metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua­nickel(II)]-μ2-4,4′-bi­pyridine-κ2N:N′-μ-p-phenyl­ene­dioxy­di­acetato-κ2O:O′]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: fengsu60@yahoo.cn

(Received 16 November 2007; accepted 24 November 2007; online 6 December 2007)

The title coordination polymer, [Ni(C10H8O6)(C10H8N2)(H2O)2]n, was obtained by the hydro­thermal reaction of nickel(II) sulfate, benzene-1,4-dioxy­diacetic acid (p-phenyl­enedioxy­diacetic acid) and 4,4′-bipyridine (4,4′-bpy) in alkaline aqueous solution. Each NiII atom is coordinated by two O atoms from two benzene-1,4-dioxy­diacetate ligands, two N atoms from two 4,4′-bpy ligands and two water mol­ecules, and displays a distorted octa­hedral geometry. The NiII atom and benzene-1,4-dioxy­diacetate and 4,4′-bpy moieties lie on inversion centres. The benzene-1,4-dioxy­diacetate ligands bridge the NiII atoms to form infinite zigzag chains, which are further inter­connected by 4,4′-bpy ligands to form a grid-like layer parallel to the (0[\overline{1}]1) plane. Moreover, there are O—H⋯O hydrogen-bonding inter­actions within the grid-like layer between the coordinated water mol­ecules and the carboxyl­ate O atoms.

Related literature

For related literature, see: Gao et al. (2005[Gao, S., Liu, J.-W., Huo, L.-H., Xu, Y.-M. & Zhao, H. (2005). Inorg. Chem. Commun. 8, 361-364.]); Hong et al. (2006[Hong, X.-L., Li, Y.-Z., Hu, H. M., Pan, Y., Bai, J. F. & You, X.-Z. (2006). Cryst. Growth Des. 6, 1221-1224.]); Qiu et al. (2006[Qiu, Y.-C., Chen, C.-L., Zeng, R.-H., Cai, Y.-P. & Deng, H. (2006). Acta Cryst. E62, m1979-m1981.], 2007[Qiu, Y. C., Daiguebonne, C., Liu, J. Q., Zeng, R. H., Kerbellec, N., Deng, H. & Guillou, O. (2007). Inorg. Chim. Acta, 360, 3265-3271.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C10H8O6)(C10H8N2)(H2O)2]

  • Mr = 475.09

  • Triclinic, [P \overline 1]

  • a = 5.7541 (1) Å

  • b = 8.1704 (1) Å

  • c = 10.6437 (2) Å

  • α = 106.157 (1)°

  • β = 96.818 (1)°

  • γ = 97.341 (1)°

  • V = 470.40 (1) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 293 (2) K

  • 0.26 × 0.23 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 (Version 1.22), SAINT (Version 6.0) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.765, Tmax = 0.820

  • 6907 measured reflections

  • 1952 independent reflections

  • 1769 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.086

  • S = 1.08

  • 1952 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

N1—Ni1 2.1735 (18)
Ni1—O1 2.0869 (15)
Ni1—O1W 2.1245 (16)
O1—Ni1—O1W 87.83 (6)
O1—Ni1—N1 89.77 (7)
O1W—Ni1—N1 91.96 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2i 0.82 1.81 2.605 (2) 163
O1W—H2W⋯O1ii 0.81 2.21 2.962 (2) 155
Symmetry codes: (i) -x, -y+2, -z+2; (ii) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 1.22), SAINT (Version 6.0) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 (Version 1.22), SAINT (Version 6.0) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzene-1,4-dioxydiacetic acid is an important biologically active compound that has been commonly used in herbicides and plant-growth agents. The two phenoxyacetate groups have versatile bonding modes to metal ions and easily forms complexes (Gao et al., 2005; Hong et al., 2006; Qiu et al., 2006; Qiu et al., 2007). Recently, we obtained the title nickel polymer (I), its crystal structure is reported here.

In the structure of (I) each NiII atom is coordinated by two O atoms from two benzene-1,4-dioxydiacetate ligands, two N atom from two 4,4'-bpy ligands, and displays a distorted octahedral geometry. The Ni atom lies on an inversion center and benzene-1,4-dioxydiacetate and 4,4'-bpy moieties lie other inversion centers. The benzene-1,4-dioxydiacetate ligands bridge nickel ions to form infinite zigzag chains, which are further interconnected by 4,4'-bpy ligands to form a grid-like layer parallel to the (0 - 1 1) plane (Fig. 2). Moreover, there are O—H···O hydrogen bonding interactions within the grid-like layer between the coordinated water molecules and the carboxylate O atoms (Table 1).

Related literature top

For related literature, see: Gao et al. (2005); Hong et al. (2006); Qiu et al. (2006, 2007).

Experimental top

A mixture of NiSO4 (0.5 mmol), benzene-1,4-dioxydiacetic acid (0.5 mmol), 4,4'-bipyridine (0.5 mmol), NaOH (1 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated at 433 K for three days and then cooled to room temperature at a rate of 5 K h-1. Single crystals were obtained after washing with water and drying in air.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene and Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H = 0.82 (1) Å and H···H = 1.34 (2) Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement, they were treated as riding on their parent O atoms.

Structure description top

Benzene-1,4-dioxydiacetic acid is an important biologically active compound that has been commonly used in herbicides and plant-growth agents. The two phenoxyacetate groups have versatile bonding modes to metal ions and easily forms complexes (Gao et al., 2005; Hong et al., 2006; Qiu et al., 2006; Qiu et al., 2007). Recently, we obtained the title nickel polymer (I), its crystal structure is reported here.

In the structure of (I) each NiII atom is coordinated by two O atoms from two benzene-1,4-dioxydiacetate ligands, two N atom from two 4,4'-bpy ligands, and displays a distorted octahedral geometry. The Ni atom lies on an inversion center and benzene-1,4-dioxydiacetate and 4,4'-bpy moieties lie other inversion centers. The benzene-1,4-dioxydiacetate ligands bridge nickel ions to form infinite zigzag chains, which are further interconnected by 4,4'-bpy ligands to form a grid-like layer parallel to the (0 - 1 1) plane (Fig. 2). Moreover, there are O—H···O hydrogen bonding interactions within the grid-like layer between the coordinated water molecules and the carboxylate O atoms (Table 1).

For related literature, see: Gao et al. (2005); Hong et al. (2006); Qiu et al. (2006, 2007).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII within PLATON (Spek, 2003) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 3; (iii) -x, -y + 2, -z + 2]]
[Figure 2] Fig. 2. The two-dimensional layer structure of the title compound, viewed along the a axis.
Poly[[diaquanickel(II)]-µ2-4,4'-bipyridine-κ2N:N'- µ-p-phenylenedioxydiacetato-κ2O:O'] top
Crystal data top
[Ni(C10H8O6)(C10H8N2)(H2O)2]Z = 1
Mr = 475.09F(000) = 246
Triclinic, P1Dx = 1.677 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7541 (1) ÅCell parameters from 1800 reflections
b = 8.1704 (1) Åθ = 1.4–28.0°
c = 10.6437 (2) ŵ = 1.09 mm1
α = 106.157 (1)°T = 293 K
β = 96.818 (1)°Block, green
γ = 97.341 (1)°0.26 × 0.23 × 0.19 mm
V = 470.40 (1) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
1952 independent reflections
Radiation source: fine-focus sealed tube1769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 26.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 77
Tmin = 0.765, Tmax = 0.820k = 810
6907 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.4701P]
where P = (Fo2 + 2Fc2)/3
1952 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Ni(C10H8O6)(C10H8N2)(H2O)2]γ = 97.341 (1)°
Mr = 475.09V = 470.40 (1) Å3
Triclinic, P1Z = 1
a = 5.7541 (1) ÅMo Kα radiation
b = 8.1704 (1) ŵ = 1.09 mm1
c = 10.6437 (2) ÅT = 293 K
α = 106.157 (1)°0.26 × 0.23 × 0.19 mm
β = 96.818 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
1952 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1769 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.820Rint = 0.026
6907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.08Δρmax = 0.32 e Å3
1952 reflectionsΔρmin = 0.38 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1666 (4)0.7074 (3)0.7930 (2)0.0318 (6)
H10.28760.72170.86330.038*
C20.1734 (4)0.5879 (3)0.6736 (2)0.0314 (6)
H20.29650.52400.66550.038*
C30.0019 (4)0.5624 (3)0.5655 (2)0.0201 (5)
C40.1819 (4)0.6612 (3)0.5876 (2)0.0262 (5)
H40.30580.64870.51920.031*
C50.1772 (4)0.7772 (3)0.7101 (2)0.0264 (5)
H50.30050.84050.72180.032*
C60.1281 (4)0.7277 (3)1.1257 (2)0.0253 (5)
C70.3161 (5)0.6440 (3)1.1868 (3)0.0327 (6)
H7A0.24570.58541.24440.039*
H7B0.36330.55721.11630.039*
C80.5001 (4)0.8782 (3)1.3782 (2)0.0273 (5)
C90.6973 (4)1.0042 (3)1.4391 (3)0.0315 (6)
H90.83071.00791.39780.038*
C100.6996 (4)1.1242 (3)1.5598 (3)0.0315 (6)
H100.83441.20671.59970.038*
N10.0044 (3)0.8038 (2)0.81332 (18)0.0227 (4)
Ni10.00001.00001.00000.02315 (14)
O10.2019 (3)0.8651 (2)1.09891 (15)0.0251 (4)
O20.0799 (3)0.6527 (2)1.1047 (2)0.0427 (5)
O30.5228 (3)0.7621 (2)1.26119 (17)0.0332 (4)
O1W0.3239 (3)1.1425 (2)0.98244 (16)0.0289 (4)
H1W0.27331.21830.95560.043*
H2W0.43071.11220.94240.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0272 (12)0.0431 (15)0.0187 (12)0.0114 (11)0.0037 (9)0.0003 (11)
C20.0272 (12)0.0421 (15)0.0207 (12)0.0160 (11)0.0006 (9)0.0009 (11)
C30.0237 (11)0.0198 (11)0.0155 (11)0.0018 (9)0.0034 (9)0.0040 (9)
C40.0279 (12)0.0282 (12)0.0186 (11)0.0084 (9)0.0033 (9)0.0019 (9)
C50.0281 (12)0.0257 (12)0.0233 (12)0.0104 (9)0.0010 (9)0.0025 (10)
C60.0307 (12)0.0254 (12)0.0201 (11)0.0100 (10)0.0063 (9)0.0040 (9)
C70.0391 (14)0.0283 (13)0.0327 (14)0.0099 (11)0.0040 (11)0.0111 (11)
C80.0275 (11)0.0332 (13)0.0256 (12)0.0098 (10)0.0017 (9)0.0145 (10)
C90.0228 (11)0.0448 (15)0.0318 (14)0.0072 (10)0.0079 (10)0.0175 (12)
C100.0246 (11)0.0379 (14)0.0326 (14)0.0008 (10)0.0026 (10)0.0142 (11)
N10.0247 (9)0.0231 (10)0.0175 (9)0.0040 (8)0.0035 (8)0.0014 (8)
Ni10.0242 (2)0.0247 (2)0.0187 (2)0.00564 (16)0.00278 (16)0.00319 (17)
O10.0280 (8)0.0250 (9)0.0221 (8)0.0067 (7)0.0013 (7)0.0070 (7)
O20.0309 (10)0.0373 (11)0.0653 (14)0.0067 (8)0.0079 (9)0.0234 (10)
O30.0301 (9)0.0409 (11)0.0281 (9)0.0112 (8)0.0036 (7)0.0077 (8)
O1W0.0231 (8)0.0335 (9)0.0317 (9)0.0058 (7)0.0060 (7)0.0110 (8)
Geometric parameters (Å, º) top
C1—N11.338 (3)C7—H7B0.9700
C1—C21.379 (3)C8—O31.372 (3)
C1—H10.9300C8—C91.387 (3)
C2—C31.386 (3)C8—C10ii1.392 (3)
C2—H20.9300C9—C101.380 (4)
C3—C41.395 (3)C9—H90.9300
C3—C3i1.486 (4)C10—C8ii1.392 (3)
C4—C51.377 (3)C10—H100.9300
C4—H40.9300N1—Ni12.1735 (18)
C5—N11.340 (3)Ni1—O12.0869 (15)
C5—H50.9300Ni1—O1iii2.0869 (15)
C6—O21.237 (3)Ni1—O1Wiii2.1245 (16)
C6—O11.268 (3)Ni1—O1W2.1245 (16)
C6—C71.526 (3)Ni1—N1iii2.1735 (18)
C7—O31.425 (3)O1W—H1W0.8206
C7—H7A0.9700O1W—H2W0.8144
N1—C1—C2123.6 (2)C10—C9—H9119.3
N1—C1—H1118.2C8—C9—H9119.3
C2—C1—H1118.2C9—C10—C8ii119.9 (2)
C1—C2—C3120.4 (2)C9—C10—H10120.0
C1—C2—H2119.8C8ii—C10—H10120.0
C3—C2—H2119.8C1—N1—C5116.27 (19)
C2—C3—C4115.8 (2)C1—N1—Ni1122.60 (15)
C2—C3—C3i122.1 (2)C5—N1—Ni1121.09 (15)
C4—C3—C3i122.1 (2)O1—Ni1—O1iii180.000 (1)
C5—C4—C3120.3 (2)O1—Ni1—O1Wiii92.17 (6)
C5—C4—H4119.8O1iii—Ni1—O1Wiii87.83 (6)
C3—C4—H4119.8O1—Ni1—O1W87.83 (6)
N1—C5—C4123.5 (2)O1iii—Ni1—O1W92.17 (6)
N1—C5—H5118.3O1Wiii—Ni1—O1W180.0
C4—C5—H5118.3O1—Ni1—N1iii90.23 (7)
O2—C6—O1126.6 (2)O1iii—Ni1—N1iii89.77 (7)
O2—C6—C7116.8 (2)O1Wiii—Ni1—N1iii91.96 (7)
O1—C6—C7116.6 (2)O1W—Ni1—N1iii88.04 (7)
O3—C7—C6114.3 (2)O1—Ni1—N189.77 (7)
O3—C7—H7A108.7O1iii—Ni1—N190.23 (7)
C6—C7—H7A108.7O1Wiii—Ni1—N188.04 (7)
O3—C7—H7B108.7O1W—Ni1—N191.96 (7)
C6—C7—H7B108.7N1iii—Ni1—N1180.000 (1)
H7A—C7—H7B107.6C6—O1—Ni1126.73 (15)
O3—C8—C9115.9 (2)C8—O3—C7117.78 (19)
O3—C8—C10ii125.3 (2)Ni1—O1W—H1W100.2
C9—C8—C10ii118.8 (2)Ni1—O1W—H2W131.1
C10—C9—C8121.3 (2)H1W—O1W—H2W108.2
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+3; (iii) x, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2iii0.821.812.605 (2)163
O1W—H2W···O1iv0.812.212.962 (2)155
Symmetry codes: (iii) x, y+2, z+2; (iv) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Ni(C10H8O6)(C10H8N2)(H2O)2]
Mr475.09
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.7541 (1), 8.1704 (1), 10.6437 (2)
α, β, γ (°)106.157 (1), 96.818 (1), 97.341 (1)
V3)470.40 (1)
Z1
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.26 × 0.23 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.765, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
6907, 1952, 1769
Rint0.026
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 1.08
No. of reflections1952
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.38

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII within PLATON (Spek, 2003) and CAMERON (Watkin et al., 1993).

Selected geometric parameters (Å, º) top
N1—Ni12.1735 (18)Ni1—O1W2.1245 (16)
Ni1—O12.0869 (15)
O1—Ni1—O1W87.83 (6)O1W—Ni1—N191.96 (7)
O1—Ni1—N189.77 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2i0.821.812.605 (2)163.2
O1W—H2W···O1ii0.812.212.962 (2)154.7
Symmetry codes: (i) x, y+2, z+2; (ii) x+1, y+2, z+2.
 

Acknowledgements

The authors thank South China Normal University for supporting this study.

References

First citationBruker (2004). APEX2 (Version 1.22), SAINT (Version 6.0) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, S., Liu, J.-W., Huo, L.-H., Xu, Y.-M. & Zhao, H. (2005). Inorg. Chem. Commun. 8, 361–364.  Web of Science CSD CrossRef CAS Google Scholar
First citationHong, X.-L., Li, Y.-Z., Hu, H. M., Pan, Y., Bai, J. F. & You, X.-Z. (2006). Cryst. Growth Des. 6, 1221–1224.  Web of Science CSD CrossRef CAS Google Scholar
First citationQiu, Y.-C., Chen, C.-L., Zeng, R.-H., Cai, Y.-P. & Deng, H. (2006). Acta Cryst. E62, m1979–m1981.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, Y. C., Daiguebonne, C., Liu, J. Q., Zeng, R. H., Kerbellec, N., Deng, H. & Guillou, O. (2007). Inorg. Chim. Acta, 360, 3265–3271.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds