organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bi­pyridine acetic acid disolvate

aState Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: xray@jlu.edu.cn

(Received 12 November 2007; accepted 22 November 2007; online 6 December 2007)

The crystal structure of the title compound, C10H8N2·2C2H4O2, is built up from 4,4′-bipyridine and acetic acid mol­ecules linked by strong O—H⋯N hydrogen bonds. The 4,4′-bipyridine and the two acetic acid mol­ecules are further connected through weak C—H⋯O hydrogen bonds to form a supra­molecular two-dimensional network parallel to the (001) plane. The two pyridine rings make a dihedral angle of 31.8 (1)°.

Related literature

For related literature, see: Dai et al. (2005[Dai, Y.-M., Huang, J.-F. & Shen, H.-Y. (2005). Acta Cryst. E61, o3919-o3920.]); Li et al. (2005[Li, X.-H., Lei, X.-X. & Wang, S. (2005). Acta Cryst. E61, o1802-o1804.]); Pedireddi et al. (1998[Pedireddi, V. R., Ranganathan, A. & Chatterjee, S. (1998). Tetrahedron Lett. 39, 9831-9834.]); Wang et al. (2006[Wang, Z.-L., Wei, L.-H. & Li, M.-X. (2006). Acta Cryst. E62, o3031-o3032.]). For structural analysis, see: Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2·2C2H4O2

  • Mr = 276.29

  • Monoclinic, P c

  • a = 3.893 (2) Å

  • b = 8.181 (5) Å

  • c = 22.563 (15) Å

  • β = 98.46 (3)°

  • V = 710.7 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 291 (2) K

  • 0.15 × 0.13 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.986, Tmax = 0.988

  • 6467 measured reflections

  • 1595 independent reflections

  • 995 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.119

  • S = 1.04

  • 1595 reflections

  • 185 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N2 0.82 1.86 2.675 (5) 175
O4—H4A⋯N1 0.82 1.84 2.659 (5) 173
C7—H7⋯O1i 0.93 2.62 3.526 (5) 165
C10—H10⋯O3ii 0.93 2.37 3.273 (5) 164
C4—H4⋯O3iii 0.93 2.56 3.397 (6) 150
Symmetry codes: (i) x-1, y-1, z; (ii) x+1, y+1, z; (iii) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2,2-bipyridine is widely used to build up supramolecular network with carboxylic acid (Dai et al., 2005; Li et al., 2005; Pedireddi et al., 1998; Wang et al., 2006). Herein, we report the co-crystal structure of 2,2-bipyridine and acetic acid.

The asymmetric unit of (I) contains one 4,4-bipyridine molecule and two acetic acid molecules linked trough strong O—H···O hydogen bonds (Fig. 1). The two pyridine rings are both planar, with a RMS deviation of fitted atoms being 0.0033 Å and 0.0074 Å, respectively. The dihedral angle between them is 31.8 (1) °.

The 4,4-bipyridine and the two acetic acid molecules are further connected through C—H···O weak hydrogen bonds (PLATON, Spek, 2003) involving the carboxyl oxygen atoms (Table 1) to build up a supramolecular two dimensionnal network.parallel to the (0 0 1) plane (Fig. 2).

Related literature top

For related literature, see: Dai et al. (2005); Li et al. (2005); Pedireddi et al. (1998); Wang et al. (2006). For strutural analysis, se: Spek (2003).

Experimental top

A mixture of 2,2-bipyridine (5 mmol, 0.78 g) and acetic acid (10 mmol, 0.60 g) in water (10 ml) was stirred for 2 h, and filtrate was allowed to evaporate at room temperature. Colorless single crystals of the title compound were formed after two weeks.

Refinement top

All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(Caromatic or O) or Uiso(H) = 1.5Ueq(Cmethyl).

In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Structure description top

2,2-bipyridine is widely used to build up supramolecular network with carboxylic acid (Dai et al., 2005; Li et al., 2005; Pedireddi et al., 1998; Wang et al., 2006). Herein, we report the co-crystal structure of 2,2-bipyridine and acetic acid.

The asymmetric unit of (I) contains one 4,4-bipyridine molecule and two acetic acid molecules linked trough strong O—H···O hydogen bonds (Fig. 1). The two pyridine rings are both planar, with a RMS deviation of fitted atoms being 0.0033 Å and 0.0074 Å, respectively. The dihedral angle between them is 31.8 (1) °.

The 4,4-bipyridine and the two acetic acid molecules are further connected through C—H···O weak hydrogen bonds (PLATON, Spek, 2003) involving the carboxyl oxygen atoms (Table 1) to build up a supramolecular two dimensionnal network.parallel to the (0 0 1) plane (Fig. 2).

For related literature, see: Dai et al. (2005); Li et al. (2005); Pedireddi et al. (1998); Wang et al. (2006). For strutural analysis, se: Spek (2003).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing view showing the Hydrogen bonding network. H atoms not involved in hydrogen bonds have been omitted for clarity.
4,4-Bipyridine acetic acid disolvate top
Crystal data top
C10H8N2·2C2H4O2F(000) = 292
Mr = 276.29Dx = 1.291 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 4188 reflections
a = 3.893 (2) Åθ = 3.1–27.5°
b = 8.181 (5) ŵ = 0.10 mm1
c = 22.563 (15) ÅT = 291 K
β = 98.46 (3)°Block, colorless
V = 710.7 (7) Å30.15 × 0.13 × 0.12 mm
Z = 2
Data collection top
Rigaku RAXIS-RAPID
diffractometer
1595 independent reflections
Radiation source: fine-focus sealed tube995 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 55
Tmin = 0.986, Tmax = 0.988k = 1010
6467 measured reflectionsl = 2924
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.0575P]
where P = (Fo2 + 2Fc2)/3
1595 reflections(Δ/σ)max = 0.003
185 parametersΔρmax = 0.15 e Å3
2 restraintsΔρmin = 0.13 e Å3
Crystal data top
C10H8N2·2C2H4O2V = 710.7 (7) Å3
Mr = 276.29Z = 2
Monoclinic, PcMo Kα radiation
a = 3.893 (2) ŵ = 0.10 mm1
b = 8.181 (5) ÅT = 291 K
c = 22.563 (15) Å0.15 × 0.13 × 0.12 mm
β = 98.46 (3)°
Data collection top
Rigaku RAXIS-RAPID
diffractometer
1595 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
995 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.988Rint = 0.042
6467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0502 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.04Δρmax = 0.15 e Å3
1595 reflectionsΔρmin = 0.13 e Å3
185 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C130.0181 (13)0.0149 (6)0.6249 (2)0.0728 (12)
H13A0.18300.06600.64700.109*
H13B0.16490.09680.60390.109*
H13C0.14370.04230.65210.109*
C140.0919 (10)0.1019 (5)0.5814 (2)0.0568 (10)
C10.4437 (12)0.3978 (5)0.47047 (19)0.0697 (11)
H10.45720.28610.46360.084*
C20.4896 (13)0.5031 (5)0.4247 (2)0.0640 (10)
H20.53060.46220.38790.077*
C30.4742 (9)0.6695 (4)0.43371 (16)0.0488 (9)
C40.4131 (11)0.7207 (5)0.48979 (19)0.0613 (11)
H40.40200.83160.49840.074*
C50.3695 (12)0.6071 (5)0.5321 (2)0.0690 (12)
H50.32850.64410.56940.083*
C60.5176 (9)0.7891 (4)0.38616 (17)0.0483 (9)
C70.4150 (11)0.7538 (5)0.32659 (19)0.0599 (11)
H70.32180.65200.31520.072*
C80.4513 (11)0.8706 (5)0.2839 (2)0.0654 (11)
H80.37700.84490.24400.078*
C90.6937 (12)1.0494 (5)0.35465 (19)0.0649 (11)
H90.79421.15070.36460.078*
C100.6649 (11)0.9422 (5)0.39995 (18)0.0599 (10)
H100.74260.97090.43950.072*
N10.3818 (10)0.4468 (4)0.52352 (16)0.0655 (9)
O10.9176 (9)1.3967 (4)0.29266 (15)0.0859 (11)
O30.0627 (10)0.0786 (4)0.52832 (15)0.0938 (11)
C110.8647 (13)1.5081 (6)0.1948 (2)0.0764 (14)
H11A1.01551.59260.21310.115*
H11B0.64381.55450.17890.115*
H11C0.96641.45850.16300.115*
C120.8156 (11)1.3817 (4)0.2405 (2)0.0565 (10)
N20.5861 (9)1.0176 (4)0.29663 (16)0.0631 (9)
O20.6441 (8)1.2545 (3)0.21698 (13)0.0698 (8)
H2A0.62941.18640.24320.105*
O40.2338 (8)0.2354 (3)0.60567 (13)0.0711 (9)
H4A0.29020.29470.57940.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C130.074 (3)0.066 (3)0.075 (3)0.009 (2)0.001 (2)0.010 (2)
C140.056 (2)0.051 (2)0.061 (3)0.0012 (18)0.0008 (19)0.005 (2)
C10.097 (3)0.050 (2)0.063 (3)0.005 (2)0.013 (2)0.004 (2)
C20.082 (3)0.053 (2)0.057 (2)0.002 (2)0.0112 (19)0.000 (2)
C30.049 (2)0.0470 (19)0.049 (2)0.0035 (17)0.0013 (16)0.0002 (17)
C40.078 (3)0.048 (2)0.058 (3)0.0023 (19)0.012 (2)0.0001 (19)
C50.083 (3)0.070 (3)0.054 (2)0.003 (2)0.013 (2)0.001 (2)
C60.0467 (19)0.0427 (18)0.055 (2)0.0021 (16)0.0050 (16)0.0016 (17)
C70.075 (3)0.048 (2)0.054 (2)0.0082 (19)0.003 (2)0.002 (2)
C80.080 (3)0.056 (2)0.058 (2)0.009 (2)0.004 (2)0.000 (2)
C90.075 (3)0.048 (2)0.070 (3)0.0104 (19)0.003 (2)0.002 (2)
C100.069 (3)0.051 (2)0.056 (2)0.0030 (19)0.001 (2)0.0051 (19)
N10.077 (2)0.058 (2)0.062 (2)0.0027 (17)0.0123 (17)0.0040 (18)
O10.119 (3)0.072 (2)0.062 (2)0.0298 (19)0.0012 (19)0.0039 (17)
O30.143 (3)0.076 (2)0.059 (2)0.021 (2)0.002 (2)0.0126 (18)
C110.079 (3)0.067 (3)0.083 (4)0.012 (2)0.008 (2)0.015 (2)
C120.067 (3)0.044 (2)0.059 (3)0.0042 (19)0.010 (2)0.000 (2)
N20.076 (2)0.0469 (19)0.065 (2)0.0092 (16)0.0076 (17)0.0014 (17)
O20.096 (2)0.0558 (17)0.0559 (18)0.0206 (16)0.0061 (16)0.0045 (13)
O40.098 (2)0.0591 (18)0.0567 (19)0.0146 (16)0.0117 (16)0.0058 (14)
Geometric parameters (Å, º) top
C13—C141.478 (6)C6—C101.393 (5)
C13—H13A0.9600C7—C81.378 (6)
C13—H13B0.9600C7—H70.9300
C13—H13C0.9600C8—N21.326 (5)
C14—O31.201 (5)C8—H80.9300
C14—O41.307 (5)C9—N21.340 (5)
C1—N11.317 (6)C9—C101.364 (6)
C1—C21.377 (6)C9—H90.9300
C1—H10.9300C10—H100.9300
C2—C31.380 (5)O1—C121.191 (5)
C2—H20.9300C11—C121.493 (6)
C3—C41.386 (6)C11—H11A0.9600
C3—C61.480 (5)C11—H11B0.9600
C4—C51.361 (6)C11—H11C0.9600
C4—H40.9300C12—O21.306 (4)
C5—N11.328 (5)O2—H2A0.8200
C5—H50.9300O4—H4A0.8200
C6—C71.375 (5)
C14—C13—H13A109.5C10—C6—C3121.3 (3)
C14—C13—H13B109.5C6—C7—C8119.5 (4)
H13A—C13—H13B109.5C6—C7—H7120.3
C14—C13—H13C109.5C8—C7—H7120.3
H13A—C13—H13C109.5N2—C8—C7123.8 (4)
H13B—C13—H13C109.5N2—C8—H8118.1
O3—C14—O4121.5 (4)C7—C8—H8118.1
O3—C14—C13124.4 (4)N2—C9—C10124.0 (4)
O4—C14—C13114.0 (4)N2—C9—H9118.0
N1—C1—C2123.6 (4)C10—C9—H9118.0
N1—C1—H1118.2C9—C10—C6119.2 (4)
C2—C1—H1118.2C9—C10—H10120.4
C1—C2—C3119.5 (4)C6—C10—H10120.4
C1—C2—H2120.2C1—N1—C5116.6 (4)
C3—C2—H2120.2C12—C11—H11A109.5
C2—C3—C4116.8 (4)C12—C11—H11B109.5
C2—C3—C6122.2 (3)H11A—C11—H11B109.5
C4—C3—C6121.0 (3)C12—C11—H11C109.5
C5—C4—C3119.4 (4)H11A—C11—H11C109.5
C5—C4—H4120.3H11B—C11—H11C109.5
C3—C4—H4120.3O1—C12—O2124.1 (4)
N1—C5—C4124.1 (4)O1—C12—C11123.6 (4)
N1—C5—H5117.9O2—C12—C11112.3 (4)
C4—C5—H5117.9C8—N2—C9116.3 (4)
C7—C6—C10117.3 (3)C12—O2—H2A109.5
C7—C6—C3121.4 (3)C14—O4—H4A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.821.862.675 (5)175
O4—H4A···N10.821.842.659 (5)173
C7—H7···O1i0.932.623.526 (5)165
C10—H10···O3ii0.932.373.273 (5)164
C4—H4···O3iii0.932.563.397 (6)150
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H8N2·2C2H4O2
Mr276.29
Crystal system, space groupMonoclinic, Pc
Temperature (K)291
a, b, c (Å)3.893 (2), 8.181 (5), 22.563 (15)
β (°) 98.46 (3)
V3)710.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.15 × 0.13 × 0.12
Data collection
DiffractometerRigaku RAXIS-RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.986, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
6467, 1595, 995
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.119, 1.04
No. of reflections1595
No. of parameters185
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.13

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996); ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.821.862.675 (5)174.5
O4—H4A···N10.821.842.659 (5)173.1
C7—H7···O1i0.932.623.526 (5)165.2
C10—H10···O3ii0.932.373.273 (5)164.3
C4—H4···O3iii0.932.563.397 (6)150.0
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z; (iii) x, y+1, z.
 

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDai, Y.-M., Huang, J.-F. & Shen, H.-Y. (2005). Acta Cryst. E61, o3919–o3920.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, X.-H., Lei, X.-X. & Wang, S. (2005). Acta Cryst. E61, o1802–o1804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPedireddi, V. R., Ranganathan, A. & Chatterjee, S. (1998). Tetrahedron Lett. 39, 9831–9834.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-L., Wei, L.-H. & Li, M.-X. (2006). Acta Cryst. E62, o3031–o3032.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds