organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S*,2S*,5R*,8S*,11S*,14R*,17S*,20R*)-14-Methyl-6-methyl­ene-10,16,18-trioxa­hexa­cyclo­[12.5.1.15,8.01,11.02,8.017,20]heni­cosane-7,9-dione: natural diter­penoid macrocalyxoformin B

aThe College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: shihao@126.com

(Received 11 November 2007; accepted 19 November 2007; online 6 December 2007)

The title compound, C20H24O5, isolated from Rabdosia var. lophanthoides Hara, is built up from six fused rings. Cyclo­hexane ring A adopts a chair conformation, ring B exists in a screw-boat conformation and ring C adopts a boat conformation; the three five-membered rings D, E and F adopt envelope conformations.

Related literature

For related literature, see: Wang et al. (1986[Wang, Z. Q., Wang, X. R., Dong, J. G. & Xue, Z. W. (1986). Acta Bot. Sin. 28, 79-85.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24O5

  • Mr = 344.39

  • Orthorhombic, P 21 21 21

  • a = 7.8450 (10) Å

  • b = 13.1365 (17) Å

  • c = 16.178 (2) Å

  • V = 1667.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.20 × 0.18 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART (Version 5.611), SAINT (Version 6.02a) and SADABS (Version 2.08). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.987

  • 7324 measured reflections

  • 1707 independent reflections

  • 1158 reflections with I > 2σ(I)

  • Rint = 0.151

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.159

  • S = 0.99

  • 1707 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Puckering parameters (Å, °)

Ring Q θ φ
A 0.478 (5) 24.8 (6) 126.4 (14)
B 0.664 (5) 106.1 (4) 89.3 (4)
C 0.821 (5) 100.1 (3) 54.3 (4)
       
  Q2 φ2  
D 0.473 (5) 324.5 (6)  
E 0.365 (5) 321.7 (7)  
F 0.330 (5) 140.1 (9)  

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.611), SAINT (Version 6.02a) and SADABS (Version 2.08). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART (Version 5.611), SAINT (Version 6.02a) and SADABS (Version 2.08). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The diterpenoid macrocalyxoformin B, (I), has been previously isolated from Rabdosia macrocalyx Hara (Wang et al., 1986) and its structure was established from the spectroscopic and chemical evidence. Recently, it was for the first time isolated from Rabdosia var lophanthoides Hara, and its structure was confirmed by an X-ray diffraction study.

The molecule is built up from six fused rings, three six membered and three five membered rings (Fig. 1). Some geometrical features of these rings were investigated using PLATON (Spek, 2003).

Cyclohexane ring A (C1/C11—C14/C20) adopts a chair conformation (Cremer & Pople, 1975), ring B (O10/C9/C8/C2/C1/C11) exists in a screw-boat conformation, ring C (C2—C5/C21/C8) adopts the boat conformation. All the three five-membered rings adopt envelope conformation.

Related literature top

For related literature, see: Wang et al. (1986). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound (I) was isolated from Rabdosia var lophanthoides Hara and crystals suitable for X-ray structure analysis were obtained by slow evaporation from a solution of methanol at room temperature.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (=CH2); 0.96 Å (methy), 0.97 Å(methylene) or 0.98 Å (methine) with Uiso(H) = 1.2Ueq(=CH2, methylene, methine) or Uiso(H) = 1.5Ueq(methyl).

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined from the X-ray analyses and the Friedel pairs were merged, relative stereochemistry is shown in the Scheme and figures.

Structure description top

The diterpenoid macrocalyxoformin B, (I), has been previously isolated from Rabdosia macrocalyx Hara (Wang et al., 1986) and its structure was established from the spectroscopic and chemical evidence. Recently, it was for the first time isolated from Rabdosia var lophanthoides Hara, and its structure was confirmed by an X-ray diffraction study.

The molecule is built up from six fused rings, three six membered and three five membered rings (Fig. 1). Some geometrical features of these rings were investigated using PLATON (Spek, 2003).

Cyclohexane ring A (C1/C11—C14/C20) adopts a chair conformation (Cremer & Pople, 1975), ring B (O10/C9/C8/C2/C1/C11) exists in a screw-boat conformation, ring C (C2—C5/C21/C8) adopts the boat conformation. All the three five-membered rings adopt envelope conformation.

For related literature, see: Wang et al. (1986). For ring puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
(1S*,2S*,5R*,8S*,11S*,14R*, 17S*,20R*)-14-Methyl-6-methylene-10,16,18- trioxahexacyclo[12.5.1.15,8.01,11.02,8.017,20]henicosane-7,9-dione top
Crystal data top
C20H24O5F(000) = 736
Mr = 344.39Dx = 1.372 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1585 reflections
a = 7.845 (1) Åθ = 2.5–24.9°
b = 13.1365 (17) ŵ = 0.10 mm1
c = 16.178 (2) ÅT = 298 K
V = 1667.2 (4) Å3Plate, colorless
Z = 40.20 × 0.18 × 0.13 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1707 independent reflections
Radiation source: fine-focus sealed tube1158 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.151
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 89
Tmin = 0.981, Tmax = 0.987k = 915
7324 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0846P)2]
where P = (Fo2 + 2Fc2)/3
1707 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H24O5V = 1667.2 (4) Å3
Mr = 344.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.845 (1) ŵ = 0.10 mm1
b = 13.1365 (17) ÅT = 298 K
c = 16.178 (2) Å0.20 × 0.18 × 0.13 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1707 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1158 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.987Rint = 0.151
7324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 0.99Δρmax = 0.27 e Å3
1707 reflectionsΔρmin = 0.23 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2722 (6)0.1295 (3)0.8777 (3)0.0774 (13)
O20.1286 (5)0.3379 (3)0.8514 (2)0.0648 (11)
O100.5239 (5)0.1278 (3)0.8173 (2)0.0528 (10)
O160.6881 (4)0.3328 (3)0.54354 (19)0.0531 (10)
O180.4526 (4)0.3456 (3)0.6322 (2)0.0485 (9)
C10.6034 (6)0.2829 (4)0.7468 (3)0.0374 (11)
C20.5314 (6)0.3540 (4)0.8156 (3)0.0403 (12)
H20.45080.40050.78900.048*
C30.6638 (7)0.4202 (4)0.8615 (3)0.0517 (14)
H3A0.75900.37760.87790.062*
H3B0.70690.47150.82380.062*
C40.5914 (7)0.4733 (4)0.9387 (3)0.0528 (14)
H4A0.53170.53450.92170.063*
H4B0.68530.49370.97400.063*
C50.4682 (7)0.4057 (4)0.9889 (3)0.0490 (14)
H50.48090.41741.04850.059*
C60.2874 (7)0.4183 (4)0.9622 (3)0.0475 (13)
C70.2569 (7)0.3448 (4)0.8912 (3)0.0443 (12)
C80.4269 (6)0.2882 (4)0.8792 (3)0.0421 (12)
C90.3966 (7)0.1760 (4)0.8572 (3)0.0510 (14)
C110.6700 (7)0.1866 (4)0.7881 (3)0.0427 (12)
H110.74020.20590.83570.051*
C120.7723 (7)0.1176 (4)0.7328 (3)0.0523 (14)
H12A0.70070.09260.68830.063*
H12B0.81290.05960.76420.063*
C130.9228 (7)0.1754 (5)0.6971 (3)0.0547 (15)
H13A0.98690.13020.66130.066*
H13B0.99720.19620.74180.066*
C140.8695 (6)0.2705 (4)0.6473 (3)0.0439 (13)
C150.7866 (7)0.2448 (4)0.5647 (3)0.0542 (15)
H15A0.87250.23150.52300.065*
H15B0.71400.18530.56990.065*
C170.6237 (7)0.3750 (4)0.6172 (3)0.0442 (12)
H170.63060.44940.61420.053*
C190.4542 (7)0.2586 (4)0.6866 (3)0.0437 (12)
H19A0.47550.19630.65620.052*
H19B0.34710.25230.71620.052*
C200.7337 (6)0.3367 (4)0.6893 (3)0.0400 (11)
H200.78720.39410.71800.048*
C210.5012 (7)0.2938 (4)0.9666 (3)0.0483 (13)
H21A0.62210.27820.96680.058*
H21B0.44250.24801.00410.058*
C220.1647 (7)0.4771 (5)0.9914 (4)0.0605 (16)
H22A0.18590.51971.03610.073*
H22B0.05720.47580.96720.073*
C231.0269 (7)0.3360 (5)0.6295 (3)0.0599 (15)
H23A1.11180.29540.60230.090*
H23B1.07220.36160.68060.090*
H23C0.99550.39200.59450.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.091 (3)0.042 (2)0.099 (3)0.013 (2)0.041 (3)0.008 (2)
O20.057 (2)0.072 (3)0.065 (2)0.008 (2)0.006 (2)0.013 (2)
O100.071 (2)0.0318 (19)0.0556 (19)0.0020 (19)0.017 (2)0.0054 (17)
O160.067 (2)0.058 (2)0.0344 (17)0.002 (2)0.0020 (17)0.0028 (17)
O180.049 (2)0.051 (2)0.0454 (18)0.0031 (19)0.0048 (17)0.0100 (17)
C10.047 (3)0.031 (3)0.034 (2)0.001 (2)0.001 (2)0.001 (2)
C20.049 (3)0.034 (3)0.038 (2)0.002 (2)0.001 (2)0.001 (2)
C30.061 (3)0.047 (3)0.048 (3)0.009 (3)0.004 (3)0.009 (3)
C40.064 (3)0.047 (3)0.047 (3)0.000 (3)0.003 (3)0.011 (3)
C50.063 (3)0.048 (3)0.036 (2)0.004 (3)0.001 (3)0.004 (2)
C60.064 (3)0.039 (3)0.039 (3)0.002 (3)0.008 (3)0.001 (2)
C70.047 (3)0.046 (3)0.040 (2)0.001 (3)0.001 (2)0.007 (2)
C80.054 (3)0.033 (3)0.039 (3)0.003 (2)0.006 (2)0.001 (2)
C90.067 (4)0.039 (3)0.047 (3)0.002 (3)0.014 (3)0.006 (3)
C110.052 (3)0.036 (3)0.040 (2)0.005 (3)0.000 (2)0.002 (2)
C120.063 (3)0.039 (3)0.055 (3)0.014 (3)0.008 (3)0.001 (2)
C130.058 (3)0.054 (4)0.052 (3)0.014 (3)0.001 (3)0.008 (3)
C140.045 (3)0.047 (3)0.040 (2)0.001 (3)0.004 (2)0.003 (2)
C150.065 (4)0.054 (4)0.044 (3)0.008 (3)0.006 (3)0.005 (3)
C170.050 (3)0.044 (3)0.039 (3)0.004 (3)0.002 (2)0.002 (2)
C190.059 (3)0.033 (3)0.039 (2)0.003 (3)0.005 (3)0.002 (2)
C200.049 (3)0.036 (3)0.035 (2)0.003 (2)0.002 (2)0.002 (2)
C210.063 (3)0.045 (3)0.037 (2)0.007 (3)0.000 (3)0.007 (2)
C220.066 (4)0.050 (4)0.065 (4)0.002 (3)0.010 (3)0.009 (3)
C230.049 (3)0.075 (4)0.056 (3)0.001 (3)0.006 (3)0.005 (3)
Geometric parameters (Å, º) top
O1—C91.199 (7)C8—C211.531 (7)
O2—C71.199 (6)C8—C91.534 (7)
O10—C91.348 (6)C11—C121.505 (7)
O10—C111.461 (6)C11—H110.9800
O16—C171.408 (6)C12—C131.518 (7)
O16—C151.432 (6)C12—H12A0.9700
O18—C171.418 (6)C12—H12B0.9700
O18—C191.443 (6)C13—C141.544 (7)
C1—C111.523 (7)C13—H13A0.9700
C1—C201.552 (6)C13—H13B0.9700
C1—C191.555 (7)C14—C151.523 (7)
C1—C21.558 (6)C14—C231.533 (8)
C2—C31.545 (7)C14—C201.534 (7)
C2—C81.575 (7)C15—H15A0.9700
C2—H20.9800C15—H15B0.9700
C3—C41.539 (7)C17—C201.536 (7)
C3—H3A0.9700C17—H170.9800
C3—H3B0.9700C19—H19A0.9700
C4—C51.544 (8)C19—H19B0.9700
C4—H4A0.9700C20—H200.9800
C4—H4B0.9700C21—H21A0.9700
C5—C61.492 (8)C21—H21B0.9700
C5—C211.536 (7)C22—H22A0.9300
C5—H50.9800C22—H22B0.9300
C6—C221.321 (7)C23—H23A0.9600
C6—C71.520 (7)C23—H23B0.9600
C7—C81.539 (7)C23—H23C0.9600
C9—O10—C11119.2 (4)C13—C12—H12A109.7
C17—O16—C15108.0 (4)C11—C12—H12B109.7
C17—O18—C19108.2 (4)C13—C12—H12B109.7
C11—C1—C20114.5 (4)H12A—C12—H12B108.2
C11—C1—C19111.3 (4)C12—C13—C14113.1 (4)
C20—C1—C19102.4 (4)C12—C13—H13A109.0
C11—C1—C2108.0 (4)C14—C13—H13A109.0
C20—C1—C2113.2 (4)C12—C13—H13B109.0
C19—C1—C2107.3 (4)C14—C13—H13B109.0
C3—C2—C1115.9 (4)H13A—C13—H13B107.8
C3—C2—C8110.2 (4)C15—C14—C23107.7 (4)
C1—C2—C8109.1 (4)C15—C14—C20102.6 (4)
C3—C2—H2107.1C23—C14—C20109.0 (4)
C1—C2—H2107.1C15—C14—C13113.2 (5)
C8—C2—H2107.1C23—C14—C13109.5 (4)
C4—C3—C2113.4 (4)C20—C14—C13114.5 (4)
C4—C3—H3A108.9O16—C15—C14105.1 (4)
C2—C3—H3A108.9O16—C15—H15A110.7
C4—C3—H3B108.9C14—C15—H15A110.7
C2—C3—H3B108.9O16—C15—H15B110.7
H3A—C3—H3B107.7C14—C15—H15B110.7
C3—C4—C5113.5 (4)H15A—C15—H15B108.8
C3—C4—H4A108.9O16—C17—O18112.2 (4)
C5—C4—H4A108.9O16—C17—C20108.2 (4)
C3—C4—H4B108.9O18—C17—C20108.2 (4)
C5—C4—H4B108.9O16—C17—H17109.4
H4A—C4—H4B107.7O18—C17—H17109.4
C6—C5—C21101.4 (5)C20—C17—H17109.4
C6—C5—C4112.3 (4)O18—C19—C1103.1 (4)
C21—C5—C4108.7 (4)O18—C19—H19A111.2
C6—C5—H5111.3C1—C19—H19A111.2
C21—C5—H5111.3O18—C19—H19B111.2
C4—C5—H5111.3C1—C19—H19B111.2
C22—C6—C5130.8 (5)H19A—C19—H19B109.1
C22—C6—C7121.8 (5)C14—C20—C17103.8 (4)
C5—C6—C7107.3 (4)C14—C20—C1117.7 (4)
O2—C7—C6125.9 (5)C17—C20—C1103.5 (4)
O2—C7—C8128.5 (5)C14—C20—H20110.4
C6—C7—C8105.4 (4)C17—C20—H20110.4
C21—C8—C9108.7 (4)C1—C20—H20110.4
C21—C8—C7101.0 (4)C8—C21—C5101.5 (4)
C9—C8—C7111.1 (4)C8—C21—H21A111.5
C21—C8—C2112.2 (4)C5—C21—H21A111.5
C9—C8—C2117.1 (4)C8—C21—H21B111.5
C7—C8—C2105.6 (4)C5—C21—H21B111.5
O1—C9—O10119.7 (5)H21A—C21—H21B109.3
O1—C9—C8123.5 (5)C6—C22—H22A120.0
O10—C9—C8116.6 (5)C6—C22—H22B120.0
O10—C11—C12107.0 (4)H22A—C22—H22B120.0
O10—C11—C1108.2 (4)C14—C23—H23A109.5
C12—C11—C1115.0 (4)C14—C23—H23B109.5
O10—C11—H11108.9H23A—C23—H23B109.5
C12—C11—H11108.9C14—C23—H23C109.5
C1—C11—H11108.9H23A—C23—H23C109.5
C11—C12—C13109.9 (4)H23B—C23—H23C109.5
C11—C12—H12A109.7
C11—C1—C2—C382.7 (5)C2—C1—C11—O1071.0 (5)
C20—C1—C2—C345.1 (5)C20—C1—C11—C1242.5 (6)
C19—C1—C2—C3157.3 (4)C19—C1—C11—C1273.0 (5)
C11—C1—C2—C842.3 (5)C2—C1—C11—C12169.5 (4)
C20—C1—C2—C8170.1 (4)O10—C11—C12—C13177.5 (4)
C19—C1—C2—C877.7 (4)C1—C11—C12—C1357.4 (6)
C1—C2—C3—C4169.3 (4)C11—C12—C13—C1458.3 (6)
C8—C2—C3—C444.8 (6)C12—C13—C14—C1571.9 (6)
C2—C3—C4—C539.5 (6)C12—C13—C14—C23168.0 (5)
C3—C4—C5—C691.0 (6)C12—C13—C14—C2045.3 (6)
C3—C4—C5—C2120.4 (6)C17—O16—C15—C1434.5 (5)
C21—C5—C6—C22149.2 (6)C23—C14—C15—O1681.1 (5)
C4—C5—C6—C2295.0 (6)C20—C14—C15—O1633.8 (5)
C21—C5—C6—C728.9 (5)C13—C14—C15—O16157.7 (4)
C4—C5—C6—C786.9 (5)C15—O16—C17—O1898.7 (5)
C22—C6—C7—O26.0 (8)C15—O16—C17—C2020.6 (5)
C5—C6—C7—O2175.7 (5)C19—O18—C17—O1695.5 (5)
C22—C6—C7—C8177.4 (5)C19—O18—C17—C2023.9 (5)
C5—C6—C7—C80.9 (5)C17—O18—C19—C137.8 (5)
O2—C7—C8—C21156.0 (6)C11—C1—C19—O18158.8 (4)
C6—C7—C8—C2127.5 (5)C20—C1—C19—O1836.1 (5)
O2—C7—C8—C940.9 (7)C2—C1—C19—O1883.3 (4)
C6—C7—C8—C9142.6 (4)C15—C14—C20—C1720.9 (5)
O2—C7—C8—C287.0 (6)C23—C14—C20—C1793.1 (5)
C6—C7—C8—C289.5 (4)C13—C14—C20—C17143.9 (5)
C3—C2—C8—C219.1 (6)C15—C14—C20—C192.7 (5)
C1—C2—C8—C21119.2 (4)C23—C14—C20—C1153.3 (4)
C3—C2—C8—C9135.8 (5)C13—C14—C20—C130.3 (6)
C1—C2—C8—C97.5 (6)O16—C17—C20—C141.4 (5)
C3—C2—C8—C7100.0 (5)O18—C17—C20—C14123.2 (4)
C1—C2—C8—C7131.7 (4)O16—C17—C20—C1122.1 (4)
C11—O10—C9—O1176.3 (5)O18—C17—C20—C10.3 (5)
C11—O10—C9—C88.0 (6)C11—C1—C20—C1428.6 (5)
C21—C8—C9—O182.9 (7)C19—C1—C20—C1491.9 (4)
C7—C8—C9—O127.3 (7)C2—C1—C20—C14152.9 (4)
C2—C8—C9—O1148.7 (5)C11—C1—C20—C17142.4 (4)
C21—C8—C9—O1092.6 (5)C19—C1—C20—C1721.8 (5)
C7—C8—C9—O10157.1 (4)C2—C1—C20—C1793.3 (4)
C2—C8—C9—O1035.8 (6)C9—C8—C21—C5162.2 (4)
C9—O10—C11—C12169.4 (4)C7—C8—C21—C545.3 (5)
C9—O10—C11—C145.0 (5)C2—C8—C21—C566.7 (5)
C20—C1—C11—O10162.0 (4)C6—C5—C21—C846.3 (5)
C19—C1—C11—O1046.5 (5)C4—C5—C21—C872.2 (5)

Experimental details

Crystal data
Chemical formulaC20H24O5
Mr344.39
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.845 (1), 13.1365 (17), 16.178 (2)
V3)1667.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.981, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
7324, 1707, 1158
Rint0.151
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.159, 0.99
No. of reflections1707
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.23

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Puckering parameters top
RingQ, Åθφ
A0.478 (5)24.8 (6)126.4 (14)
B0.664 (5)106.1 (4)89.3 (4)
C0.821 (5)100.1 (3)54.3 (4)
Q2, Åφ2, °
D0.473 (5)324.5 (6)
E0.365 (5)321.7 (7)
F0.330 (5)140.1 (9)
 

Acknowledgements

This project was supported by the Natural Science Foundation of Zhejiang Province, China (grant No. Y205318).

References

First citationBruker (1999). SMART (Version 5.611), SAINT (Version 6.02a) and SADABS (Version 2.08). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z. Q., Wang, X. R., Dong, J. G. & Xue, Z. W. (1986). Acta Bot. Sin. 28, 79–85.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds