metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Piperazin-1-ium-κN4)tris­­(thio­cyanato-κN)zinc(II)

aDepartment of Chemistry, College of Science, Shanghai University, Shanghai 200444, People's Republic of China
*Correspondence e-mail: hxiang@shu.edu.cn

(Received 16 November 2007; accepted 2 December 2007; online 6 December 2007)

Hydro­thermal reaction of NaSCN, piperazine, ZnII and 2,6-naphthalenedicarboxylic acid in aqueous solutions gave rise to the title complex, [Zn(NCS)3(C4H11N2)]. The ZnII atom is four-coordinate with distorted tetra­hedral geometry and lies in a mirror plane. N—H⋯S hydrogen bonds assemble the mol­ecules to form a three-dimensional framework.

Related literature

For related literature, see: Bie et al. (2005[Bie, H.-Y., Lu, J., Yu, J.-H., Xu, J.-Q., Zhao, K. & Zhang, X. (2005). J. Solid State Chem. 178, 1445-1451.]); Dai et al. (2002[Dai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Wu, S.-M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sun, Q.-Q. (2002). Inorg. Chem. 41, 1391-1396.]); Gu et al. (2007[Gu, J.-Z., Lu, W.-G., Jiang, L., Zhou, H.-C. & Lu, T.-B. (2007). Inorg. Chem. 46, 5835-5837.]); Liu et al. (2007[Liu, Y.-Y., Yi, L., Ding, B., Huang, Y.-Q. & Cheng, P. (2007). Inorg. Chem. Commun. 10, 517-519.]); Ouyang et al. (2003[Ouyang, X.-M., Liu, D.-J., Okamura, T., Bu, H.-W., Sun, W.-Y., Tang, W.-X. & Ueyama, N. (2003). Dalton Trans. pp. 1836-1845.]); Tao et al. (2003[Tao, J., Yin, X., Jiang, Y.-B., Yang, L.-F., Huang, R.-B. & Zheng, L.-S. (2003). Eur. J. Inorg. Chem. pp. 2678-2682.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NCS)3(C4H11N2)]

  • Mr = 326.72

  • Orthorhombic, P n m a

  • a = 16.8975 (8) Å

  • b = 11.0467 (4) Å

  • c = 7.3097 (3) Å

  • V = 1364.44 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.24 mm−1

  • T = 293 (2) K

  • 0.40 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.830, Tmax = 1.000 (expected range = 0.593–0.715)

  • 3079 measured reflections

  • 1237 independent reflections

  • 901 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.154

  • S = 1.03

  • 1237 reflections

  • 82 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4C⋯S1i 0.90 2.72 3.470 (6) 141
N4—H4D⋯S2ii 0.90 2.38 3.281 (7) 175
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2000[Bruker (2000). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

d10 metal complexes have been found to exhibit intriguing structural and photoluminescent properties (Liu et al., 2007; Dai et al., 2002; Ouyang et al., 2003; Gu et al., 2007; Tao et al., 2003). When trying to prepare the zinc complex containing 2,6-naphthalenedicarboxylic acid, piperazine and thiocyanate ligands by hydrothermal reaction, we did not obtain the expected compound but instead of the tri-isothiocyanato-(piperazinium-N')-zinc(II) compound (I). The new complex has been characterized by elemental analysis and single-crystal diffraction analysis.

The Zn atom adopts a distorted tetrahedral coordination geometry and is coordinated by three N atoms from the thiocyanate anions and one piperazine N atom (Fig. 1). The Zn atom, one thiocyanate ligands and N atoms of piperazine ligands are located on a mirror plane. The Zn—N3 (piperazine) bond length is 2.054 (6) Å and the Zn-NCS bond lengths are almost equal at 1.935 (5) Å for N1 and 1.933 (8) Å for N2, respectively. The N—Zn—N angles are in the range 107.7 (3) ° ~112.3 (3) °. All bond distances and angles are as observed for other zinc(II) complexes with piperazine and thiocyanate ligands (Bie et al., 2005). There are intermolecular N—H···S hydrogen bonds in the compound, which assemble the molecules to form a a three dimensionnal framework.(Table 1 and Fig. 2)

Related literature top

For related literature, see: Bie et al. (2005); Dai et al. (2002); Gu et al. (2007); Liu et al. (2007); Ouyang et al. (2003); Tao et al. (2003).

Experimental top

A mixture of ZnCl2.6H2O (0.49 g, 2 mmol), 2,6-naphthalenedicarboxylic acid (1 mmol, 0.26 g), piperazine (2 mmol, 0.17), NH4SCN (10 mmol, 0.15) and H2O (10 ml) was stirred for 0.5 h at room temperature. The reaction was carried out in a Teflon-lined steel autoclave, which was heated at 160oC for 2 d followed by slow cooling to room temperature. The resulting colorless prism-shaped crystals suitable for X-ray analysis were filtered off and washed with water. Analysis, calculated for C7H11N5S3Zn: C 25.96, H 3.13, N 21.79%; found: C 25.73, H 3.39, N 21.43%.

Refinement top

H atoms were placed in idealized positions, with C—H distances of 0.97 Å, N—H distances of 0.90 Å, and allowed to ride on their respective parent C atoms with the constraint Uiso(H) = 1.2Ueq(C).

Structure description top

d10 metal complexes have been found to exhibit intriguing structural and photoluminescent properties (Liu et al., 2007; Dai et al., 2002; Ouyang et al., 2003; Gu et al., 2007; Tao et al., 2003). When trying to prepare the zinc complex containing 2,6-naphthalenedicarboxylic acid, piperazine and thiocyanate ligands by hydrothermal reaction, we did not obtain the expected compound but instead of the tri-isothiocyanato-(piperazinium-N')-zinc(II) compound (I). The new complex has been characterized by elemental analysis and single-crystal diffraction analysis.

The Zn atom adopts a distorted tetrahedral coordination geometry and is coordinated by three N atoms from the thiocyanate anions and one piperazine N atom (Fig. 1). The Zn atom, one thiocyanate ligands and N atoms of piperazine ligands are located on a mirror plane. The Zn—N3 (piperazine) bond length is 2.054 (6) Å and the Zn-NCS bond lengths are almost equal at 1.935 (5) Å for N1 and 1.933 (8) Å for N2, respectively. The N—Zn—N angles are in the range 107.7 (3) ° ~112.3 (3) °. All bond distances and angles are as observed for other zinc(II) complexes with piperazine and thiocyanate ligands (Bie et al., 2005). There are intermolecular N—H···S hydrogen bonds in the compound, which assemble the molecules to form a a three dimensionnal framework.(Table 1 and Fig. 2)

For related literature, see: Bie et al. (2005); Dai et al. (2002); Gu et al. (2007); Liu et al. (2007); Ouyang et al. (2003); Tao et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. View of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. [symmetry codes: (i) x,-y + 1/2,z].
[Figure 2] Fig. 2. Crystal packing diagram of compound (I), Hydrogen bonding is indicated by dashed lines.
(Piperazin-1-ium-κN4)tris(thiocyanato-κN)zinc(II) top
Crystal data top
[Zn(NCS)3(C4H11N2)]F(000) = 664
Mr = 326.72Dx = 1.590 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 75 reflections
a = 16.8975 (8) Åθ = 3.0–25.0°
b = 11.0467 (4) ŵ = 2.24 mm1
c = 7.3097 (3) ÅT = 293 K
V = 1364.44 (10) Å3Prism, colorless
Z = 40.40 × 0.20 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1237 independent reflections
Radiation source: fine-focus sealed tube901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1913
Tmin = 0.830, Tmax = 1.000k = 138
3079 measured reflectionsl = 87
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0605P)2]
where P = (Fo2 + 2Fc2)/3
1237 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Zn(NCS)3(C4H11N2)]V = 1364.44 (10) Å3
Mr = 326.72Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 16.8975 (8) ŵ = 2.24 mm1
b = 11.0467 (4) ÅT = 293 K
c = 7.3097 (3) Å0.40 × 0.20 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1237 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
901 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 1.000Rint = 0.055
3079 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.03Δρmax = 0.62 e Å3
1237 reflectionsΔρmin = 0.48 e Å3
82 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.02672 (5)0.25000.08930 (13)0.0469 (4)
S10.10918 (11)0.59639 (14)0.4058 (3)0.0696 (6)
S20.24789 (14)0.25000.1884 (4)0.0884 (10)
N10.0695 (3)0.3956 (5)0.1985 (8)0.0658 (16)
N20.0875 (4)0.25000.1112 (11)0.073 (2)
N30.0549 (3)0.25000.1831 (8)0.0402 (15)
H3C0.00770.25000.24300.048*
N40.2239 (4)0.25000.2443 (9)0.060 (2)
H4C0.27290.25000.19640.072*
H4D0.22850.25000.36700.072*
C10.0871 (3)0.4790 (5)0.2800 (8)0.0456 (14)
C20.1538 (5)0.25000.1416 (11)0.050 (2)
C30.0968 (3)0.1421 (6)0.2496 (9)0.0622 (17)
H3A0.06970.07020.20630.075*
H3B0.09560.14120.38220.075*
C40.1817 (3)0.1387 (5)0.1857 (9)0.0579 (17)
H4A0.20790.06820.23660.069*
H4B0.18330.13230.05340.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0334 (6)0.0679 (7)0.0394 (7)0.0000.0036 (5)0.000
S10.0691 (12)0.0427 (9)0.0970 (15)0.0117 (8)0.0099 (11)0.0037 (8)
S20.0325 (14)0.185 (3)0.0474 (17)0.0000.0027 (12)0.000
N10.057 (4)0.072 (4)0.068 (4)0.000 (3)0.001 (3)0.028 (3)
N20.033 (4)0.129 (7)0.056 (5)0.0000.007 (4)0.000
N30.027 (3)0.057 (4)0.037 (4)0.0000.000 (3)0.000
N40.033 (4)0.104 (6)0.044 (5)0.0000.003 (4)0.000
C10.036 (3)0.055 (4)0.046 (4)0.009 (3)0.009 (3)0.014 (3)
C20.044 (6)0.078 (6)0.028 (5)0.0000.004 (4)0.000
C30.054 (4)0.076 (4)0.056 (4)0.005 (3)0.004 (4)0.015 (3)
C40.050 (4)0.066 (4)0.057 (4)0.014 (3)0.007 (3)0.006 (3)
Geometric parameters (Å, º) top
Zn1—N21.937 (8)N3—H3C0.9100
Zn1—N1i1.936 (5)N4—C41.484 (7)
Zn1—N11.936 (5)N4—C4i1.484 (7)
Zn1—N32.048 (6)N4—H4C0.9000
S1—C11.633 (7)N4—H4D0.9000
S2—C21.626 (9)C3—C41.509 (7)
N1—C11.136 (7)C3—H3A0.9700
N2—C21.143 (10)C3—H3B0.9700
N3—C3i1.469 (6)C4—H4A0.9700
N3—C31.469 (6)C4—H4B0.9700
N2—Zn1—N1i109.77 (18)C4—N4—H4D109.2
N2—Zn1—N1109.77 (18)C4i—N4—H4D109.2
N1i—Zn1—N1112.4 (3)H4C—N4—H4D107.9
N2—Zn1—N3108.2 (3)N1—C1—S1176.9 (6)
N1i—Zn1—N3108.30 (19)N2—C2—S2179.0 (8)
N1—Zn1—N3108.30 (19)N3—C3—C4112.1 (5)
C1—N1—Zn1170.9 (5)N3—C3—H3A109.2
C2—N2—Zn1173.5 (8)C4—C3—H3A109.2
C3i—N3—C3108.5 (6)N3—C3—H3B109.2
C3i—N3—Zn1115.7 (4)C4—C3—H3B109.2
C3—N3—Zn1115.7 (4)H3A—C3—H3B107.9
C3i—N3—H3C105.3N4—C4—C3110.3 (5)
C3—N3—H3C105.3N4—C4—H4A109.6
Zn1—N3—H3C105.3C3—C4—H4A109.6
C4—N4—C4i111.9 (6)N4—C4—H4B109.6
C4—N4—H4C109.2C3—C4—H4B109.6
C4i—N4—H4C109.2H4A—C4—H4B108.1
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4C···S1ii0.902.723.470 (6)141
N4—H4D···S2iii0.902.383.281 (7)175
Symmetry codes: (ii) x+1/2, y+1, z+1/2; (iii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(NCS)3(C4H11N2)]
Mr326.72
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)16.8975 (8), 11.0467 (4), 7.3097 (3)
V3)1364.44 (10)
Z4
Radiation typeMo Kα
µ (mm1)2.24
Crystal size (mm)0.40 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.830, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3079, 1237, 901
Rint0.055
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.154, 1.03
No. of reflections1237
No. of parameters82
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.48

Computer programs: APEX2 (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4C···S1i0.902.723.470 (6)141.4
N4—H4D···S2ii0.902.383.281 (7)175.4
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y, z+1/2.
 

Acknowledgements

The project was supported by the Development Foundation of Shanghai Municipal Education Commission, China, and the Science Foundation for Excellent Young Scholars of Higher Education of Shanghai.

References

First citationBie, H.-Y., Lu, J., Yu, J.-H., Xu, J.-Q., Zhao, K. & Zhang, X. (2005). J. Solid State Chem. 178, 1445–1451.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Wu, S.-M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sun, Q.-Q. (2002). Inorg. Chem. 41, 1391–1396.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGu, J.-Z., Lu, W.-G., Jiang, L., Zhou, H.-C. & Lu, T.-B. (2007). Inorg. Chem. 46, 5835–5837.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, Y.-Y., Yi, L., Ding, B., Huang, Y.-Q. & Cheng, P. (2007). Inorg. Chem. Commun. 10, 517–519.  Web of Science CSD CrossRef CAS Google Scholar
First citationOuyang, X.-M., Liu, D.-J., Okamura, T., Bu, H.-W., Sun, W.-Y., Tang, W.-X. & Ueyama, N. (2003). Dalton Trans. pp. 1836–1845.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTao, J., Yin, X., Jiang, Y.-B., Yang, L.-F., Huang, R.-B. & Zheng, L.-S. (2003). Eur. J. Inorg. Chem. pp. 2678–2682.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds