a preparation method of an anhydrous uranyl(VI) trifluoromethanesulfonate (UO2(TfO)2) from a reaction of UO3 with trifluoromethanesulfonic anhydride (Berthet et al. 2000).

We followed and modified Berthet's process for preparation of a novel anhydrous uranyl(VI) salt. We tried to synthesize uranyl(VI) nonafluorobutanesulfonate from UO3 and nonafluorobutanesulfonic anhydride. The obtained crystals from tetrahydrofuran (THF) solution were of the title compound, UO2(NfO)2(THF)3 (I, NfO- = n-C4F9SO3-). In this paper, we report its structure.

The molecular structure and packing diagram of I are shown in Figs. 1 and 2, respectively. The U atom in I is surrounded by seven O atoms; two O are at the axial positions, and the remaining five O from NfO- and THF are in the equatorial plane. As a result, the coordination geometry around U in I is pentagonal bipyramidal. Two NfO- anions in I are unidentate and non-adjacent. The ONfO–U–OTHF and OTHF–U–OTHF bond angles are almost equal to 72°. Furthermore, the ONfO···OTHF and OTHF···OTHF distances are quite similar to each other [mean: 2.82 (2) Å]. In addition, deviations of the coordinating O atoms in NfO- and THF from the mean equatorial plane are small (< 0.07 Å). These results indicate that the equatorial plane is close to the ideal pentagon. Bond length between U and the axial O is 1.737 (5) Å, which is comparable with most uranyl(VI) compounds. The U–ONfO bond length (2.388 (5) Å) is identical to those found in other uranyl(VI) complexes with alkylated and perfluoroalkylated sulfonates (Oldham et al. 2006, Berthet et al. 2000, Thuéry et al. 1995, Alcock et al. 1993). The average U–OTHF bond length is 2.41 (1) Å, which is similar to those in the reported uranyl–THF complexes (Oldham et al. 2006, Rebizant et al. 1987, Wilkerson et al. 1999, Charpin et al. 1987). Intermolecular short contacts are observed between C–H of THF and the non-coordinating O of NfO-. The C···O distances are 3.57 and 3.41 Å, and the C–H···O angles are 158.7 and 158.0° as summarized in Table 2. Therefore, these contacts can be regarded as weak intermolecular hydrogen bonds.

Figure 3 shows the IR spectrum of I (solid line) in KBr together with that of a potassium salt of NfO- (KNfO, dashed line). Characteristic asymmetric stretching of UO22+ was observed at 947 cm-1. Other spectral feature except for the band at 1610 cm-1 shows good agreement with that of KNfO, indicating the presence of NfO- in I. The peak at 1610 cm-1 may be due to the coordinated THF.

As described above, the anhydrous uranyl(VI) source must be needed in the preparation of the water-sensitive uranyl(VI) compounds. We believe that compound I provides an alternative selection of the anhydrous uranyl(VI) salts as the starting material.

The related crystal structures were published - UO2(TfO)2(THF)3 (Oldham et al. 2006), UO2(TfO)2(pyridine)3 (Berthet et al. 2000), UO2(TfO)2(OH2)3.benzo-15-crown -5 (Thuéry et al. 1995), UO2(RSO3)2(OH2) (R = Et, p-tolyl, mesityl; Alcock et al. 1993), UO2Br2(THF)3 (Rebizant et al. 1987), UO2Cl2(THF)3 (Wilkerson et al. 1999), and [UO2Cl(THF)2]2(µ-Cl)2 (Charpin et al. 1987).

Related literature top

For related crystal structures, see: Alcock et al. (1993); Berthet et al. (2000); Charpin et al. (1987); Oldham et al. (2006); Rebizant et al. (1987); Thuéry et al. (1995); Wilkerson et al. (1999).

Experimental top

All manipulations for the preparation of the title compound I were performed in a glove box filled by dry argon gas. Uranium(VI) trioxide (0.37 g) was mixed with nonafluorobutanesulfonic anhydride (Nf2O, 5.0 g) in a round-bottom flask. The mixture was refluxed under the inert atmosphere for 24 h, and then volatiles were evaporated under reduced pressure. The greenish-yellow residue was dissolved in tetrahydrofuran (THF, 2 ml), and gently warmed. After storing the THF solution at room temperature overnight, the yellow crystals of I deposited. This compound is highly hygroscopic. It should be kept in the THF mother liquor or paraffin oil, and immediately immersed in the cold nitrogen gas flow after mounting on the glass fiber.

IR spectra of I and KNfO in KBr were measured by SHIMADZU FTIR-8400S equipped with a diffuse reflectance attachment.

Refinement top

All hydrogen atoms were geometrically positioned (C—H 0.99 Å) and refined as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

In preparation of uranyl(VI) compounds, a source of uranyl(VI) ion should contain only easily exchangeable ligands. In most cases, uranyl(VI) nitrate or chloride hydrates are convenient for this purpose. However, in syntheses of water-sensitive uranyl(VI) compounds, for instance alkoxides and amides, use of anhydrous starting materials must be required. To solve this problem, Berthet and co-workers proposed a preparation method of an anhydrous uranyl(VI) trifluoromethanesulfonate (UO2(TfO)2) from a reaction of UO3 with trifluoromethanesulfonic anhydride (Berthet et al. 2000).

We followed and modified Berthet's process for preparation of a novel anhydrous uranyl(VI) salt. We tried to synthesize uranyl(VI) nonafluorobutanesulfonate from UO3 and nonafluorobutanesulfonic anhydride. The obtained crystals from tetrahydrofuran (THF) solution were of the title compound, UO2(NfO)2(THF)3 (I, NfO- = n-C4F9SO3-). In this paper, we report its structure.

The molecular structure and packing diagram of I are shown in Figs. 1 and 2, respectively. The U atom in I is surrounded by seven O atoms; two O are at the axial positions, and the remaining five O from NfO- and THF are in the equatorial plane. As a result, the coordination geometry around U in I is pentagonal bipyramidal. Two NfO- anions in I are unidentate and non-adjacent. The ONfO–U–OTHF and OTHF–U–OTHF bond angles are almost equal to 72°. Furthermore, the ONfO···OTHF and OTHF···OTHF distances are quite similar to each other [mean: 2.82 (2) Å]. In addition, deviations of the coordinating O atoms in NfO- and THF from the mean equatorial plane are small (< 0.07 Å). These results indicate that the equatorial plane is close to the ideal pentagon. Bond length between U and the axial O is 1.737 (5) Å, which is comparable with most uranyl(VI) compounds. The U–ONfO bond length (2.388 (5) Å) is identical to those found in other uranyl(VI) complexes with alkylated and perfluoroalkylated sulfonates (Oldham et al. 2006, Berthet et al. 2000, Thuéry et al. 1995, Alcock et al. 1993). The average U–OTHF bond length is 2.41 (1) Å, which is similar to those in the reported uranyl–THF complexes (Oldham et al. 2006, Rebizant et al. 1987, Wilkerson et al. 1999, Charpin et al. 1987). Intermolecular short contacts are observed between C–H of THF and the non-coordinating O of NfO-. The C···O distances are 3.57 and 3.41 Å, and the C–H···O angles are 158.7 and 158.0° as summarized in Table 2. Therefore, these contacts can be regarded as weak intermolecular hydrogen bonds.

Figure 3 shows the IR spectrum of I (solid line) in KBr together with that of a potassium salt of NfO- (KNfO, dashed line). Characteristic asymmetric stretching of UO22+ was observed at 947 cm-1. Other spectral feature except for the band at 1610 cm-1 shows good agreement with that of KNfO, indicating the presence of NfO- in I. The peak at 1610 cm-1 may be due to the coordinated THF.

As described above, the anhydrous uranyl(VI) source must be needed in the preparation of the water-sensitive uranyl(VI) compounds. We believe that compound I provides an alternative selection of the anhydrous uranyl(VI) salts as the starting material.

The related crystal structures were published - UO2(TfO)2(THF)3 (Oldham et al. 2006), UO2(TfO)2(pyridine)3 (Berthet et al. 2000), UO2(TfO)2(OH2)3.benzo-15-crown -5 (Thuéry et al. 1995), UO2(RSO3)2(OH2) (R = Et, p-tolyl, mesityl; Alcock et al. 1993), UO2Br2(THF)3 (Rebizant et al. 1987), UO2Cl2(THF)3 (Wilkerson et al. 1999), and [UO2Cl(THF)2]2(µ-Cl)2 (Charpin et al. 1987).

For related crystal structures, see: Alcock et al. (1993); Berthet et al. (2000); Charpin et al. (1987); Oldham et al. (2006); Rebizant et al. (1987); Thuéry et al. (1995); Wilkerson et al. (1999).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (MSC/Rigaku, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (MSC/Rigaku, 2006).

Figures top
[Figure 1] Fig. 1. Molecular structure of I showing the atomic numbering and 50% probability displacement ellipsoids [symmetry code: (A) -x, +y, -z + 3/2. Hydrogen atoms omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of I viewed along c axis. Hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. IR spectra of I (solid line) and KNfO (dashed line) in KBr.
Bis(nonafluorobutanesulfonato-κO)dioxidotris(tetrahydrofuran-κO)uranium(VI) top
Crystal data top
[U(C4F9O3S)O2(C4H8O)3]F(000) = 2072
Mr = 1084.54Dx = 2.135 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 17062 reflections
a = 23.803 (12) Åθ = 3.2–27.5°
b = 11.197 (5) ŵ = 5.08 mm1
c = 12.919 (5) ÅT = 93 K
β = 101.46 (4)°Block, yellow
V = 3375 (3) Å30.50 × 0.30 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3839 independent reflections
Radiation source: fine-focus sealed tube3492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 3030
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1314
Tmin = 0.185, Tmax = 0.430l = 1616
12094 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0574P)2 + 32.741P]
where P = (Fo2 + 2Fc2)/3
3839 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 1.64 e Å3
0 restraintsΔρmin = 2.31 e Å3
0 constraints
Crystal data top
[U(C4F9O3S)O2(C4H8O)3]V = 3375 (3) Å3
Mr = 1084.54Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.803 (12) ŵ = 5.08 mm1
b = 11.197 (5) ÅT = 93 K
c = 12.919 (5) Å0.50 × 0.30 × 0.20 mm
β = 101.46 (4)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3839 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3492 reflections with I > 2σ(I)
Tmin = 0.185, Tmax = 0.430Rint = 0.079
12094 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0574P)2 + 32.741P]
where P = (Fo2 + 2Fc2)/3
3839 reflectionsΔρmax = 1.64 e Å3
237 parametersΔρmin = 2.31 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.00000.12170 (3)0.75000.02259 (12)
S10.09505 (8)0.22653 (15)0.58244 (13)0.0294 (3)
F10.1486 (2)0.3833 (4)0.7156 (4)0.0422 (11)
F20.20365 (19)0.2469 (4)0.6672 (4)0.0395 (10)
F30.13671 (19)0.4996 (4)0.5399 (4)0.0419 (10)
F40.1690 (2)0.3527 (4)0.4567 (3)0.0398 (10)
F50.2474 (2)0.4856 (4)0.6850 (4)0.0464 (11)
F60.2730 (2)0.3752 (3)0.5638 (4)0.0390 (10)
F70.2196 (3)0.6645 (5)0.5544 (7)0.080 (2)
F80.3022 (2)0.5971 (5)0.5425 (5)0.0563 (14)
F90.2304 (3)0.5585 (7)0.4199 (5)0.081 (2)
O10.0415 (2)0.1211 (4)0.6231 (4)0.0282 (10)
O20.0820 (2)0.1855 (4)0.6840 (4)0.0335 (11)
O30.1141 (3)0.1326 (4)0.5233 (5)0.0417 (13)
O40.0536 (2)0.3089 (5)0.5265 (4)0.0358 (11)
O50.00000.3367 (5)0.75000.0299 (14)
O60.0527 (2)0.0532 (4)0.7166 (3)0.0241 (9)
C10.1587 (3)0.3193 (6)0.6320 (5)0.0279 (13)
C20.1734 (3)0.4081 (6)0.5496 (6)0.0318 (14)
C30.2351 (3)0.4587 (6)0.5806 (6)0.0312 (14)
C40.2464 (4)0.5727 (8)0.5205 (8)0.051 (2)
C50.0373 (4)0.4110 (6)0.6716 (5)0.0350 (16)
H5A0.07750.38350.66070.042*
H5B0.02460.40940.60310.042*
C60.0309 (4)0.5352 (7)0.7194 (7)0.050 (2)
H6A0.05820.54800.76700.060*
H6B0.03700.59740.66390.060*
C70.1132 (3)0.0750 (6)0.7639 (5)0.0309 (14)
H7A0.11960.07110.84190.037*
H7B0.13820.01580.73860.037*
C80.1247 (4)0.1995 (6)0.7276 (6)0.0368 (16)
H8A0.16570.21030.72550.044*
H8B0.11300.26090.77430.044*
C90.0880 (3)0.2052 (6)0.6184 (6)0.0361 (16)
H9A0.07890.28880.59660.043*
H9B0.10730.16630.56610.043*
C100.0343 (3)0.1371 (6)0.6301 (5)0.0303 (14)
H10A0.01790.09400.56410.036*
H10B0.00490.19250.64700.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.0297 (2)0.01924 (17)0.01910 (17)0.0000.00560 (12)0.000
S10.0323 (9)0.0291 (8)0.0281 (7)0.0095 (7)0.0091 (6)0.0037 (6)
F10.048 (3)0.048 (3)0.033 (2)0.019 (2)0.015 (2)0.0128 (18)
F20.029 (2)0.038 (2)0.048 (2)0.0002 (18)0.0007 (18)0.0190 (19)
F30.033 (2)0.030 (2)0.063 (3)0.0040 (17)0.010 (2)0.011 (2)
F40.043 (3)0.049 (2)0.027 (2)0.008 (2)0.0061 (18)0.0002 (18)
F50.044 (3)0.048 (3)0.046 (2)0.018 (2)0.006 (2)0.009 (2)
F60.031 (2)0.033 (2)0.054 (3)0.0030 (17)0.011 (2)0.0047 (18)
F70.058 (4)0.032 (2)0.156 (7)0.003 (3)0.037 (4)0.025 (3)
F80.040 (3)0.046 (3)0.082 (4)0.014 (2)0.010 (3)0.022 (3)
F90.069 (4)0.107 (5)0.061 (4)0.032 (4)0.002 (3)0.050 (4)
O10.031 (3)0.024 (2)0.033 (2)0.0025 (18)0.015 (2)0.0033 (17)
O20.044 (3)0.031 (2)0.028 (2)0.002 (2)0.014 (2)0.0048 (19)
O30.042 (3)0.039 (3)0.049 (3)0.014 (2)0.020 (3)0.017 (2)
O40.033 (3)0.043 (3)0.030 (2)0.006 (2)0.003 (2)0.006 (2)
O50.038 (4)0.016 (3)0.032 (3)0.0000.003 (3)0.000
O60.025 (2)0.023 (2)0.026 (2)0.0016 (17)0.0078 (17)0.0046 (17)
C10.031 (4)0.027 (3)0.026 (3)0.002 (3)0.008 (3)0.001 (2)
C20.030 (4)0.027 (3)0.037 (4)0.003 (3)0.004 (3)0.002 (3)
C30.025 (3)0.027 (3)0.040 (4)0.006 (3)0.002 (3)0.003 (3)
C40.040 (5)0.035 (4)0.078 (6)0.006 (3)0.010 (4)0.022 (4)
C50.049 (5)0.027 (3)0.029 (3)0.002 (3)0.008 (3)0.006 (3)
C60.070 (6)0.026 (3)0.058 (5)0.005 (4)0.024 (5)0.002 (3)
C70.025 (3)0.034 (3)0.033 (3)0.000 (3)0.004 (3)0.006 (3)
C80.041 (4)0.026 (3)0.041 (4)0.013 (3)0.003 (3)0.004 (3)
C90.042 (4)0.033 (3)0.034 (4)0.011 (3)0.008 (3)0.005 (3)
C100.034 (4)0.030 (3)0.023 (3)0.002 (3)0.003 (3)0.005 (2)
Geometric parameters (Å, º) top
U1—O11.737 (5)O6—C101.460 (7)
U1—O1i1.737 (5)O6—C71.468 (8)
U1—O22.388 (5)C1—C21.546 (9)
U1—O2i2.388 (5)C2—C31.550 (10)
U1—O52.407 (6)C3—C41.545 (10)
U1—O62.411 (4)C5—C61.517 (10)
U1—O6i2.411 (4)C5—H5A0.9900
S1—O31.426 (5)C5—H5B0.9900
S1—O41.437 (6)C6—C6i1.53 (2)
S1—O21.480 (5)C6—H6A0.9900
S1—C11.844 (7)C6—H6B0.9900
F1—C11.358 (7)C7—C81.512 (9)
F2—C11.347 (8)C7—H7A0.9900
F3—C21.337 (8)C7—H7B0.9900
F4—C21.337 (8)C8—C91.505 (10)
F5—C31.355 (8)C8—H8A0.9900
F6—C31.347 (8)C8—H8B0.9900
F7—C41.329 (12)C9—C101.522 (10)
F8—C41.329 (10)C9—H9A0.9900
F9—C41.289 (12)C9—H9B0.9900
O5—C5i1.466 (8)C10—H10A0.9900
O5—C51.466 (8)C10—H10B0.9900
O1—U1—O1i179.6 (3)F6—C3—C4107.7 (6)
O1—U1—O290.9 (2)F5—C3—C4107.0 (6)
O1i—U1—O289.2 (2)F6—C3—C2109.5 (5)
O1—U1—O2i89.2 (2)F5—C3—C2110.2 (6)
O1i—U1—O2i90.9 (2)C4—C3—C2115.0 (6)
O2—U1—O2i145.2 (2)F9—C4—F8108.9 (8)
O1—U1—O590.22 (13)F9—C4—F7111.2 (8)
O1i—U1—O590.22 (13)F8—C4—F7107.1 (8)
O2—U1—O572.58 (12)F9—C4—C3111.1 (7)
O2i—U1—O572.58 (12)F8—C4—C3109.2 (7)
O1—U1—O692.67 (18)F7—C4—C3109.2 (7)
O1i—U1—O686.97 (18)O5—C5—C6103.9 (6)
O2—U1—O671.83 (15)O5—C5—H5A111.0
O2i—U1—O6142.95 (15)C6—C5—H5A111.0
O5—U1—O6144.33 (10)O5—C5—H5B111.0
O1—U1—O6i86.97 (18)C6—C5—H5B111.0
O1i—U1—O6i92.67 (18)H5A—C5—H5B109.0
O2—U1—O6i142.95 (15)C5—C6—C6i102.7 (6)
O2i—U1—O6i71.83 (15)C5—C6—H6A111.2
O5—U1—O6i144.34 (10)C6i—C6—H6A111.2
O6—U1—O6i71.3 (2)C5—C6—H6B111.2
O3—S1—O4117.7 (4)C6i—C6—H6B111.2
O3—S1—O2113.0 (3)H6A—C6—H6B109.1
O4—S1—O2113.6 (3)O6—C7—C8104.3 (5)
O3—S1—C1105.9 (3)O6—C7—H7A110.9
O4—S1—C1104.4 (3)C8—C7—H7A110.9
O2—S1—C199.8 (3)O6—C7—H7B110.9
S1—O2—U1137.7 (3)C8—C7—H7B110.9
C5i—O5—C5110.8 (7)H7A—C7—H7B108.9
C5i—O5—U1124.6 (4)C9—C8—C7102.9 (5)
C5—O5—U1124.6 (4)C9—C8—H8A111.2
C10—O6—C7109.4 (5)C7—C8—H8A111.2
C10—O6—U1124.9 (4)C9—C8—H8B111.2
C7—O6—U1124.3 (4)C7—C8—H8B111.2
F2—C1—F1107.7 (6)H8A—C8—H8B109.1
F2—C1—C2110.3 (6)C8—C9—C10103.2 (5)
F1—C1—C2108.0 (5)C8—C9—H9A111.1
F2—C1—S1108.7 (4)C10—C9—H9A111.1
F1—C1—S1108.0 (5)C8—C9—H9B111.1
C2—C1—S1114.0 (5)C10—C9—H9B111.1
F3—C2—F4109.8 (6)H9A—C9—H9B109.1
F3—C2—C1108.9 (6)O6—C10—C9105.5 (6)
F4—C2—C1109.4 (5)O6—C10—H10A110.6
F3—C2—C3108.2 (5)C9—C10—H10A110.6
F4—C2—C3107.7 (6)O6—C10—H10B110.6
C1—C2—C3112.9 (6)C9—C10—H10B110.6
F6—C3—F5107.2 (6)H10A—C10—H10B108.8
O3—S1—O2—U194.6 (5)O4—S1—C1—C244.4 (5)
O4—S1—O2—U142.7 (5)O2—S1—C1—C2162.0 (5)
C1—S1—O2—U1153.3 (4)F2—C1—C2—F3161.5 (6)
O1—U1—O2—S17.9 (4)F1—C1—C2—F344.1 (8)
O1i—U1—O2—S1172.5 (4)S1—C1—C2—F376.0 (6)
O2i—U1—O2—S182.1 (4)F2—C1—C2—F478.6 (7)
O5—U1—O2—S182.1 (4)F1—C1—C2—F4164.0 (6)
O6—U1—O2—S1100.4 (4)S1—C1—C2—F444.0 (7)
O6i—U1—O2—S194.0 (5)F2—C1—C2—C341.3 (8)
O1—U1—O5—C5i167.8 (4)F1—C1—C2—C376.1 (7)
O1i—U1—O5—C5i12.2 (4)S1—C1—C2—C3163.8 (5)
O2—U1—O5—C5i76.9 (4)F3—C2—C3—F6163.8 (6)
O2i—U1—O5—C5i103.1 (4)F4—C2—C3—F645.2 (7)
O6—U1—O5—C5i72.9 (4)C1—C2—C3—F675.6 (7)
O6i—U1—O5—C5i107.1 (4)F3—C2—C3—F578.6 (7)
O1—U1—O5—C512.2 (4)F4—C2—C3—F5162.8 (5)
O1i—U1—O5—C5167.8 (4)C1—C2—C3—F542.0 (8)
O2—U1—O5—C5103.1 (4)F3—C2—C3—C442.4 (9)
O2i—U1—O5—C576.9 (4)F4—C2—C3—C476.2 (8)
O6—U1—O5—C5107.1 (4)C1—C2—C3—C4163.0 (7)
O6i—U1—O5—C572.9 (4)F6—C3—C4—F971.4 (9)
O1—U1—O6—C1017.9 (5)F5—C3—C4—F9173.7 (7)
O1i—U1—O6—C10161.8 (5)C2—C3—C4—F951.0 (10)
O2—U1—O6—C10108.0 (5)F6—C3—C4—F848.6 (10)
O2i—U1—O6—C1074.4 (5)F5—C3—C4—F866.2 (9)
O5—U1—O6—C10112.0 (4)C2—C3—C4—F8171.0 (7)
O6i—U1—O6—C1068.0 (4)F6—C3—C4—F7165.5 (7)
O1—U1—O6—C7147.0 (5)F5—C3—C4—F750.6 (9)
O1i—U1—O6—C733.3 (5)C2—C3—C4—F772.1 (9)
O2—U1—O6—C756.9 (4)C5i—O5—C5—C612.6 (4)
O2i—U1—O6—C7120.8 (5)U1—O5—C5—C6167.4 (4)
O5—U1—O6—C752.9 (5)O5—C5—C6—C6i32.4 (9)
O6i—U1—O6—C7127.1 (5)C10—O6—C7—C818.3 (7)
O3—S1—C1—F242.9 (5)U1—O6—C7—C8174.8 (4)
O4—S1—C1—F2167.8 (4)O6—C7—C8—C934.8 (7)
O2—S1—C1—F274.6 (5)C7—C8—C9—C1037.8 (8)
O3—S1—C1—F1159.5 (5)C7—O6—C10—C95.4 (7)
O4—S1—C1—F175.6 (5)U1—O6—C10—C9161.4 (4)
O2—S1—C1—F141.9 (5)C8—C9—C10—O627.0 (7)
O3—S1—C1—C280.5 (6)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O4ii0.992.633.57 (1)159
C7—H7A···O3iii0.992.473.409 (9)158
Symmetry codes: (ii) x, y+1, z+1; (iii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[U(C4F9O3S)O2(C4H8O)3]
Mr1084.54
Crystal system, space groupMonoclinic, C2/c
Temperature (K)93
a, b, c (Å)23.803 (12), 11.197 (5), 12.919 (5)
β (°) 101.46 (4)
V3)3375 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.08
Crystal size (mm)0.50 × 0.30 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.185, 0.430
No. of measured, independent and
observed [I > 2σ(I)] reflections
12094, 3839, 3492
Rint0.079
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.125, 1.13
No. of reflections3839
No. of parameters237
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0574P)2 + 32.741P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.64, 2.31

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (MSC/Rigaku, 2006), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···O4i0.9902.6313.57 (1)158.7
C7—H7A···O3ii0.9902.4713.409 (9)158.0
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1/2.
 

Footnotes

This author's last name has been changed from Mizuoka.

References

First citationAlcock, N. W., Kemp, T. J. & Leciejewicz, J. (1993). Inorg. Chim. Acta, 203, 81–86.  CSD CrossRef CAS Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBerthet, J. C., Lance, M., Nierlich, M. & Ephritikhine, M. (2000). Eur. J. Inorg. Chem. pp. 1969–1973.  CrossRef Google Scholar
First citationCharpin, P., Lance, M., Nierlich, M., Vigner, D. & Baudin, C. (1987). Acta Cryst. C43, 1832–1833.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMSC/Rigaku (2006). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOldham, S. M., Scott, B. L. & Oldham, W. J. Jr (2006). Appl. Organomet. Chem. 20, 39–43.  Web of Science CSD CrossRef CAS Google Scholar
First citationRebizant, J., Van den Bossche, G., Spirlet, M. R. & Goffart, J. (1987). Acta Cryst. C43, 1298–1300.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationThuéry, P., Nierlich, M., Keller, N., Lance, M. & Vigner, J.-D. (1995). Acta Cryst. C51, 1300–1302.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationWilkerson, M. P., Burns, C. J., Paine, R. T. & Scott, B. L. (1999). Inorg. Chem. 38, 4156–4158.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds