organic compounds
2,2-Dichloro-N-(2,3-dimethylphenyl)acetamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
The conformation of the N—H bond in the title compound, C10H11Cl2NO, is syn to both the 2- and 3-methyl substituents in the aromatic ring, similar to that of the 2-chloro and 3-chloro substituents in 2,2-dichloro-N-(2,3-dichlorophenyl)acetamide and the 2-methyl substituent in 2,2-dichloro-N-(2-methylphenyl)acetamide, but in contrast to the anti conformation observed with respect to the 3-methyl substituent in 2,2-dichloro-N-(3-methylphenyl)acetamide. The bond parameters in the title compound are similar to those in 2,2-dichloro-N-phenylacetamide and other acetanilides. The molecules of the title compound are linked into chains through N—H⋯O and C—H⋯O hydrogen bonding.
Related literature
For related literature, see: Gowda et al. (2006); Gowda, Foro & Fuess (2007); Gowda, Kozisek et al. (2007); Shilpa & Gowda (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: STADI4 (Stoe & Cie, 1987); cell STADI4; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536807064550/dn2288sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807064550/dn2288Isup2.hkl
The title compound was prepared according to the literature method (Shilpa & Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa & Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.
The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å (CH aromatic) or 0.96 Å (CH3) or 0.98 Å (CHCl2) and N—H = 0.86 Å with Uiso(H) = 1.2 Ueq(CH or NH) and Uiso(H) = 1.4 Ueq(CH3).
In the present work, the structure of 2,2-Dichloro-N- (2,3-dimethylphenyl)acetamide (23DMPDCA) has been determined as part of a study of the substituent effects on the structures of N-aromatic
(Gowda et al., 2006; Gowda, Foro & Fuess, 2007; Gowda, Kozisek et al., 2007). The conformation of the N—H bond in 23DMPDCA is syn to both the 2- and 3-methyl substituents in the aromatic ring (Fig. 1), similar to that of 2-chloro and 3-chloro substi tuents in the 2,2-dichloro-N-(2,3-dichlorophenyl)acetamide (23DCPDCA) (Gowda, Foro & Fuess, 2007) and 2-methyl substituent in 2,2-Dichloro-N- (2-methylphenyl)acetamide (2MPDCA)(Gowda et al., 2006), but in contrast to the anti conformation observed with respect to the 3-methyl substituent in the 2,2-Dichloro-N-(3-methylphenyl)acetamide(3MPDCA)(Gowda et al., 2006). The bond parameters in 23DMPDCA are similar to those in 2,2-dichloro-N- (phenyl)acetamide, 2MPDCA, 3MPDCA (Gowda et al., 2006), 23DCPDCA (Gowda, Foro & Fuess, 2007) and other acetanilides. The molecules in 23DMPDcA are linked into infinite chains through simultaneous N—H···O and C—H···O hydrogen bonding (Table 1 and Fig.2).For related literature, see: Gowda et al. (2006); Gowda, Foro & Fuess (2007); Gowda, Kozisek et al. (2007); Shilpa & Gowda (2007).
Data collection: STADI4 (Stoe & Cie, 1987); cell
STADI4 (Stoe & Cie, 1987); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); ORTEP-3 for Windows (Farrugia, 1997); PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).C10H11Cl2NO | F(000) = 960 |
Mr = 232.10 | Dx = 1.382 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -C 2yc | Cell parameters from 44 reflections |
a = 21.516 (8) Å | θ = 18.0–20.6° |
b = 4.678 (2) Å | µ = 0.55 mm−1 |
c = 22.179 (9) Å | T = 297 K |
β = 91.54 (2)° | Needle, light yellow |
V = 2231.6 (16) Å3 | 0.60 × 0.16 × 0.12 mm |
Z = 8 |
Stoe STADI4 4-circle diffractometer | 1595 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.016 |
Graphite monochromator | θmax = 25.0°, θmin = 1.8° |
Profile fitted scans 2θ/ω=1/1 | h = −25→25 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→5 |
Tmin = 0.918, Tmax = 0.942 | l = 0→26 |
3934 measured reflections | 3 standard reflections every 180 min |
1969 independent reflections | intensity decay: 6% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0405P)2 + 2.0597P] where P = (Fo2 + 2Fc2)/3 |
1969 reflections | (Δ/σ)max < 0.001 |
133 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C10H11Cl2NO | V = 2231.6 (16) Å3 |
Mr = 232.10 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 21.516 (8) Å | µ = 0.55 mm−1 |
b = 4.678 (2) Å | T = 297 K |
c = 22.179 (9) Å | 0.60 × 0.16 × 0.12 mm |
β = 91.54 (2)° |
Stoe STADI4 4-circle diffractometer | 1595 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.016 |
Tmin = 0.918, Tmax = 0.942 | 3 standard reflections every 180 min |
3934 measured reflections | intensity decay: 6% |
1969 independent reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.102 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.24 e Å−3 |
1969 reflections | Δρmin = −0.28 e Å−3 |
133 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.45285 (3) | 0.09175 (16) | 0.44140 (4) | 0.0836 (3) | |
Cl2 | 0.41708 (4) | 0.3272 (2) | 0.32575 (3) | 0.0945 (3) | |
C3 | 0.39612 (9) | 0.2882 (4) | 0.40110 (10) | 0.0504 (5) | |
H3 | 0.3923 | 0.4778 | 0.4194 | 0.061* | |
C4 | 0.33333 (10) | 0.1369 (4) | 0.40248 (11) | 0.0510 (5) | |
O5 | 0.33048 (8) | −0.1222 (3) | 0.40441 (12) | 0.0912 (7) | |
N6 | 0.28502 (8) | 0.3103 (4) | 0.39976 (9) | 0.0462 (4) | |
H6N | 0.2915 (11) | 0.475 (6) | 0.3986 (10) | 0.057 (7)* | |
C7 | 0.22132 (9) | 0.2200 (4) | 0.39827 (9) | 0.0435 (5) | |
C8 | 0.18107 (9) | 0.3255 (4) | 0.35353 (9) | 0.0451 (5) | |
C9 | 0.11839 (10) | 0.2396 (5) | 0.35446 (10) | 0.0541 (5) | |
C10 | 0.09995 (11) | 0.0506 (6) | 0.39835 (12) | 0.0671 (7) | |
H10 | 0.0586 | −0.0069 | 0.3987 | 0.081* | |
C11 | 0.14076 (12) | −0.0548 (5) | 0.44137 (12) | 0.0689 (7) | |
H11 | 0.1272 | −0.1841 | 0.4700 | 0.083* | |
C12 | 0.20191 (11) | 0.0313 (5) | 0.44203 (10) | 0.0563 (6) | |
H12 | 0.2298 | −0.0362 | 0.4714 | 0.068* | |
C13 | 0.20344 (11) | 0.5237 (5) | 0.30556 (11) | 0.0597 (6) | |
H13A | 0.1936 | 0.7173 | 0.3161 | 0.084* | |
H13B | 0.1834 | 0.4764 | 0.2677 | 0.084* | |
H13C | 0.2476 | 0.5044 | 0.3022 | 0.084* | |
C14 | 0.07173 (12) | 0.3510 (7) | 0.30821 (13) | 0.0790 (8) | |
H14A | 0.0839 | 0.2942 | 0.2686 | 0.111* | |
H14B | 0.0702 | 0.5558 | 0.3104 | 0.111* | |
H14C | 0.0314 | 0.2737 | 0.3161 | 0.111* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0547 (4) | 0.0786 (5) | 0.1163 (6) | 0.0004 (3) | −0.0202 (3) | 0.0313 (4) |
Cl2 | 0.0850 (5) | 0.1212 (7) | 0.0773 (5) | −0.0172 (5) | 0.0046 (4) | 0.0159 (4) |
C3 | 0.0465 (11) | 0.0325 (10) | 0.0719 (14) | −0.0007 (9) | −0.0041 (10) | 0.0007 (9) |
C4 | 0.0486 (12) | 0.0282 (10) | 0.0759 (15) | −0.0035 (9) | −0.0056 (10) | 0.0001 (9) |
O5 | 0.0567 (10) | 0.0243 (8) | 0.192 (2) | −0.0026 (7) | −0.0065 (12) | 0.0013 (10) |
N6 | 0.0436 (9) | 0.0232 (8) | 0.0715 (12) | −0.0041 (7) | −0.0038 (8) | 0.0022 (8) |
C7 | 0.0442 (11) | 0.0290 (9) | 0.0572 (12) | −0.0043 (8) | 0.0015 (9) | −0.0034 (8) |
C8 | 0.0485 (11) | 0.0329 (9) | 0.0539 (11) | −0.0001 (8) | 0.0032 (9) | −0.0075 (9) |
C9 | 0.0443 (11) | 0.0513 (12) | 0.0665 (14) | −0.0024 (10) | −0.0004 (10) | −0.0148 (11) |
C10 | 0.0506 (13) | 0.0647 (15) | 0.0865 (18) | −0.0170 (12) | 0.0117 (12) | −0.0138 (14) |
C11 | 0.0752 (17) | 0.0575 (14) | 0.0751 (16) | −0.0195 (13) | 0.0219 (13) | 0.0050 (13) |
C12 | 0.0655 (14) | 0.0433 (11) | 0.0601 (13) | −0.0075 (11) | 0.0004 (11) | 0.0050 (10) |
C13 | 0.0618 (14) | 0.0518 (13) | 0.0656 (14) | 0.0024 (11) | −0.0004 (11) | 0.0077 (11) |
C14 | 0.0542 (14) | 0.090 (2) | 0.0917 (19) | 0.0009 (14) | −0.0145 (13) | −0.0119 (16) |
Cl1—C3 | 1.753 (2) | C9—C14 | 1.509 (3) |
Cl2—C3 | 1.752 (2) | C10—C11 | 1.371 (4) |
C3—C4 | 1.526 (3) | C10—H10 | 0.9300 |
C3—H3 | 0.9800 | C11—C12 | 1.376 (3) |
C4—O5 | 1.215 (2) | C11—H11 | 0.9300 |
C4—N6 | 1.319 (3) | C12—H12 | 0.9300 |
N6—C7 | 1.434 (3) | C13—H13A | 0.9600 |
N6—H6N | 0.78 (3) | C13—H13B | 0.9600 |
C7—C12 | 1.385 (3) | C13—H13C | 0.9600 |
C7—C8 | 1.390 (3) | C14—H14A | 0.9600 |
C8—C9 | 1.408 (3) | C14—H14B | 0.9600 |
C8—C13 | 1.500 (3) | C14—H14C | 0.9600 |
C9—C10 | 1.381 (4) | ||
C4—C3—Cl2 | 108.55 (15) | C11—C10—C9 | 122.0 (2) |
C4—C3—Cl1 | 110.56 (15) | C11—C10—H10 | 119.0 |
Cl2—C3—Cl1 | 110.33 (12) | C9—C10—H10 | 119.0 |
C4—C3—H3 | 109.1 | C10—C11—C12 | 119.8 (2) |
Cl2—C3—H3 | 109.1 | C10—C11—H11 | 120.1 |
Cl1—C3—H3 | 109.1 | C12—C11—H11 | 120.1 |
O5—C4—N6 | 125.1 (2) | C11—C12—C7 | 119.1 (2) |
O5—C4—C3 | 120.6 (2) | C11—C12—H12 | 120.5 |
N6—C4—C3 | 114.27 (17) | C7—C12—H12 | 120.5 |
C4—N6—C7 | 124.88 (17) | C8—C13—H13A | 109.5 |
C4—N6—H6N | 117.8 (17) | C8—C13—H13B | 109.5 |
C7—N6—H6N | 117.3 (17) | H13A—C13—H13B | 109.5 |
C12—C7—C8 | 122.20 (19) | C8—C13—H13C | 109.5 |
C12—C7—N6 | 118.53 (18) | H13A—C13—H13C | 109.5 |
C8—C7—N6 | 119.27 (18) | H13B—C13—H13C | 109.5 |
C7—C8—C9 | 117.84 (19) | C9—C14—H14A | 109.5 |
C7—C8—C13 | 121.34 (19) | C9—C14—H14B | 109.5 |
C9—C8—C13 | 120.8 (2) | H14A—C14—H14B | 109.5 |
C10—C9—C8 | 119.1 (2) | C9—C14—H14C | 109.5 |
C10—C9—C14 | 120.1 (2) | H14A—C14—H14C | 109.5 |
C8—C9—C14 | 120.8 (2) | H14B—C14—H14C | 109.5 |
Cl2—C3—C4—O5 | 89.3 (3) | N6—C7—C8—C13 | 2.1 (3) |
Cl1—C3—C4—O5 | −31.8 (3) | C7—C8—C9—C10 | −1.6 (3) |
Cl2—C3—C4—N6 | −89.0 (2) | C13—C8—C9—C10 | 178.2 (2) |
Cl1—C3—C4—N6 | 149.90 (18) | C7—C8—C9—C14 | 178.5 (2) |
O5—C4—N6—C7 | −0.4 (4) | C13—C8—C9—C14 | −1.6 (3) |
C3—C4—N6—C7 | 177.77 (19) | C8—C9—C10—C11 | 0.5 (4) |
C4—N6—C7—C12 | 51.9 (3) | C14—C9—C10—C11 | −179.7 (2) |
C4—N6—C7—C8 | −128.6 (2) | C9—C10—C11—C12 | 1.0 (4) |
C12—C7—C8—C9 | 1.5 (3) | C10—C11—C12—C7 | −1.2 (4) |
N6—C7—C8—C9 | −178.04 (18) | C8—C7—C12—C11 | −0.1 (3) |
C12—C7—C8—C13 | −178.4 (2) | N6—C7—C12—C11 | 179.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6N···O5i | 0.78 (3) | 2.07 (3) | 2.830 (2) | 165 (2) |
C3—H3···O5i | 0.98 | 2.31 | 3.100 (3) | 137 |
Symmetry code: (i) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C10H11Cl2NO |
Mr | 232.10 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 297 |
a, b, c (Å) | 21.516 (8), 4.678 (2), 22.179 (9) |
β (°) | 91.54 (2) |
V (Å3) | 2231.6 (16) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.55 |
Crystal size (mm) | 0.60 × 0.16 × 0.12 |
Data collection | |
Diffractometer | Stoe STADI4 4-circle diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.918, 0.942 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3934, 1969, 1595 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.102, 1.07 |
No. of reflections | 1969 |
No. of parameters | 133 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.24, −0.28 |
Computer programs: STADI4 (Stoe & Cie, 1987), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996); ORTEP-3 for Windows (Farrugia, 1997); PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6N···O5i | 0.78 (3) | 2.07 (3) | 2.830 (2) | 165 (2) |
C3—H3···O5i | 0.98 | 2.31 | 3.100 (3) | 136.5 |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.
References
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o4708. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100. CAS Google Scholar
Gowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. T. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675–682. CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1987). STADI4 and REDU4. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the present work, the structure of 2,2-Dichloro-N- (2,3-dimethylphenyl)acetamide (23DMPDCA) has been determined as part of a study of the substituent effects on the structures of N-aromatic amides (Gowda et al., 2006; Gowda, Foro & Fuess, 2007; Gowda, Kozisek et al., 2007). The conformation of the N—H bond in 23DMPDCA is syn to both the 2- and 3-methyl substituents in the aromatic ring (Fig. 1), similar to that of 2-chloro and 3-chloro substi tuents in the 2,2-dichloro-N-(2,3-dichlorophenyl)acetamide (23DCPDCA) (Gowda, Foro & Fuess, 2007) and 2-methyl substituent in 2,2-Dichloro-N- (2-methylphenyl)acetamide (2MPDCA)(Gowda et al., 2006), but in contrast to the anti conformation observed with respect to the 3-methyl substituent in the 2,2-Dichloro-N-(3-methylphenyl)acetamide(3MPDCA)(Gowda et al., 2006). The bond parameters in 23DMPDCA are similar to those in 2,2-dichloro-N- (phenyl)acetamide, 2MPDCA, 3MPDCA (Gowda et al., 2006), 23DCPDCA (Gowda, Foro & Fuess, 2007) and other acetanilides. The molecules in 23DMPDcA are linked into infinite chains through simultaneous N—H···O and C—H···O hydrogen bonding (Table 1 and Fig.2).