metal-organic compounds
catena-Poly[[[triaquacopper(II)]-μ2-pyrazine-2,3-dicarboxylato] monohydrate]
aDepartment of Chemistry, Sichuan University of Science and Engineering, Zigong, 643000, People's Republic of China, and bDepartment of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000,People's Republic of China
*Correspondence e-mail: wuweipingzg@126.com
The Cu atom in the title complex, {[Cu(C6H2N2O4)(H2O)3]·H2O}n or {[Cu(L)(H2O)3]·H2O}n (L is pyrazine-2,3-dicarboxylate), displays octahedral coordination formed by the ligand L and three coordinated water molecules. The ligand L is tridentate, with one N atom of the pyrazine ring and one O atom of one carboxylate group forming a chelate ring, whereas one O atom from the second carboxylate group is coordinated to another Cu atom. The ligand L links molecules to form an infinite chain parallel to the [101] direction. The chains are further linked through O—H⋯O and O—H⋯N hydrogen bonds involving the water molecules to build up a three-dimensional network.
Related literature
For related literature, see: Gokel et al. (2004); Shan et al. (2001); Starosta & Leciejewicz (2005); Takusagawa & Shimada (1973); Tombul et al. (2007); Ptasiewicz-Bak & Leciejewicz (1997a,b).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536807062800/dn2285sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807062800/dn2285Isup2.hkl
L (0.031 g, 0.018 mmol), CuSO4 (0.018 g, 0.016 mmol) and NaOH(0.048 mmol,0.12 mmol), were added in a mixed solvent of ethanol, the mixture was heated for three hours under reflux. during the process stirring and influx were required. The resultant was then filtered to give a pure solution which was infiltrated by diethyl ether freely in a closed vessel, two weeks later some single crystals of the size suitable for X-Ray diffraction analysis.
All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent
using restraints (O—H= 0.85 (1)Å and H···H= 1.39 (2) Å) with Uiso(H) = 1.5Ueq(O). In the last stage of they were treated as riding on their parent O atoms.Transition metal complexes with bipyridine derivatives are suitable models for the study of
dynamics. In addition, they are of interest for the development of light-energy conversion devices and optical sensors (Gokel et al., 2004; Shan et al., 2001). Since the single-crystal X-ray analysis of pyrazine-2,3 dicarboxylic acid was first determined (Takusagawa & Shimada, 1973), a variety of metal-organic compounds of pyrazine-2,3-dicarboxylic acid have been characterized crystallographically, due to growing interest in supramolecular chemistry (Tombul et al., 2007). These include the calcium (Ptasiewicz-Bak & Leciejewicz, 1997a; Starosta & Leciejewicz, 2005) and magnesium (Ptasiewicz-Bak & Leciejewicz, 1997b) complexes. In this paper, we report the synthesis and of the title complex,(I).The CuII ion displays octahedral coordination formed by the one L ligand and three coordinated water molecules. The ligand L is tridentate with the N atom of the pyridine ring and one O atom of one carboxylate forming a chelate ring whereas one O atom from the second carboxylate is coordinated to another Cu atom (Fig. 1). Then the ligand L links molecules to form an infinite chain parallel to the [1 O 1] direction. The chains are further linked through O—H···O and O—H···N involving the water molecules to build up a three dimensionnal network (Table 1).
For related literature, see: Gokel et al. (2004); Shan et al. (2001); Starosta & Leciejewicz (2005); Takusagawa & Shimada (1973); Tombul et al. (2007); Ptasiewicz-Bak & Leciejewicz (1997a,b).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).Fig. 1. View of compound (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x - 1/2, 1/2 - y, z - 1/2; (ii) 1/2 + x, 1/2 - y, 1/2 + z] |
[Cu(C6H2N2O4)(H2O)3]·H2O | F(000) = 612 |
Mr = 301.70 | Dx = 1.949 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 1683 reflections |
a = 8.4254 (4) Å | θ = 2.3–25.2° |
b = 18.0692 (8) Å | µ = 2.16 mm−1 |
c = 7.4187 (3) Å | T = 298 K |
β = 114.412 (1)° | Block, blue |
V = 1028.45 (8) Å3 | 0.28 × 0.25 × 0.17 mm |
Z = 4 |
Bruker APEXII area-detector diffractometer | 1683 independent reflections |
Radiation source: fine-focus sealed tube | 1654 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.067 |
φ and ω scan | θmax = 25.2°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −10→9 |
Tmin = 0.519, Tmax = 0.660 | k = −21→20 |
3079 measured reflections | l = −8→8 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0632P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
1683 reflections | Δρmax = 0.67 e Å−3 |
156 parameters | Δρmin = −1.08 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 758 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.04 (2) |
[Cu(C6H2N2O4)(H2O)3]·H2O | V = 1028.45 (8) Å3 |
Mr = 301.70 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 8.4254 (4) Å | µ = 2.16 mm−1 |
b = 18.0692 (8) Å | T = 298 K |
c = 7.4187 (3) Å | 0.28 × 0.25 × 0.17 mm |
β = 114.412 (1)° |
Bruker APEXII area-detector diffractometer | 1683 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 1654 reflections with I > 2σ(I) |
Tmin = 0.519, Tmax = 0.660 | Rint = 0.067 |
3079 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.089 | Δρmax = 0.67 e Å−3 |
S = 1.11 | Δρmin = −1.08 e Å−3 |
1683 reflections | Absolute structure: Flack (1983), 758 Friedel pairs |
156 parameters | Absolute structure parameter: −0.04 (2) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.89418 (3) | 0.118643 (19) | 0.89933 (3) | 0.02206 (17) | |
N1 | 0.6873 (5) | 0.18186 (18) | 0.9306 (5) | 0.0277 (8) | |
N2 | 0.4368 (5) | 0.2821 (2) | 0.9255 (5) | 0.0289 (10) | |
O1 | 0.9124 (6) | 0.34477 (15) | 0.9145 (8) | 0.0380 (8) | |
O2 | 0.9816 (4) | 0.22606 (16) | 0.9101 (5) | 0.0311 (7) | |
O3 | 0.5382 (5) | 0.40933 (18) | 0.6974 (4) | 0.0347 (8) | |
O4 | 0.6390 (5) | 0.42851 (17) | 1.0176 (4) | 0.0346 (7) | |
O5 | 0.7715 (5) | 0.01798 (16) | 0.8841 (6) | 0.0428 (8) | |
H5A | 0.8168 | −0.0080 | 0.9872 | 0.064* | |
H5B | 0.6618 | 0.0110 | 0.8202 | 0.064* | |
O6 | 1.1011 (4) | 0.07381 (17) | 0.8605 (4) | 0.0314 (7) | |
H6A | 1.1120 | 0.0292 | 0.9021 | 0.047* | |
H6B | 1.1000 | 0.0780 | 0.7471 | 0.047* | |
O7 | 0.7584 (5) | 0.12285 (15) | 0.5794 (5) | 0.0302 (8) | |
H7A | 0.8141 | 0.1510 | 0.5379 | 0.039 (15)* | |
H7B | 0.6501 | 0.1250 | 0.5249 | 0.033 (16)* | |
C1 | 0.8817 (8) | 0.2773 (2) | 0.9095 (8) | 0.0247 (9) | |
C2 | 0.7074 (6) | 0.2543 (2) | 0.9108 (6) | 0.0229 (9) | |
C3 | 0.5804 (6) | 0.3047 (2) | 0.9043 (6) | 0.0232 (9) | |
C4 | 0.4209 (6) | 0.2097 (3) | 0.9474 (6) | 0.0328 (10) | |
H4 | 0.3237 | 0.1927 | 0.9642 | 0.039* | |
C5 | 0.5417 (6) | 0.1592 (2) | 0.9461 (6) | 0.0322 (10) | |
H5 | 0.5227 | 0.1089 | 0.9561 | 0.039* | |
C7 | 0.5890 (6) | 0.3869 (2) | 0.8690 (7) | 0.0226 (9) | |
O8 | 0.4396 (6) | −0.0183 (3) | 0.7257 (8) | 0.0755 (15) | |
H8A | 0.3537 | 0.0099 | 0.6642 | 0.113* | |
H8B | 0.4043 | −0.0601 | 0.7463 | 0.113* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0207 (2) | 0.0188 (2) | 0.0264 (2) | 0.0014 (2) | 0.00942 (17) | −0.00095 (19) |
N1 | 0.028 (2) | 0.0247 (17) | 0.0301 (16) | −0.0003 (15) | 0.0116 (15) | 0.0023 (14) |
N2 | 0.023 (3) | 0.0329 (18) | 0.031 (2) | −0.0011 (14) | 0.0125 (18) | −0.0029 (15) |
O1 | 0.0243 (17) | 0.0237 (14) | 0.065 (2) | −0.0024 (14) | 0.0179 (14) | 0.0017 (17) |
O2 | 0.0231 (17) | 0.0236 (14) | 0.0479 (16) | 0.0006 (13) | 0.0160 (14) | −0.0014 (13) |
O3 | 0.0441 (19) | 0.0313 (16) | 0.0264 (15) | −0.0016 (15) | 0.0122 (13) | 0.0034 (12) |
O4 | 0.049 (2) | 0.0275 (14) | 0.0286 (14) | −0.0017 (14) | 0.0175 (14) | −0.0071 (12) |
O5 | 0.0312 (17) | 0.0303 (16) | 0.0567 (19) | −0.0052 (14) | 0.0080 (14) | 0.0110 (15) |
O6 | 0.0317 (16) | 0.0314 (14) | 0.0324 (13) | 0.0075 (14) | 0.0145 (12) | 0.0045 (13) |
O7 | 0.0225 (18) | 0.0338 (18) | 0.0320 (19) | −0.0006 (11) | 0.0088 (15) | 0.0049 (11) |
C1 | 0.020 (2) | 0.0256 (18) | 0.0268 (16) | −0.004 (2) | 0.0080 (14) | −0.0001 (18) |
C2 | 0.022 (2) | 0.0225 (19) | 0.0215 (17) | −0.0037 (16) | 0.0063 (15) | −0.0012 (14) |
C3 | 0.019 (2) | 0.027 (2) | 0.0194 (16) | −0.0031 (16) | 0.0039 (14) | −0.0017 (15) |
C4 | 0.029 (3) | 0.035 (2) | 0.042 (3) | −0.009 (2) | 0.023 (2) | −0.0048 (16) |
C5 | 0.034 (3) | 0.0257 (19) | 0.039 (2) | −0.0028 (19) | 0.0162 (18) | −0.0010 (17) |
C7 | 0.020 (2) | 0.025 (2) | 0.024 (2) | 0.0004 (15) | 0.0112 (17) | −0.0018 (14) |
O8 | 0.031 (2) | 0.062 (3) | 0.102 (3) | −0.0071 (18) | −0.004 (2) | 0.021 (2) |
Cu1—O6 | 2.048 (3) | O5—H5A | 0.8422 |
Cu1—O2 | 2.066 (3) | O5—H5B | 0.8559 |
Cu1—O5 | 2.072 (3) | O6—H6A | 0.8539 |
Cu1—O3i | 2.098 (3) | O6—H6B | 0.8410 |
Cu1—O7 | 2.169 (4) | O7—H7A | 0.8328 |
Cu1—N1 | 2.175 (4) | O7—H7B | 0.8323 |
N1—C2 | 1.335 (5) | C1—C2 | 1.530 (7) |
N1—C5 | 1.343 (7) | C2—C3 | 1.391 (6) |
N2—C4 | 1.332 (6) | C3—C7 | 1.515 (5) |
N2—C3 | 1.347 (6) | C4—C5 | 1.369 (7) |
O1—C1 | 1.244 (5) | C4—H4 | 0.9300 |
O2—C1 | 1.249 (6) | C5—H5 | 0.9300 |
O3—C7 | 1.232 (6) | O8—H8A | 0.8483 |
O3—Cu1ii | 2.098 (3) | O8—H8B | 0.8472 |
O4—C7 | 1.255 (5) | ||
O6—Cu1—O2 | 93.81 (13) | Cu1—O6—H6B | 116.5 |
O6—Cu1—O5 | 94.56 (15) | H6A—O6—H6B | 113.7 |
O2—Cu1—O5 | 171.41 (14) | Cu1—O7—H7A | 107.6 |
O6—Cu1—O3i | 84.14 (13) | Cu1—O7—H7B | 120.6 |
O2—Cu1—O3i | 98.28 (13) | H7A—O7—H7B | 117.6 |
O5—Cu1—O3i | 84.50 (14) | O1—C1—O2 | 126.5 (6) |
O6—Cu1—O7 | 87.38 (13) | O1—C1—C2 | 117.0 (5) |
O2—Cu1—O7 | 91.59 (12) | O2—C1—C2 | 116.5 (4) |
O5—Cu1—O7 | 86.87 (14) | N1—C2—C3 | 121.0 (4) |
O3i—Cu1—O7 | 167.38 (13) | N1—C2—C1 | 115.6 (4) |
O6—Cu1—N1 | 171.52 (13) | C3—C2—C1 | 123.2 (4) |
O2—Cu1—N1 | 77.94 (13) | N2—C3—C2 | 120.8 (4) |
O5—Cu1—N1 | 93.62 (15) | N2—C3—C7 | 115.3 (4) |
O3i—Cu1—N1 | 98.85 (14) | C2—C3—C7 | 123.9 (4) |
O7—Cu1—N1 | 90.86 (14) | N2—C4—C5 | 122.8 (5) |
C2—N1—C5 | 118.1 (4) | N2—C4—H4 | 118.6 |
C2—N1—Cu1 | 111.0 (3) | C5—C4—H4 | 118.6 |
C5—N1—Cu1 | 130.5 (3) | N1—C5—C4 | 120.3 (4) |
C4—N2—C3 | 116.9 (4) | N1—C5—H5 | 119.8 |
C1—O2—Cu1 | 117.8 (3) | C4—C5—H5 | 119.8 |
C7—O3—Cu1ii | 144.4 (3) | O3—C7—O4 | 123.9 (4) |
Cu1—O5—H5A | 114.2 | O3—C7—C3 | 118.7 (4) |
Cu1—O5—H5B | 124.0 | O4—C7—C3 | 117.3 (4) |
H5A—O5—H5B | 113.7 | H8A—O8—H8B | 110.3 |
Cu1—O6—H6A | 107.0 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O7iii | 0.84 | 2.30 | 2.953 (4) | 134 |
O5—H5B···O8 | 0.86 | 1.79 | 2.630 (6) | 168 |
O6—H6A···O4iv | 0.85 | 1.98 | 2.837 (4) | 176 |
O6—H6A···O3iv | 0.85 | 2.57 | 3.170 (5) | 128 |
O6—H6B···O4v | 0.84 | 1.87 | 2.691 (4) | 167 |
O7—H7A···N2v | 0.83 | 1.98 | 2.817 (5) | 177 |
O7—H7B···O1ii | 0.83 | 1.90 | 2.719 (6) | 166 |
O8—H8A···O4ii | 0.85 | 2.02 | 2.864 (6) | 176 |
O8—H8B···O1vi | 0.85 | 2.11 | 2.898 (6) | 155 |
Symmetry codes: (ii) x−1/2, −y+1/2, z−1/2; (iii) x, −y, z+1/2; (iv) x+1/2, y−1/2, z; (v) x+1/2, −y+1/2, z−1/2; (vi) x−1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C6H2N2O4)(H2O)3]·H2O |
Mr | 301.70 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 298 |
a, b, c (Å) | 8.4254 (4), 18.0692 (8), 7.4187 (3) |
β (°) | 114.412 (1) |
V (Å3) | 1028.45 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.16 |
Crystal size (mm) | 0.28 × 0.25 × 0.17 |
Data collection | |
Diffractometer | Bruker APEXII area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.519, 0.660 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3079, 1683, 1654 |
Rint | 0.067 |
(sin θ/λ)max (Å−1) | 0.598 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.089, 1.11 |
No. of reflections | 1683 |
No. of parameters | 156 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.67, −1.08 |
Absolute structure | Flack (1983), 758 Friedel pairs |
Absolute structure parameter | −0.04 (2) |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O7i | 0.84 | 2.30 | 2.953 (4) | 134.4 |
O5—H5B···O8 | 0.86 | 1.79 | 2.630 (6) | 167.8 |
O6—H6A···O4ii | 0.85 | 1.98 | 2.837 (4) | 175.8 |
O6—H6A···O3ii | 0.85 | 2.57 | 3.170 (5) | 128.2 |
O6—H6B···O4iii | 0.84 | 1.87 | 2.691 (4) | 166.8 |
O7—H7A···N2iii | 0.83 | 1.98 | 2.817 (5) | 177.1 |
O7—H7B···O1iv | 0.83 | 1.90 | 2.719 (6) | 165.9 |
O8—H8A···O4iv | 0.85 | 2.02 | 2.864 (6) | 176.2 |
O8—H8B···O1v | 0.85 | 2.11 | 2.898 (6) | 154.7 |
Symmetry codes: (i) x, −y, z+1/2; (ii) x+1/2, y−1/2, z; (iii) x+1/2, −y+1/2, z−1/2; (iv) x−1/2, −y+1/2, z−1/2; (v) x−1/2, y−1/2, z. |
Acknowledgements
The authors are grateful to Sichuan University for financial support.
References
Bruker (2004). APEX2 (Version 1.22) and SAINT (Version 6.36A). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gokel, G. W., Leevy, W. M. & Weber, W. E. (2004). Chem. Rev. 104, 2723–2750. Web of Science CrossRef PubMed CAS Google Scholar
Ptasiewicz-Bak, H. & Leciejewicz, J. (1997a). Pol. J. Chem. 71, 493–500. CAS Google Scholar
Ptasiewicz-Bak, H. & Leciejewicz, J. (1997b). Pol. J. Chem. 71, 1603–1610. CAS Google Scholar
Shan, B. Z., Zhao, O., Goswami, N., Eichhorn, D. M. & Rillema, D. P. (2001). Coord. Chem. Rev. 211, 117–144. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2005). J. Coord. Chem. 58, 963–968. Web of Science CSD CrossRef CAS Google Scholar
Takusagawa, T. & Shimada, A. (1973). Chem. Lett. pp. 1121–1126. CrossRef Web of Science Google Scholar
Tombul, M., Güven, K. & Büyükgüngör, O. (2007). Acta Cryst. E63, m1783–m1784. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition metal complexes with bipyridine derivatives are suitable models for the study of excited state dynamics. In addition, they are of interest for the development of light-energy conversion devices and optical sensors (Gokel et al., 2004; Shan et al., 2001). Since the single-crystal X-ray analysis of pyrazine-2,3 dicarboxylic acid was first determined (Takusagawa & Shimada, 1973), a variety of metal-organic compounds of pyrazine-2,3-dicarboxylic acid have been characterized crystallographically, due to growing interest in supramolecular chemistry (Tombul et al., 2007). These include the calcium (Ptasiewicz-Bak & Leciejewicz, 1997a; Starosta & Leciejewicz, 2005) and magnesium (Ptasiewicz-Bak & Leciejewicz, 1997b) complexes. In this paper, we report the synthesis and crystal structure of the title complex,(I).
The CuII ion displays octahedral coordination formed by the one L ligand and three coordinated water molecules. The ligand L is tridentate with the N atom of the pyridine ring and one O atom of one carboxylate forming a chelate ring whereas one O atom from the second carboxylate is coordinated to another Cu atom (Fig. 1). Then the ligand L links molecules to form an infinite chain parallel to the [1 O 1] direction. The chains are further linked through O—H···O and O—H···N involving the water molecules to build up a three dimensionnal network (Table 1).