organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­chloro-N-(2,3-di­methyl­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 18 November 2007; accepted 29 November 2007; online 12 December 2007)

The conformation of the N—H bond in the title compound, C10H11Cl2NO, is syn to both the 2- and 3-methyl substituents in the aromatic ring, similar to that of the 2-chloro and 3-chloro substituents in 2,2-dichloro-N-(2,3-dichloro­phen­yl)acetamide and the 2-methyl substituent in 2,2-dichloro-N-(2-methyl­phen­yl)acetamide, but in contrast to the anti conformation observed with respect to the 3-methyl substituent in 2,2-dichloro-N-(3-methyl­phen­yl)acetamide. The bond parameters in the title compound are similar to those in 2,2-dichloro-N-phenyl­acetamide and other acetanilides. The mol­ecules of the title compound are linked into chains through N—H⋯O and C—H⋯O hydrogen bonding.

Related literature

For related literature, see: Gowda et al. (2006[Gowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. T. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675-682.]); Gowda, Foro & Fuess (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o4708.]); Gowda, Kozisek et al. (2007[Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91-100.]); Shilpa & Gowda (2007[Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84-90.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11Cl2NO

  • Mr = 232.10

  • Monoclinic, C 2/c

  • a = 21.516 (8) Å

  • b = 4.678 (2) Å

  • c = 22.179 (9) Å

  • β = 91.54 (2)°

  • V = 2231.6 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 297 (2) K

  • 0.60 × 0.16 × 0.12 mm

Data collection
  • Stoe STADI4 4-circle diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.918, Tmax = 0.942

  • 3934 measured reflections

  • 1969 independent reflections

  • 1595 reflections with I > 2σ(I)

  • Rint = 0.016

  • 3 standard reflections frequency: 180 min intensity decay: 6%

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.102

  • S = 1.07

  • 1969 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6N⋯O5i 0.78 (3) 2.07 (3) 2.830 (2) 165 (2)
C3—H3⋯O5i 0.98 2.31 3.100 (3) 137
Symmetry code: (i) x, y+1, z.

Data collection: STADI4 (Stoe & Cie, 1987[Stoe & Cie (1987). STADI4 and REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). STADI4 and REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, the structure of 2,2-Dichloro-N- (2,3-dimethylphenyl)acetamide (23DMPDCA) has been determined as part of a study of the substituent effects on the structures of N-aromatic amides (Gowda et al., 2006; Gowda, Foro & Fuess, 2007; Gowda, Kozisek et al., 2007). The conformation of the N—H bond in 23DMPDCA is syn to both the 2- and 3-methyl substituents in the aromatic ring (Fig. 1), similar to that of 2-chloro and 3-chloro substi tuents in the 2,2-dichloro-N-(2,3-dichlorophenyl)acetamide (23DCPDCA) (Gowda, Foro & Fuess, 2007) and 2-methyl substituent in 2,2-Dichloro-N- (2-methylphenyl)acetamide (2MPDCA)(Gowda et al., 2006), but in contrast to the anti conformation observed with respect to the 3-methyl substituent in the 2,2-Dichloro-N-(3-methylphenyl)acetamide(3MPDCA)(Gowda et al., 2006). The bond parameters in 23DMPDCA are similar to those in 2,2-dichloro-N- (phenyl)acetamide, 2MPDCA, 3MPDCA (Gowda et al., 2006), 23DCPDCA (Gowda, Foro & Fuess, 2007) and other acetanilides. The molecules in 23DMPDcA are linked into infinite chains through simultaneous N—H···O and C—H···O hydrogen bonding (Table 1 and Fig.2).

Related literature top

For related literature, see: Gowda et al. (2006); Gowda, Foro & Fuess (2007); Gowda, Kozisek et al. (2007); Shilpa & Gowda (2007).

Experimental top

The title compound was prepared according to the literature method (Shilpa & Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa & Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å (CH aromatic) or 0.96 Å (CH3) or 0.98 Å (CHCl2) and N—H = 0.86 Å with Uiso(H) = 1.2 Ueq(CH or NH) and Uiso(H) = 1.4 Ueq(CH3).

Structure description top

In the present work, the structure of 2,2-Dichloro-N- (2,3-dimethylphenyl)acetamide (23DMPDCA) has been determined as part of a study of the substituent effects on the structures of N-aromatic amides (Gowda et al., 2006; Gowda, Foro & Fuess, 2007; Gowda, Kozisek et al., 2007). The conformation of the N—H bond in 23DMPDCA is syn to both the 2- and 3-methyl substituents in the aromatic ring (Fig. 1), similar to that of 2-chloro and 3-chloro substi tuents in the 2,2-dichloro-N-(2,3-dichlorophenyl)acetamide (23DCPDCA) (Gowda, Foro & Fuess, 2007) and 2-methyl substituent in 2,2-Dichloro-N- (2-methylphenyl)acetamide (2MPDCA)(Gowda et al., 2006), but in contrast to the anti conformation observed with respect to the 3-methyl substituent in the 2,2-Dichloro-N-(3-methylphenyl)acetamide(3MPDCA)(Gowda et al., 2006). The bond parameters in 23DMPDCA are similar to those in 2,2-dichloro-N- (phenyl)acetamide, 2MPDCA, 3MPDCA (Gowda et al., 2006), 23DCPDCA (Gowda, Foro & Fuess, 2007) and other acetanilides. The molecules in 23DMPDcA are linked into infinite chains through simultaneous N—H···O and C—H···O hydrogen bonding (Table 1 and Fig.2).

For related literature, see: Gowda et al. (2006); Gowda, Foro & Fuess (2007); Gowda, Kozisek et al. (2007); Shilpa & Gowda (2007).

Computing details top

Data collection: STADI4 (Stoe & Cie, 1987); cell refinement: STADI4 (Stoe & Cie, 1987); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); ORTEP-3 for Windows (Farrugia, 1997); PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view of the title compound with hydrogen bonding shown as dashed lines.[Symmetry code: (i) x, 1 + x, y]
2,2-Dichloro-N-(2,3-dimethylphenyl)acetamide top
Crystal data top
C10H11Cl2NOF(000) = 960
Mr = 232.10Dx = 1.382 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 44 reflections
a = 21.516 (8) Åθ = 18.0–20.6°
b = 4.678 (2) ŵ = 0.55 mm1
c = 22.179 (9) ÅT = 297 K
β = 91.54 (2)°Needle, light yellow
V = 2231.6 (16) Å30.60 × 0.16 × 0.12 mm
Z = 8
Data collection top
Stoe STADI4 4-circle
diffractometer
1595 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 25.0°, θmin = 1.8°
Profile fitted scans 2θ/ω=1/1h = 2525
Absorption correction: ψ scan
(North et al., 1968)
k = 05
Tmin = 0.918, Tmax = 0.942l = 026
3934 measured reflections3 standard reflections every 180 min
1969 independent reflections intensity decay: 6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0405P)2 + 2.0597P]
where P = (Fo2 + 2Fc2)/3
1969 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C10H11Cl2NOV = 2231.6 (16) Å3
Mr = 232.10Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.516 (8) ŵ = 0.55 mm1
b = 4.678 (2) ÅT = 297 K
c = 22.179 (9) Å0.60 × 0.16 × 0.12 mm
β = 91.54 (2)°
Data collection top
Stoe STADI4 4-circle
diffractometer
1595 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.016
Tmin = 0.918, Tmax = 0.9423 standard reflections every 180 min
3934 measured reflections intensity decay: 6%
1969 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.24 e Å3
1969 reflectionsΔρmin = 0.28 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45285 (3)0.09175 (16)0.44140 (4)0.0836 (3)
Cl20.41708 (4)0.3272 (2)0.32575 (3)0.0945 (3)
C30.39612 (9)0.2882 (4)0.40110 (10)0.0504 (5)
H30.39230.47780.41940.061*
C40.33333 (10)0.1369 (4)0.40248 (11)0.0510 (5)
O50.33048 (8)0.1222 (3)0.40441 (12)0.0912 (7)
N60.28502 (8)0.3103 (4)0.39976 (9)0.0462 (4)
H6N0.2915 (11)0.475 (6)0.3986 (10)0.057 (7)*
C70.22132 (9)0.2200 (4)0.39827 (9)0.0435 (5)
C80.18107 (9)0.3255 (4)0.35353 (9)0.0451 (5)
C90.11839 (10)0.2396 (5)0.35446 (10)0.0541 (5)
C100.09995 (11)0.0506 (6)0.39835 (12)0.0671 (7)
H100.05860.00690.39870.081*
C110.14076 (12)0.0548 (5)0.44137 (12)0.0689 (7)
H110.12720.18410.47000.083*
C120.20191 (11)0.0313 (5)0.44203 (10)0.0563 (6)
H120.22980.03620.47140.068*
C130.20344 (11)0.5237 (5)0.30556 (11)0.0597 (6)
H13A0.19360.71730.31610.084*
H13B0.18340.47640.26770.084*
H13C0.24760.50440.30220.084*
C140.07173 (12)0.3510 (7)0.30821 (13)0.0790 (8)
H14A0.08390.29420.26860.111*
H14B0.07020.55580.31040.111*
H14C0.03140.27370.31610.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0547 (4)0.0786 (5)0.1163 (6)0.0004 (3)0.0202 (3)0.0313 (4)
Cl20.0850 (5)0.1212 (7)0.0773 (5)0.0172 (5)0.0046 (4)0.0159 (4)
C30.0465 (11)0.0325 (10)0.0719 (14)0.0007 (9)0.0041 (10)0.0007 (9)
C40.0486 (12)0.0282 (10)0.0759 (15)0.0035 (9)0.0056 (10)0.0001 (9)
O50.0567 (10)0.0243 (8)0.192 (2)0.0026 (7)0.0065 (12)0.0013 (10)
N60.0436 (9)0.0232 (8)0.0715 (12)0.0041 (7)0.0038 (8)0.0022 (8)
C70.0442 (11)0.0290 (9)0.0572 (12)0.0043 (8)0.0015 (9)0.0034 (8)
C80.0485 (11)0.0329 (9)0.0539 (11)0.0001 (8)0.0032 (9)0.0075 (9)
C90.0443 (11)0.0513 (12)0.0665 (14)0.0024 (10)0.0004 (10)0.0148 (11)
C100.0506 (13)0.0647 (15)0.0865 (18)0.0170 (12)0.0117 (12)0.0138 (14)
C110.0752 (17)0.0575 (14)0.0751 (16)0.0195 (13)0.0219 (13)0.0050 (13)
C120.0655 (14)0.0433 (11)0.0601 (13)0.0075 (11)0.0004 (11)0.0050 (10)
C130.0618 (14)0.0518 (13)0.0656 (14)0.0024 (11)0.0004 (11)0.0077 (11)
C140.0542 (14)0.090 (2)0.0917 (19)0.0009 (14)0.0145 (13)0.0119 (16)
Geometric parameters (Å, º) top
Cl1—C31.753 (2)C9—C141.509 (3)
Cl2—C31.752 (2)C10—C111.371 (4)
C3—C41.526 (3)C10—H100.9300
C3—H30.9800C11—C121.376 (3)
C4—O51.215 (2)C11—H110.9300
C4—N61.319 (3)C12—H120.9300
N6—C71.434 (3)C13—H13A0.9600
N6—H6N0.78 (3)C13—H13B0.9600
C7—C121.385 (3)C13—H13C0.9600
C7—C81.390 (3)C14—H14A0.9600
C8—C91.408 (3)C14—H14B0.9600
C8—C131.500 (3)C14—H14C0.9600
C9—C101.381 (4)
C4—C3—Cl2108.55 (15)C11—C10—C9122.0 (2)
C4—C3—Cl1110.56 (15)C11—C10—H10119.0
Cl2—C3—Cl1110.33 (12)C9—C10—H10119.0
C4—C3—H3109.1C10—C11—C12119.8 (2)
Cl2—C3—H3109.1C10—C11—H11120.1
Cl1—C3—H3109.1C12—C11—H11120.1
O5—C4—N6125.1 (2)C11—C12—C7119.1 (2)
O5—C4—C3120.6 (2)C11—C12—H12120.5
N6—C4—C3114.27 (17)C7—C12—H12120.5
C4—N6—C7124.88 (17)C8—C13—H13A109.5
C4—N6—H6N117.8 (17)C8—C13—H13B109.5
C7—N6—H6N117.3 (17)H13A—C13—H13B109.5
C12—C7—C8122.20 (19)C8—C13—H13C109.5
C12—C7—N6118.53 (18)H13A—C13—H13C109.5
C8—C7—N6119.27 (18)H13B—C13—H13C109.5
C7—C8—C9117.84 (19)C9—C14—H14A109.5
C7—C8—C13121.34 (19)C9—C14—H14B109.5
C9—C8—C13120.8 (2)H14A—C14—H14B109.5
C10—C9—C8119.1 (2)C9—C14—H14C109.5
C10—C9—C14120.1 (2)H14A—C14—H14C109.5
C8—C9—C14120.8 (2)H14B—C14—H14C109.5
Cl2—C3—C4—O589.3 (3)N6—C7—C8—C132.1 (3)
Cl1—C3—C4—O531.8 (3)C7—C8—C9—C101.6 (3)
Cl2—C3—C4—N689.0 (2)C13—C8—C9—C10178.2 (2)
Cl1—C3—C4—N6149.90 (18)C7—C8—C9—C14178.5 (2)
O5—C4—N6—C70.4 (4)C13—C8—C9—C141.6 (3)
C3—C4—N6—C7177.77 (19)C8—C9—C10—C110.5 (4)
C4—N6—C7—C1251.9 (3)C14—C9—C10—C11179.7 (2)
C4—N6—C7—C8128.6 (2)C9—C10—C11—C121.0 (4)
C12—C7—C8—C91.5 (3)C10—C11—C12—C71.2 (4)
N6—C7—C8—C9178.04 (18)C8—C7—C12—C110.1 (3)
C12—C7—C8—C13178.4 (2)N6—C7—C12—C11179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6N···O5i0.78 (3)2.07 (3)2.830 (2)165 (2)
C3—H3···O5i0.982.313.100 (3)137
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H11Cl2NO
Mr232.10
Crystal system, space groupMonoclinic, C2/c
Temperature (K)297
a, b, c (Å)21.516 (8), 4.678 (2), 22.179 (9)
β (°) 91.54 (2)
V3)2231.6 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.60 × 0.16 × 0.12
Data collection
DiffractometerStoe STADI4 4-circle
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.918, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
3934, 1969, 1595
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.07
No. of reflections1969
No. of parameters133
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.28

Computer programs: STADI4 (Stoe & Cie, 1987), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996); ORTEP-3 for Windows (Farrugia, 1997); PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6N···O5i0.78 (3)2.07 (3)2.830 (2)165 (2)
C3—H3···O5i0.982.313.100 (3)136.5
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o4708.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100.  CAS Google Scholar
First citationGowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. T. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675–682.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). STADI4 and REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds