metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis­[μ-3-(3-pyridyl)acrylato-κ2O:O′]bis­{(1,10-phenanthroline-κ2N,N′)[3-(3-pyridyl)acrylato-κ2O,O′]europium(III)} pentahydrate

aCollege of Environmental and Chemical Engineering, Nanchang University of Aeronautics, Nanchang 330063, People's Republic of China, and bState Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China
*Correspondence e-mail: hlwen70@163.com

(Received 8 November 2007; accepted 9 December 2007; online 18 December 2007)

The europiumIII ion in the title compound, [Eu2(C8H6NO2)6(C12H8N2)2]·5H2O, is coordinated by seven carboxyl­ate O atoms and two N atoms from one phenanthroline mol­ecule. The carboxyl­ate groups of 3-(3-pyrid­yl)acrylate link pairs of europium(III) ions, forming centrosymmetric dinuclear units, which further assemble into a sheet parallel to the (001) plane through hydrogen-bonding inter­actions involving the uncoordinated water mol­ecules. One water molecule is disordered.

Related literature

For related literature, see: Gunning & Cahill (2005[Gunning, N. S. & Cahill, C. L. (2005). J. Chem. Soc. Dalton Trans. pp. 2788-2792.]); Liu et al. (2006[Liu, C.-B., Nie, X.-L., Ding, L., Xie, M.-Y. & Wen, H.-L. (2006). Acta Cryst. E62, m2319-m2320.]); Ye et al. (2005[Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545-565.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu2(C8H6NO2)6(C12H8N2)2]·5H2O

  • Mr = 1643.24

  • Monoclinic, C 2/c

  • a = 25.434 (2) Å

  • b = 12.320 (10) Å

  • c = 22.595 (19) Å

  • β = 100.330 (10)°

  • V = 6965.4 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.86 mm−1

  • T = 293 (2) K

  • 0.32 × 0.27 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.585, Tmax = 0.791

  • 25928 measured reflections

  • 6480 independent reflections

  • 5721 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.044

  • S = 1.03

  • 6480 reflections

  • 460 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O6 0.85 1.94 2.775 (3) 171
O1W—H12W⋯N2i 0.85 2.02 2.856 (3) 167
O2W—H21W⋯O1Wii 0.82 2.48 2.851 (4) 109
O3W—H31W⋯O2Wiii 0.82 2.20 2.655 (7) 116
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) x, y+1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT (Version 5.10) and SMART (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SAINT (Version 5.10) and SMART (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Göttingen, Germany.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.])and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, assembly of high-dimensional supramolecular coordination polymers have attracted considerable attention by exploiting coordination bonds, hydrogen bondings, and π-π stacks [Ye et al., 2005], not only because of their intriguing sructural diversity, but also for their potential application as smart opotoelectronic, magnetic, and porous materials. 1,10-phenanthroline has been widely used to construct stable supramolecular structures via C—H···O or C—H···N hydrogen bonds and π-π stackings, and 3-pyridylacrylic acid (HTPA) is a potential multidentate ligand, (Gunning et al., 2005; Liu et al., 2006). Here, we report the synthesis and structure of a europium supramolecular complex with 3-(3-pyridyl)acrylato and 1,10-phenanthroline, [Eu2 (C8H6NO2)6 (C12H8N2)]2.(H2O)5 (I).

Each EuIII centre is coordinated by seven carboxylate oxygen atoms and two nitrogen atoms from one phenanthroline molecule; the carboxylate groups of 3-(3-pyridyl)acrylato adopt bridging bidentate, chelating and bridging-chlelating tridentate modes respectively (Fig. 1). the dihedral angles between them are 59.229 (73), 84.724 (65) and 72.190 (56) ° respectively. The carboxylate groups of 3-(3-pyridyl)acrylato link pairs of europium(III) ions to form dinuclear units, which further build up a sheet parallel to the (0 0 1) plane through hydrogen bondings involving the uncoordinated water molecules (Table 1).

Related literature top

For related literature, see: Gunning & Cahill (2005); Liu et al. (2006); Ye et al. (2005).

Experimental top

A mixture of EuCl3.6H2O (0.1 mmol), 3-pyridylacrylic acid (0.1 mmol), 1,10-phenanthroline (0.1 mmol), H2O (10 ml), and 0.65 M NaOH aqueous solution (0.1 mmol) was sealed in a 25 ml Teflon-lined stainless reactor and heated at 393 K for 72 h under autogenous pressure, then cooled to room temperature, when a few colourless crystals were obtained. Analysis: found C 52.33, H 3.96, N 8.73%; C72H62Eu2N10O17 requires C 52.01, H 3.85, N 8.43%.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H= 0.82 (1)Å and H···H= 1.39 (2) Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement they were treated as riding on their parent O atoms.

Structure description top

Recently, assembly of high-dimensional supramolecular coordination polymers have attracted considerable attention by exploiting coordination bonds, hydrogen bondings, and π-π stacks [Ye et al., 2005], not only because of their intriguing sructural diversity, but also for their potential application as smart opotoelectronic, magnetic, and porous materials. 1,10-phenanthroline has been widely used to construct stable supramolecular structures via C—H···O or C—H···N hydrogen bonds and π-π stackings, and 3-pyridylacrylic acid (HTPA) is a potential multidentate ligand, (Gunning et al., 2005; Liu et al., 2006). Here, we report the synthesis and structure of a europium supramolecular complex with 3-(3-pyridyl)acrylato and 1,10-phenanthroline, [Eu2 (C8H6NO2)6 (C12H8N2)]2.(H2O)5 (I).

Each EuIII centre is coordinated by seven carboxylate oxygen atoms and two nitrogen atoms from one phenanthroline molecule; the carboxylate groups of 3-(3-pyridyl)acrylato adopt bridging bidentate, chelating and bridging-chlelating tridentate modes respectively (Fig. 1). the dihedral angles between them are 59.229 (73), 84.724 (65) and 72.190 (56) ° respectively. The carboxylate groups of 3-(3-pyridyl)acrylato link pairs of europium(III) ions to form dinuclear units, which further build up a sheet parallel to the (0 0 1) plane through hydrogen bondings involving the uncoordinated water molecules (Table 1).

For related literature, see: Gunning & Cahill (2005); Liu et al. (2006); Ye et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996)and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. : The molecular structure of complex (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radius. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]
tetrakis[µ-3-(3-pyridyl)acrylato-κ2O:O']bis{(1,10-phenanthroline- κ2N,N')[3-(3-pyridyl)acrylato-κ2O,O']europium(III)] pentahydrate top
Crystal data top
[Eu2(C8H6NO2)6(C12H8N2)2]·5H2OF(000) = 3304
Mr = 1643.24Dx = 1.567 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7048 reflections
a = 25.434 (2) Åθ = 2.7–28.1°
b = 12.32 (1) ŵ = 1.86 mm1
c = 22.595 (19) ÅT = 293 K
β = 100.33 (1)°Block, colorless
V = 6965.4 (10) Å30.32 × 0.27 × 0.13 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6480 independent reflections
Radiation source: fine-focus sealed tube5721 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3030
Tmin = 0.585, Tmax = 0.791k = 1414
25928 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.044H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0183P)2 + 8.1685P]
where P = (Fo2 + 2Fc2)/3
6480 reflections(Δ/σ)max = 0.006
460 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Eu2(C8H6NO2)6(C12H8N2)2]·5H2OV = 6965.4 (10) Å3
Mr = 1643.24Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.434 (2) ŵ = 1.86 mm1
b = 12.32 (1) ÅT = 293 K
c = 22.595 (19) Å0.32 × 0.27 × 0.13 mm
β = 100.33 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6480 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5721 reflections with I > 2σ(I)
Tmin = 0.585, Tmax = 0.791Rint = 0.022
25928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.044H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
6480 reflectionsΔρmin = 0.25 e Å3
460 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Eu10.528205 (4)0.611291 (8)0.562535 (4)0.02456 (4)
O50.58593 (7)0.57165 (15)0.66055 (7)0.0457 (4)
O60.62759 (6)0.62061 (13)0.58772 (7)0.0417 (4)
N30.82161 (9)0.3750 (2)0.77152 (12)0.0627 (7)
N40.55055 (7)0.81740 (14)0.56748 (8)0.0312 (4)
N50.48983 (7)0.72683 (15)0.64279 (8)0.0311 (4)
C170.62845 (9)0.58151 (19)0.63974 (11)0.0375 (6)
C180.68033 (10)0.5427 (2)0.67463 (12)0.0442 (6)
H180.71100.55150.65810.053*
C190.68467 (10)0.4966 (2)0.72778 (11)0.0430 (6)
H190.65380.49540.74440.052*
C200.73241 (10)0.4467 (2)0.76421 (11)0.0415 (6)
C210.73315 (12)0.4186 (3)0.82349 (13)0.0589 (8)
H210.70350.43190.84120.071*
C220.77820 (14)0.3705 (3)0.85628 (14)0.0729 (10)
H220.77960.35210.89640.087*
C230.82070 (13)0.3506 (3)0.82849 (15)0.0664 (9)
H230.85080.31790.85090.080*
C240.77778 (10)0.4222 (2)0.74091 (12)0.0500 (7)
H240.77770.44000.70090.060*
C250.58064 (10)0.8617 (2)0.53183 (11)0.0418 (6)
H250.59970.81600.51060.050*
C260.58516 (12)0.9740 (2)0.52446 (12)0.0531 (7)
H260.60671.00170.49880.064*
C270.55780 (12)1.0418 (2)0.55515 (13)0.0562 (7)
H270.55991.11650.55010.067*
C280.52609 (10)0.99896 (19)0.59464 (12)0.0450 (6)
C290.49626 (13)1.0650 (2)0.62910 (15)0.0629 (8)
H290.49731.14010.62550.076*
C300.46693 (12)1.0205 (2)0.66633 (15)0.0611 (8)
H300.44851.06550.68860.073*
C310.46320 (10)0.9054 (2)0.67276 (12)0.0435 (6)
C320.43288 (10)0.8555 (2)0.71132 (12)0.0505 (7)
H320.41340.89780.73380.061*
C330.43197 (10)0.7457 (2)0.71572 (11)0.0472 (6)
H330.41240.71200.74150.057*
C340.46102 (9)0.6843 (2)0.68077 (10)0.0395 (6)
H340.46020.60910.68420.047*
C350.49140 (8)0.83702 (18)0.63913 (10)0.0318 (5)
C360.52348 (9)0.88490 (17)0.59938 (10)0.0331 (5)
O10.44766 (7)0.35404 (12)0.53195 (7)0.0375 (4)
O20.47138 (6)0.48567 (12)0.60014 (7)0.0389 (4)
O30.44546 (6)0.55841 (12)0.47089 (7)0.0367 (4)
O40.44788 (6)0.71259 (12)0.51991 (7)0.0382 (4)
N10.40521 (14)0.2529 (3)0.83252 (12)0.0830 (9)
N20.21675 (9)0.92111 (19)0.44666 (11)0.0541 (6)
C10.44874 (9)0.39752 (17)0.58251 (10)0.0328 (5)
C20.42104 (10)0.33633 (19)0.62482 (10)0.0395 (5)
H20.39760.28140.60900.047*
C30.42757 (10)0.35487 (19)0.68318 (11)0.0390 (6)
H30.44950.41290.69790.047*
C40.40369 (11)0.2931 (2)0.72740 (11)0.0428 (6)
C50.36142 (13)0.2224 (2)0.71075 (14)0.0632 (8)
H50.34660.21180.67040.076*
C60.34154 (17)0.1676 (3)0.75602 (19)0.0866 (12)
H60.31290.11990.74660.104*
C70.36502 (18)0.1855 (3)0.81466 (18)0.0882 (12)
H70.35160.14730.84420.106*
C80.42271 (12)0.3066 (3)0.78849 (12)0.0584 (8)
H80.44980.35710.79970.070*
C90.42372 (9)0.64675 (17)0.48230 (9)0.0295 (5)
C100.36825 (9)0.67176 (18)0.45216 (10)0.0336 (5)
H100.35140.62660.42160.040*
C110.34228 (9)0.75715 (18)0.46803 (10)0.0346 (5)
H110.36070.79980.49890.041*
C120.28771 (9)0.79227 (19)0.44256 (11)0.0392 (6)
C130.25486 (11)0.7384 (3)0.39657 (14)0.0658 (9)
H130.26740.67770.37890.079*
C140.20331 (12)0.7750 (3)0.37698 (17)0.0795 (11)
H140.18070.73900.34640.095*
C150.18612 (11)0.8654 (3)0.40342 (15)0.0651 (9)
H150.15120.88880.39040.078*
C160.26665 (10)0.8837 (2)0.46531 (12)0.0457 (6)
H160.28860.92200.49560.055*
O1W0.69847 (9)0.61683 (17)0.50760 (12)0.0848 (8)
H11W0.67880.61220.53400.127*
H12W0.69860.55650.48950.127*
O2W0.30658 (11)0.1792 (3)0.55009 (14)0.1219 (11)
H21W0.28050.20950.55940.183*
H22W0.29730.14330.51930.183*
O3W0.3341 (3)0.9915 (5)0.6047 (3)0.133 (2)0.50
H32W0.30351.00820.60780.199*0.50
H31W0.35211.04100.59440.199*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.02668 (6)0.02120 (6)0.02471 (6)0.00104 (4)0.00168 (4)0.00081 (4)
O50.0382 (10)0.0595 (11)0.0366 (9)0.0112 (8)0.0010 (8)0.0015 (8)
O60.0356 (9)0.0442 (10)0.0416 (10)0.0015 (7)0.0026 (7)0.0035 (8)
N30.0460 (14)0.0697 (17)0.0676 (17)0.0169 (12)0.0031 (12)0.0009 (13)
N40.0331 (10)0.0262 (10)0.0332 (10)0.0044 (8)0.0026 (8)0.0031 (8)
N50.0327 (10)0.0322 (10)0.0270 (9)0.0002 (8)0.0018 (8)0.0025 (8)
C170.0348 (13)0.0324 (13)0.0411 (14)0.0016 (10)0.0045 (11)0.0092 (10)
C180.0327 (13)0.0459 (15)0.0499 (15)0.0015 (11)0.0033 (11)0.0014 (12)
C190.0366 (13)0.0420 (14)0.0471 (15)0.0007 (11)0.0016 (11)0.0039 (12)
C200.0400 (14)0.0367 (13)0.0431 (14)0.0008 (11)0.0057 (11)0.0026 (11)
C210.0577 (18)0.068 (2)0.0492 (17)0.0100 (15)0.0041 (14)0.0027 (14)
C220.079 (2)0.084 (2)0.0483 (18)0.0120 (19)0.0102 (17)0.0169 (16)
C230.0566 (19)0.0612 (19)0.070 (2)0.0155 (15)0.0192 (16)0.0079 (16)
C240.0455 (15)0.0541 (16)0.0469 (15)0.0046 (13)0.0013 (12)0.0001 (12)
C250.0464 (15)0.0380 (14)0.0418 (14)0.0111 (11)0.0102 (11)0.0053 (11)
C260.0648 (18)0.0425 (15)0.0533 (17)0.0208 (14)0.0140 (14)0.0019 (13)
C270.0678 (19)0.0272 (14)0.072 (2)0.0109 (13)0.0082 (16)0.0033 (13)
C280.0483 (15)0.0273 (12)0.0564 (16)0.0001 (11)0.0012 (12)0.0037 (11)
C290.070 (2)0.0292 (14)0.090 (2)0.0054 (14)0.0161 (18)0.0103 (15)
C300.0621 (19)0.0410 (16)0.082 (2)0.0117 (14)0.0170 (17)0.0203 (15)
C310.0387 (14)0.0424 (15)0.0483 (15)0.0069 (11)0.0048 (11)0.0116 (11)
C320.0383 (14)0.0632 (18)0.0511 (16)0.0081 (13)0.0110 (12)0.0178 (14)
C330.0389 (14)0.0665 (19)0.0373 (14)0.0032 (13)0.0099 (11)0.0062 (13)
C340.0429 (14)0.0412 (14)0.0346 (13)0.0038 (11)0.0077 (11)0.0019 (10)
C350.0298 (11)0.0306 (12)0.0322 (12)0.0016 (9)0.0025 (9)0.0049 (10)
C360.0326 (12)0.0288 (12)0.0348 (12)0.0001 (10)0.0024 (9)0.0040 (10)
O10.0497 (10)0.0332 (8)0.0308 (8)0.0102 (7)0.0099 (7)0.0043 (7)
O20.0511 (10)0.0324 (9)0.0353 (9)0.0135 (8)0.0136 (8)0.0048 (7)
O30.0388 (9)0.0252 (8)0.0454 (9)0.0047 (7)0.0059 (7)0.0021 (7)
O40.0359 (9)0.0310 (8)0.0426 (9)0.0043 (7)0.0074 (7)0.0062 (7)
N10.102 (2)0.097 (2)0.0588 (17)0.014 (2)0.0373 (17)0.0253 (17)
N20.0400 (13)0.0515 (14)0.0725 (16)0.0131 (11)0.0148 (12)0.0069 (12)
C10.0365 (12)0.0291 (12)0.0329 (12)0.0023 (10)0.0064 (10)0.0012 (10)
C20.0475 (14)0.0341 (13)0.0392 (13)0.0128 (11)0.0136 (11)0.0034 (11)
C30.0453 (14)0.0330 (13)0.0413 (14)0.0038 (11)0.0145 (11)0.0005 (10)
C40.0541 (16)0.0347 (13)0.0443 (15)0.0045 (11)0.0215 (12)0.0046 (11)
C50.085 (2)0.0511 (18)0.0599 (19)0.0153 (16)0.0310 (17)0.0009 (14)
C60.110 (3)0.063 (2)0.099 (3)0.032 (2)0.053 (3)0.003 (2)
C70.121 (3)0.080 (3)0.079 (3)0.008 (2)0.060 (3)0.028 (2)
C80.0684 (19)0.068 (2)0.0432 (16)0.0044 (15)0.0209 (14)0.0110 (14)
C90.0330 (12)0.0250 (11)0.0299 (11)0.0008 (9)0.0038 (9)0.0039 (9)
C100.0329 (12)0.0299 (12)0.0354 (12)0.0021 (10)0.0011 (10)0.0044 (10)
C110.0327 (12)0.0337 (12)0.0354 (12)0.0028 (10)0.0009 (10)0.0018 (10)
C120.0321 (13)0.0388 (13)0.0456 (14)0.0026 (10)0.0045 (11)0.0012 (11)
C130.0437 (16)0.065 (2)0.080 (2)0.0141 (14)0.0149 (15)0.0226 (17)
C140.0462 (18)0.082 (2)0.098 (3)0.0138 (17)0.0224 (17)0.025 (2)
C150.0340 (15)0.072 (2)0.085 (2)0.0112 (14)0.0021 (15)0.0104 (18)
C160.0371 (13)0.0432 (14)0.0565 (16)0.0046 (12)0.0078 (12)0.0001 (12)
O1W0.0709 (15)0.0684 (15)0.128 (2)0.0128 (12)0.0522 (15)0.0190 (14)
O2W0.093 (2)0.123 (3)0.140 (3)0.0135 (19)0.0045 (19)0.010 (2)
O3W0.139 (5)0.103 (5)0.133 (5)0.017 (4)0.036 (4)0.009 (4)
Geometric parameters (Å, º) top
Eu1—O3i2.3604 (15)C32—H320.9300
Eu1—O1i2.3638 (15)C33—C341.397 (3)
Eu1—O22.3763 (15)C33—H330.9300
Eu1—O42.4400 (15)C34—H340.9300
Eu1—O52.4765 (16)C35—C361.443 (3)
Eu1—O62.4922 (16)O1—C11.258 (3)
Eu1—N42.6001 (18)O1—Eu1i2.3638 (15)
Eu1—N52.6272 (18)O2—C11.260 (3)
Eu1—O32.7530 (16)O3—C91.268 (3)
Eu1—C172.843 (2)O3—Eu1i2.3604 (15)
Eu1—C92.969 (2)O4—C91.253 (3)
Eu1—Eu1i4.0137 (3)N1—C71.322 (5)
O5—C171.260 (3)N1—C81.336 (4)
O6—C171.267 (3)N2—C151.327 (4)
N3—C231.326 (4)N2—C161.345 (3)
N3—C241.335 (3)C1—C21.490 (3)
N4—C251.324 (3)C2—C31.319 (3)
N4—C361.365 (3)C2—H20.9300
N5—C341.332 (3)C3—C41.471 (3)
N5—C351.361 (3)C3—H30.9300
C17—C181.489 (3)C4—C51.382 (4)
C18—C191.315 (3)C4—C81.388 (4)
C18—H180.9300C5—C61.394 (4)
C19—C201.474 (3)C5—H50.9300
C19—H190.9300C6—C71.370 (5)
C20—C211.380 (4)C6—H60.9300
C20—C241.385 (4)C7—H70.9300
C21—C221.381 (4)C8—H80.9300
C21—H210.9300C9—C101.485 (3)
C22—C231.366 (5)C10—C111.325 (3)
C22—H220.9300C10—H100.9300
C23—H230.9300C11—C121.469 (3)
C24—H240.9300C11—H110.9300
C25—C261.400 (3)C12—C131.381 (4)
C25—H250.9300C12—C161.385 (3)
C26—C271.355 (4)C13—C141.382 (4)
C26—H260.9300C13—H130.9300
C27—C281.408 (4)C14—C151.371 (4)
C27—H270.9300C14—H140.9300
C28—C361.412 (3)C15—H150.9300
C28—C291.434 (4)C16—H160.9300
C29—C301.338 (4)O1W—H11W0.8462
C29—H290.9300O1W—H12W0.8481
C30—C311.431 (4)O2W—H21W0.8204
C30—H300.9300O2W—H22W0.8227
C31—C321.404 (4)O3W—H32W0.8204
C31—C351.413 (3)O3W—H31W0.8198
C32—C331.357 (4)
O3i—Eu1—O1i74.72 (5)N3—C24—H24117.5
O3i—Eu1—O276.31 (5)C20—C24—H24117.5
O1i—Eu1—O2135.54 (5)N4—C25—C26123.3 (2)
O3i—Eu1—O4126.32 (5)N4—C25—H25118.4
O1i—Eu1—O483.44 (6)C26—C25—H25118.4
O2—Eu1—O487.38 (6)C27—C26—C25119.2 (3)
O3i—Eu1—O587.40 (6)C27—C26—H26120.4
O1i—Eu1—O5129.42 (6)C25—C26—H26120.4
O2—Eu1—O581.54 (6)C26—C27—C28119.9 (2)
O4—Eu1—O5140.72 (5)C26—C27—H27120.1
O3i—Eu1—O677.26 (5)C28—C27—H27120.1
O1i—Eu1—O677.34 (6)C27—C28—C36117.5 (2)
O2—Eu1—O6127.26 (6)C27—C28—C29123.4 (2)
O4—Eu1—O6144.08 (5)C36—C28—C29119.1 (3)
O5—Eu1—O652.45 (6)C30—C29—C28121.2 (3)
O3i—Eu1—N4143.74 (6)C30—C29—H29119.4
O1i—Eu1—N476.83 (5)C28—C29—H29119.4
O2—Eu1—N4139.73 (5)C29—C30—C31121.6 (3)
O4—Eu1—N471.25 (5)C29—C30—H30119.2
O5—Eu1—N493.68 (6)C31—C30—H30119.2
O6—Eu1—N474.94 (6)C32—C31—C35117.5 (2)
O3i—Eu1—N5149.61 (6)C32—C31—C30123.4 (2)
O1i—Eu1—N5135.59 (5)C35—C31—C30119.1 (3)
O2—Eu1—N577.35 (5)C33—C32—C31120.0 (2)
O4—Eu1—N566.85 (5)C33—C32—H32120.0
O5—Eu1—N573.95 (6)C31—C32—H32120.0
O6—Eu1—N5107.73 (5)C32—C33—C34118.8 (2)
N4—Eu1—N563.04 (6)C32—C33—H33120.6
O3i—Eu1—O376.84 (5)C34—C33—H33120.6
O1i—Eu1—O369.55 (5)N5—C34—C33124.0 (2)
O2—Eu1—O371.51 (5)N5—C34—H34118.0
O4—Eu1—O349.54 (5)C33—C34—H34118.0
O5—Eu1—O3151.25 (6)N5—C35—C31122.6 (2)
O6—Eu1—O3142.18 (5)N5—C35—C36118.14 (19)
N4—Eu1—O3113.28 (5)C31—C35—C36119.3 (2)
N5—Eu1—O3108.60 (5)N4—C36—C28122.1 (2)
O3i—Eu1—C1778.89 (6)N4—C36—C35118.33 (19)
O1i—Eu1—C17103.18 (7)C28—C36—C35119.6 (2)
O2—Eu1—C17103.45 (7)C1—O1—Eu1i140.95 (14)
O4—Eu1—C17154.62 (6)C1—O2—Eu1136.14 (14)
O5—Eu1—C1726.26 (6)C9—O3—Eu1i169.88 (14)
O6—Eu1—C1726.44 (6)C9—O3—Eu186.92 (12)
N4—Eu1—C1786.25 (6)Eu1i—O3—Eu1103.16 (5)
N5—Eu1—C1792.85 (6)C9—O4—Eu1102.16 (13)
O3—Eu1—C17155.71 (6)C7—N1—C8115.2 (3)
O3i—Eu1—C9102.08 (6)C15—N2—C16116.7 (2)
O1i—Eu1—C976.75 (6)O1—C1—O2126.1 (2)
O2—Eu1—C977.23 (6)O1—C1—C2115.56 (19)
O4—Eu1—C924.37 (5)O2—C1—C2118.4 (2)
O5—Eu1—C9153.82 (6)C3—C2—C1124.4 (2)
O6—Eu1—C9153.25 (6)C3—C2—H2117.8
N4—Eu1—C992.72 (6)C1—C2—H2117.8
N5—Eu1—C986.51 (6)C2—C3—C4126.6 (2)
O3—Eu1—C925.25 (5)C2—C3—H3116.7
C17—Eu1—C9178.95 (6)C4—C3—H3116.7
O3i—Eu1—Eu1i41.90 (4)C5—C4—C8117.5 (2)
O1i—Eu1—Eu1i66.76 (4)C5—C4—C3122.5 (2)
O2—Eu1—Eu1i69.10 (4)C8—C4—C3120.0 (2)
O4—Eu1—Eu1i84.45 (4)C4—C5—C6118.2 (3)
O5—Eu1—Eu1i125.08 (4)C4—C5—H5120.9
O6—Eu1—Eu1i114.34 (4)C6—C5—H5120.9
N4—Eu1—Eu1i138.18 (4)C7—C6—C5118.6 (3)
N5—Eu1—Eu1i136.55 (4)C7—C6—H6120.7
O3—Eu1—Eu1i34.93 (3)C5—C6—H6120.7
C17—Eu1—Eu1i120.79 (5)N1—C7—C6125.1 (3)
C9—Eu1—Eu1i60.18 (4)N1—C7—H7117.4
C17—O5—Eu193.33 (14)C6—C7—H7117.4
C17—O6—Eu192.42 (14)N1—C8—C4125.3 (3)
C23—N3—C24116.3 (3)N1—C8—H8117.4
C25—N4—C36118.12 (19)C4—C8—H8117.4
C25—N4—Eu1121.48 (15)O4—C9—O3120.99 (19)
C36—N4—Eu1119.38 (14)O4—C9—C10119.13 (19)
C34—N5—C35117.2 (2)O3—C9—C10119.86 (19)
C34—N5—Eu1123.15 (15)O4—C9—Eu153.47 (10)
C35—N5—Eu1118.67 (14)O3—C9—Eu167.83 (11)
O5—C17—O6120.7 (2)C10—C9—Eu1169.61 (15)
O5—C17—C18120.6 (2)C11—C10—C9121.3 (2)
O6—C17—C18118.6 (2)C11—C10—H10119.4
O5—C17—Eu160.41 (12)C9—C10—H10119.4
O6—C17—Eu161.14 (12)C10—C11—C12127.6 (2)
C18—C17—Eu1168.00 (16)C10—C11—H11116.2
C19—C18—C17122.9 (2)C12—C11—H11116.2
C19—C18—H18118.5C13—C12—C16116.6 (2)
C17—C18—H18118.5C13—C12—C11123.7 (2)
C18—C19—C20128.0 (3)C16—C12—C11119.7 (2)
C18—C19—H19116.0C12—C13—C14119.7 (3)
C20—C19—H19116.0C12—C13—H13120.2
C21—C20—C24116.6 (2)C14—C13—H13120.2
C21—C20—C19120.9 (2)C15—C14—C13119.0 (3)
C24—C20—C19122.5 (2)C15—C14—H14120.5
C20—C21—C22119.6 (3)C13—C14—H14120.5
C20—C21—H21120.2N2—C15—C14123.4 (3)
C22—C21—H21120.2N2—C15—H15118.3
C23—C22—C21118.6 (3)C14—C15—H15118.3
C23—C22—H22120.7N2—C16—C12124.6 (3)
C21—C22—H22120.7N2—C16—H16117.7
N3—C23—C22123.9 (3)C12—C16—H16117.7
N3—C23—H23118.0H11W—O1W—H12W109.4
C22—C23—H23118.0H21W—O2W—H22W109.8
N3—C24—C20125.0 (3)H32W—O3W—H31W115.1
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O60.851.942.775 (3)171
O1W—H12W···N2ii0.852.022.856 (3)167
O2W—H21W···O1Wiii0.822.482.851 (4)109
O3W—H31W···O2Wiv0.822.202.655 (7)116
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x1/2, y1/2, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Eu2(C8H6NO2)6(C12H8N2)2]·5H2O
Mr1643.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)25.434 (2), 12.32 (1), 22.595 (19)
β (°) 100.33 (1)
V3)6965.4 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.86
Crystal size (mm)0.32 × 0.27 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.585, 0.791
No. of measured, independent and
observed [I > 2σ(I)] reflections
25928, 6480, 5721
Rint0.022
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.044, 1.03
No. of reflections6480
No. of parameters460
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.25

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996)and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O60.851.942.775 (3)170.9
O1W—H12W···N2i0.852.022.856 (3)166.8
O2W—H21W···O1Wii0.822.482.851 (4)108.6
O3W—H31W···O2Wiii0.822.202.655 (7)115.5
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y1/2, z; (iii) x, y+1, z.
 

Acknowledgements

This work is supported by the National Natural Science Foundation of China (20662007) and Nanchang University of Aeronautics (EA20072195).

References

First citationBruker (1998). SAINT (Version 5.10) and SMART (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGunning, N. S. & Cahill, C. L. (2005). J. Chem. Soc. Dalton Trans. pp. 2788–2792.  CSD CrossRef Google Scholar
First citationLiu, C.-B., Nie, X.-L., Ding, L., Xie, M.-Y. & Wen, H.-L. (2006). Acta Cryst. E62, m2319–m2320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Göttingen, Germany.  Google Scholar
First citationYe, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545–565.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds