organic compounds
4,4′-Bipyridine acetic acid disolvate
aState Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: xray@jlu.edu.cn
The 10H8N2·2C2H4O2, is built up from 4,4′-bipyridine and acetic acid molecules linked by strong O—H⋯N hydrogen bonds. The 4,4′-bipyridine and the two acetic acid molecules are further connected through weak C—H⋯O hydrogen bonds to form a supramolecular two-dimensional network parallel to the (001) plane. The two pyridine rings make a dihedral angle of 31.8 (1)°.
of the title compound, CRelated literature
For related literature, see: Dai et al. (2005); Li et al. (2005); Pedireddi et al. (1998); Wang et al. (2006). For structural analysis, see: Spek (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536807062319/dn2279sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807062319/dn2279Isup2.hkl
A mixture of 2,2-bipyridine (5 mmol, 0.78 g) and acetic acid (10 mmol, 0.60 g) in water (10 ml) was stirred for 2 h, and filtrate was allowed to evaporate at room temperature. Colorless single crystals of the title compound were formed after two weeks.
All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(Caromatic or O) or Uiso(H) = 1.5Ueq(Cmethyl).
In the absence of significant
the could not be reliably determined and then the Friedel pairs were merged and any references to the were removed.2,2-bipyridine is widely used to build up supramolecular network with carboxylic acid (Dai et al., 2005; Li et al., 2005; Pedireddi et al., 1998; Wang et al., 2006). Herein, we report the
structure of 2,2-bipyridine and acetic acid.The
of (I) contains one 4,4-bipyridine molecule and two acetic acid molecules linked trough strong O—H···O hydogen bonds (Fig. 1). The two pyridine rings are both planar, with a RMS deviation of fitted atoms being 0.0033 Å and 0.0074 Å, respectively. The dihedral angle between them is 31.8 (1) °.The 4,4-bipyridine and the two acetic acid molecules are further connected through C—H···O weak hydrogen bonds (PLATON, Spek, 2003) involving the carboxyl oxygen atoms (Table 1) to build up a supramolecular two dimensionnal network.parallel to the (0 0 1) plane (Fig. 2).
For related literature, see: Dai et al. (2005); Li et al. (2005); Pedireddi et al. (1998); Wang et al. (2006). For strutural analysis, se: Spek (2003).
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.C10H8N2·2C2H4O2 | F(000) = 292 |
Mr = 276.29 | Dx = 1.291 Mg m−3 |
Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P -2yc | Cell parameters from 4188 reflections |
a = 3.893 (2) Å | θ = 3.1–27.5° |
b = 8.181 (5) Å | µ = 0.10 mm−1 |
c = 22.563 (15) Å | T = 291 K |
β = 98.46 (3)° | Block, colorless |
V = 710.7 (7) Å3 | 0.15 × 0.13 × 0.12 mm |
Z = 2 |
Rigaku RAXIS-RAPID diffractometer | 1595 independent reflections |
Radiation source: fine-focus sealed tube | 995 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ω scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −5→5 |
Tmin = 0.986, Tmax = 0.988 | k = −10→10 |
6467 measured reflections | l = −29→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0545P)2 + 0.0575P] where P = (Fo2 + 2Fc2)/3 |
1595 reflections | (Δ/σ)max = 0.003 |
185 parameters | Δρmax = 0.15 e Å−3 |
2 restraints | Δρmin = −0.13 e Å−3 |
C10H8N2·2C2H4O2 | V = 710.7 (7) Å3 |
Mr = 276.29 | Z = 2 |
Monoclinic, Pc | Mo Kα radiation |
a = 3.893 (2) Å | µ = 0.10 mm−1 |
b = 8.181 (5) Å | T = 291 K |
c = 22.563 (15) Å | 0.15 × 0.13 × 0.12 mm |
β = 98.46 (3)° |
Rigaku RAXIS-RAPID diffractometer | 1595 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 995 reflections with I > 2σ(I) |
Tmin = 0.986, Tmax = 0.988 | Rint = 0.042 |
6467 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 2 restraints |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.15 e Å−3 |
1595 reflections | Δρmin = −0.13 e Å−3 |
185 parameters |
Experimental. (See detailed section in the paper) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C13 | −0.0181 (13) | −0.0149 (6) | 0.6249 (2) | 0.0728 (12) | |
H13A | 0.1830 | −0.0660 | 0.6470 | 0.109* | |
H13B | −0.1649 | −0.0968 | 0.6039 | 0.109* | |
H13C | −0.1437 | 0.0423 | 0.6521 | 0.109* | |
C14 | 0.0919 (10) | 0.1019 (5) | 0.5814 (2) | 0.0568 (10) | |
C1 | 0.4437 (12) | 0.3978 (5) | 0.47047 (19) | 0.0697 (11) | |
H1 | 0.4572 | 0.2861 | 0.4636 | 0.084* | |
C2 | 0.4896 (13) | 0.5031 (5) | 0.4247 (2) | 0.0640 (10) | |
H2 | 0.5306 | 0.4622 | 0.3879 | 0.077* | |
C3 | 0.4742 (9) | 0.6695 (4) | 0.43371 (16) | 0.0488 (9) | |
C4 | 0.4131 (11) | 0.7207 (5) | 0.48979 (19) | 0.0613 (11) | |
H4 | 0.4020 | 0.8316 | 0.4984 | 0.074* | |
C5 | 0.3695 (12) | 0.6071 (5) | 0.5321 (2) | 0.0690 (12) | |
H5 | 0.3285 | 0.6441 | 0.5694 | 0.083* | |
C6 | 0.5176 (9) | 0.7891 (4) | 0.38616 (17) | 0.0483 (9) | |
C7 | 0.4150 (11) | 0.7538 (5) | 0.32659 (19) | 0.0599 (11) | |
H7 | 0.3218 | 0.6520 | 0.3152 | 0.072* | |
C8 | 0.4513 (11) | 0.8706 (5) | 0.2839 (2) | 0.0654 (11) | |
H8 | 0.3770 | 0.8449 | 0.2440 | 0.078* | |
C9 | 0.6937 (12) | 1.0494 (5) | 0.35465 (19) | 0.0649 (11) | |
H9 | 0.7942 | 1.1507 | 0.3646 | 0.078* | |
C10 | 0.6649 (11) | 0.9422 (5) | 0.39995 (18) | 0.0599 (10) | |
H10 | 0.7426 | 0.9709 | 0.4395 | 0.072* | |
N1 | 0.3818 (10) | 0.4468 (4) | 0.52352 (16) | 0.0655 (9) | |
O1 | 0.9176 (9) | 1.3967 (4) | 0.29266 (15) | 0.0859 (11) | |
O3 | 0.0627 (10) | 0.0786 (4) | 0.52832 (15) | 0.0938 (11) | |
C11 | 0.8647 (13) | 1.5081 (6) | 0.1948 (2) | 0.0764 (14) | |
H11A | 1.0155 | 1.5926 | 0.2131 | 0.115* | |
H11B | 0.6438 | 1.5545 | 0.1789 | 0.115* | |
H11C | 0.9664 | 1.4585 | 0.1630 | 0.115* | |
C12 | 0.8156 (11) | 1.3817 (4) | 0.2405 (2) | 0.0565 (10) | |
N2 | 0.5861 (9) | 1.0176 (4) | 0.29663 (16) | 0.0631 (9) | |
O2 | 0.6441 (8) | 1.2545 (3) | 0.21698 (13) | 0.0698 (8) | |
H2A | 0.6294 | 1.1864 | 0.2432 | 0.105* | |
O4 | 0.2338 (8) | 0.2354 (3) | 0.60567 (13) | 0.0711 (9) | |
H4A | 0.2902 | 0.2947 | 0.5794 | 0.107* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C13 | 0.074 (3) | 0.066 (3) | 0.075 (3) | −0.009 (2) | 0.001 (2) | 0.010 (2) |
C14 | 0.056 (2) | 0.051 (2) | 0.061 (3) | 0.0012 (18) | 0.0008 (19) | −0.005 (2) |
C1 | 0.097 (3) | 0.050 (2) | 0.063 (3) | 0.005 (2) | 0.013 (2) | 0.004 (2) |
C2 | 0.082 (3) | 0.053 (2) | 0.057 (2) | 0.002 (2) | 0.0112 (19) | 0.000 (2) |
C3 | 0.049 (2) | 0.0470 (19) | 0.049 (2) | 0.0035 (17) | 0.0013 (16) | 0.0002 (17) |
C4 | 0.078 (3) | 0.048 (2) | 0.058 (3) | 0.0023 (19) | 0.012 (2) | 0.0001 (19) |
C5 | 0.083 (3) | 0.070 (3) | 0.054 (2) | 0.003 (2) | 0.013 (2) | −0.001 (2) |
C6 | 0.0467 (19) | 0.0427 (18) | 0.055 (2) | −0.0021 (16) | 0.0050 (16) | 0.0016 (17) |
C7 | 0.075 (3) | 0.048 (2) | 0.054 (2) | −0.0082 (19) | 0.003 (2) | 0.002 (2) |
C8 | 0.080 (3) | 0.056 (2) | 0.058 (2) | −0.009 (2) | 0.004 (2) | 0.000 (2) |
C9 | 0.075 (3) | 0.048 (2) | 0.070 (3) | −0.0104 (19) | 0.003 (2) | −0.002 (2) |
C10 | 0.069 (3) | 0.051 (2) | 0.056 (2) | −0.0030 (19) | −0.001 (2) | −0.0051 (19) |
N1 | 0.077 (2) | 0.058 (2) | 0.062 (2) | −0.0027 (17) | 0.0123 (17) | 0.0040 (18) |
O1 | 0.119 (3) | 0.072 (2) | 0.062 (2) | −0.0298 (19) | −0.0012 (19) | −0.0039 (17) |
O3 | 0.143 (3) | 0.076 (2) | 0.059 (2) | −0.021 (2) | 0.002 (2) | −0.0126 (18) |
C11 | 0.079 (3) | 0.067 (3) | 0.083 (4) | −0.012 (2) | 0.008 (2) | 0.015 (2) |
C12 | 0.067 (3) | 0.044 (2) | 0.059 (3) | −0.0042 (19) | 0.010 (2) | 0.000 (2) |
N2 | 0.076 (2) | 0.0469 (19) | 0.065 (2) | −0.0092 (16) | 0.0076 (17) | 0.0014 (17) |
O2 | 0.096 (2) | 0.0558 (17) | 0.0559 (18) | −0.0206 (16) | 0.0061 (16) | −0.0045 (13) |
O4 | 0.098 (2) | 0.0591 (18) | 0.0567 (19) | −0.0146 (16) | 0.0117 (16) | −0.0058 (14) |
C13—C14 | 1.478 (6) | C6—C10 | 1.393 (5) |
C13—H13A | 0.9600 | C7—C8 | 1.378 (6) |
C13—H13B | 0.9600 | C7—H7 | 0.9300 |
C13—H13C | 0.9600 | C8—N2 | 1.326 (5) |
C14—O3 | 1.201 (5) | C8—H8 | 0.9300 |
C14—O4 | 1.307 (5) | C9—N2 | 1.340 (5) |
C1—N1 | 1.317 (6) | C9—C10 | 1.364 (6) |
C1—C2 | 1.377 (6) | C9—H9 | 0.9300 |
C1—H1 | 0.9300 | C10—H10 | 0.9300 |
C2—C3 | 1.380 (5) | O1—C12 | 1.191 (5) |
C2—H2 | 0.9300 | C11—C12 | 1.493 (6) |
C3—C4 | 1.386 (6) | C11—H11A | 0.9600 |
C3—C6 | 1.480 (5) | C11—H11B | 0.9600 |
C4—C5 | 1.361 (6) | C11—H11C | 0.9600 |
C4—H4 | 0.9300 | C12—O2 | 1.306 (4) |
C5—N1 | 1.328 (5) | O2—H2A | 0.8200 |
C5—H5 | 0.9300 | O4—H4A | 0.8200 |
C6—C7 | 1.375 (5) | ||
C14—C13—H13A | 109.5 | C10—C6—C3 | 121.3 (3) |
C14—C13—H13B | 109.5 | C6—C7—C8 | 119.5 (4) |
H13A—C13—H13B | 109.5 | C6—C7—H7 | 120.3 |
C14—C13—H13C | 109.5 | C8—C7—H7 | 120.3 |
H13A—C13—H13C | 109.5 | N2—C8—C7 | 123.8 (4) |
H13B—C13—H13C | 109.5 | N2—C8—H8 | 118.1 |
O3—C14—O4 | 121.5 (4) | C7—C8—H8 | 118.1 |
O3—C14—C13 | 124.4 (4) | N2—C9—C10 | 124.0 (4) |
O4—C14—C13 | 114.0 (4) | N2—C9—H9 | 118.0 |
N1—C1—C2 | 123.6 (4) | C10—C9—H9 | 118.0 |
N1—C1—H1 | 118.2 | C9—C10—C6 | 119.2 (4) |
C2—C1—H1 | 118.2 | C9—C10—H10 | 120.4 |
C1—C2—C3 | 119.5 (4) | C6—C10—H10 | 120.4 |
C1—C2—H2 | 120.2 | C1—N1—C5 | 116.6 (4) |
C3—C2—H2 | 120.2 | C12—C11—H11A | 109.5 |
C2—C3—C4 | 116.8 (4) | C12—C11—H11B | 109.5 |
C2—C3—C6 | 122.2 (3) | H11A—C11—H11B | 109.5 |
C4—C3—C6 | 121.0 (3) | C12—C11—H11C | 109.5 |
C5—C4—C3 | 119.4 (4) | H11A—C11—H11C | 109.5 |
C5—C4—H4 | 120.3 | H11B—C11—H11C | 109.5 |
C3—C4—H4 | 120.3 | O1—C12—O2 | 124.1 (4) |
N1—C5—C4 | 124.1 (4) | O1—C12—C11 | 123.6 (4) |
N1—C5—H5 | 117.9 | O2—C12—C11 | 112.3 (4) |
C4—C5—H5 | 117.9 | C8—N2—C9 | 116.3 (4) |
C7—C6—C10 | 117.3 (3) | C12—O2—H2A | 109.5 |
C7—C6—C3 | 121.4 (3) | C14—O4—H4A | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···N2 | 0.82 | 1.86 | 2.675 (5) | 175 |
O4—H4A···N1 | 0.82 | 1.84 | 2.659 (5) | 173 |
C7—H7···O1i | 0.93 | 2.62 | 3.526 (5) | 165 |
C10—H10···O3ii | 0.93 | 2.37 | 3.273 (5) | 164 |
C4—H4···O3iii | 0.93 | 2.56 | 3.397 (6) | 150 |
Symmetry codes: (i) x−1, y−1, z; (ii) x+1, y+1, z; (iii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C10H8N2·2C2H4O2 |
Mr | 276.29 |
Crystal system, space group | Monoclinic, Pc |
Temperature (K) | 291 |
a, b, c (Å) | 3.893 (2), 8.181 (5), 22.563 (15) |
β (°) | 98.46 (3) |
V (Å3) | 710.7 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.15 × 0.13 × 0.12 |
Data collection | |
Diffractometer | Rigaku RAXIS-RAPID |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.986, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6467, 1595, 995 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.119, 1.04 |
No. of reflections | 1595 |
No. of parameters | 185 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.13 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996); ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···N2 | 0.82 | 1.86 | 2.675 (5) | 174.5 |
O4—H4A···N1 | 0.82 | 1.84 | 2.659 (5) | 173.1 |
C7—H7···O1i | 0.93 | 2.62 | 3.526 (5) | 165.2 |
C10—H10···O3ii | 0.93 | 2.37 | 3.273 (5) | 164.3 |
C4—H4···O3iii | 0.93 | 2.56 | 3.397 (6) | 150.0 |
Symmetry codes: (i) x−1, y−1, z; (ii) x+1, y+1, z; (iii) x, y+1, z. |
References
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Dai, Y.-M., Huang, J.-F. & Shen, H.-Y. (2005). Acta Cryst. E61, o3919–o3920. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Li, X.-H., Lei, X.-X. & Wang, S. (2005). Acta Cryst. E61, o1802–o1804. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pedireddi, V. R., Ranganathan, A. & Chatterjee, S. (1998). Tetrahedron Lett. 39, 9831–9834. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z.-L., Wei, L.-H. & Li, M.-X. (2006). Acta Cryst. E62, o3031–o3032. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2,2-bipyridine is widely used to build up supramolecular network with carboxylic acid (Dai et al., 2005; Li et al., 2005; Pedireddi et al., 1998; Wang et al., 2006). Herein, we report the co-crystal structure of 2,2-bipyridine and acetic acid.
The asymmetric unit of (I) contains one 4,4-bipyridine molecule and two acetic acid molecules linked trough strong O—H···O hydogen bonds (Fig. 1). The two pyridine rings are both planar, with a RMS deviation of fitted atoms being 0.0033 Å and 0.0074 Å, respectively. The dihedral angle between them is 31.8 (1) °.
The 4,4-bipyridine and the two acetic acid molecules are further connected through C—H···O weak hydrogen bonds (PLATON, Spek, 2003) involving the carboxyl oxygen atoms (Table 1) to build up a supramolecular two dimensionnal network.parallel to the (0 0 1) plane (Fig. 2).