organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(3-methyl­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 18 November 2007; accepted 30 November 2007; online 6 December 2007)

The conformation of the N—H bond in the structure of the title compound, C9H10ClNO, is syn to the meta-methyl group, in contrast to the anti conformation observed with respect to the meta-nitro group in 2-chloro-N-(3-nitro­phen­yl)­acetamide. The asymmetric unit of the title compound contains two mol­ecules. The geometric parameters of the title compound are similar to those of 2-chloro-N-(4-methyl­phen­yl)­acetamide, 2-chloro-N-(3-nitro­phen­yl)acetamide and other acetanilides. Dual inter­molecular N—H⋯O hydrogen bonds link the mol­ecules in the direction of the a axis.

Related literature

For related literature, see: Gowda et al. (2006[Gowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595-599.], 2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2333-o2334.],b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o3364.],c[Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o4611.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10ClNO

  • Mr = 183.63

  • Triclinic, [P \overline 1]

  • a = 8.326 (3) Å

  • b = 9.742 (3) Å

  • c = 11.491 (4) Å

  • α = 91.21 (1)°

  • β = 97.97 (1)°

  • γ = 98.08 (1)°

  • V = 913.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 299 (2) K

  • 0.75 × 0.45 × 0.17 mm

Data collection
  • Stoe STADI-4 four-circle diffractometer

  • Absorption correction: ψ-scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.704, Tmax = 0.918

  • 3214 measured reflections

  • 3214 independent reflections

  • 2651 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 180 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.136

  • S = 1.05

  • 3214 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.04 2.891 (2) 171
N2—H2⋯O1 0.86 2.13 2.970 (2) 166
Symmetry code: (i) x, y+1, z.

Data collection: STADI4 (Stoe & Cie, 1987[Stoe & Cie (1987). STADI4 and REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). STADI4 and REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, the structure of 2-chloro-N-(3-methylphenyl)- acetamide (3MPCA) has been determined as part of a study of the effect of ring and side chain substitutions on the solid state geometry of aromatic amides (Gowda et al., 2007a, 2007b, 2007c). The conformation of the N—H bond in the structure of 3MPCA is syn to the meta methyl group, in contrast to the anti conformation observed with respect to the meta nitro group in the 2-chloro-N-(3-nitrophenyl)acetamide (3NPCA)(Gowda et al., 2007b). The asymmetric unit of 3MPCA crystal contains two molecules. The geometric parameters of 3MPCA are similar to those of 3NPCA (Gowda et al., 2007b), 2-chloro-N-(4-methylphenyl)- acetamide (Gowda et al., 2007a), 2-chloro-N- (2-chlorophenyl)-acetamide (Gowda et al., 2007c) and other acetanilides. The molecules in 3MPcA are linked into infinite diagonal chains through dual intermolecular N1—H1···O2 and N2—H2—O1 hydrogen bonding in the bc plane (Table 1 and Fig.2).

Related literature top

For related literature, see: Gowda et al. (2006, 2007a, 2007b, 2007c).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2006). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Gowda et al., 2006). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å (CH aromatic) or 0.96 Å (CH3) or 0.97 Å (CH2Cl) and N—H = 0.86 Å with Uiso(H) = 1.2 Ueq(CH or NH) and Uiso(H) = 1.4 Ueq(CH3).

Structure description top

In the present work, the structure of 2-chloro-N-(3-methylphenyl)- acetamide (3MPCA) has been determined as part of a study of the effect of ring and side chain substitutions on the solid state geometry of aromatic amides (Gowda et al., 2007a, 2007b, 2007c). The conformation of the N—H bond in the structure of 3MPCA is syn to the meta methyl group, in contrast to the anti conformation observed with respect to the meta nitro group in the 2-chloro-N-(3-nitrophenyl)acetamide (3NPCA)(Gowda et al., 2007b). The asymmetric unit of 3MPCA crystal contains two molecules. The geometric parameters of 3MPCA are similar to those of 3NPCA (Gowda et al., 2007b), 2-chloro-N-(4-methylphenyl)- acetamide (Gowda et al., 2007a), 2-chloro-N- (2-chlorophenyl)-acetamide (Gowda et al., 2007c) and other acetanilides. The molecules in 3MPcA are linked into infinite diagonal chains through dual intermolecular N1—H1···O2 and N2—H2—O1 hydrogen bonding in the bc plane (Table 1 and Fig.2).

For related literature, see: Gowda et al. (2006, 2007a, 2007b, 2007c).

Computing details top

Data collection: STADI4 (Stoe & Cie, 1987); cell refinement: STADI4 (Stoe & Cie, 1987); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. H bond is shown as dashed line.
[Figure 2] Fig. 2. Partial packing view showing the formation of the chain through N—H···O hydrogen bondings. H atoms not involved in H bonds have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry code: (i) x, y + 1, z]
2-Chloro-N-(3-methylphenyl)acetamide top
Crystal data top
C9H10ClNOZ = 4
Mr = 183.63F(000) = 384
Triclinic, P1Dx = 1.336 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.326 (3) ÅCell parameters from 88 reflections
b = 9.742 (3) Åθ = 18.0–22.6°
c = 11.491 (4) ŵ = 0.37 mm1
α = 91.21 (1)°T = 299 K
β = 97.97 (1)°Flat prism, colourless
γ = 98.08 (1)°0.75 × 0.45 × 0.17 mm
V = 913.1 (5) Å3
Data collection top
Stoe STADI-4 four-circle
diffractometer
2651 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.0°, θmin = 1.8°
Profile fitted scans 2θ/ω=1/1h = 99
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
k = 1111
Tmin = 0.704, Tmax = 0.918l = 013
3214 measured reflections3 standard reflections every 180 min
3214 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0776P)2 + 0.2235P]
where P = (Fo2 + 2Fc2)/3
3214 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C9H10ClNOγ = 98.08 (1)°
Mr = 183.63V = 913.1 (5) Å3
Triclinic, P1Z = 4
a = 8.326 (3) ÅMo Kα radiation
b = 9.742 (3) ŵ = 0.37 mm1
c = 11.491 (4) ÅT = 299 K
α = 91.21 (1)°0.75 × 0.45 × 0.17 mm
β = 97.97 (1)°
Data collection top
Stoe STADI-4 four-circle
diffractometer
2651 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
Rint = 0.000
Tmin = 0.704, Tmax = 0.9183 standard reflections every 180 min
3214 measured reflections intensity decay: none
3214 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
3214 reflectionsΔρmin = 0.33 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.38090 (9)0.90157 (7)0.35203 (6)0.0807 (3)
C10.1956 (3)0.9307 (2)0.40069 (18)0.0552 (5)
H1A0.19661.02950.41430.066*
H1B0.10390.89700.34060.066*
C20.1756 (2)0.85664 (19)0.51299 (17)0.0451 (4)
O10.16114 (19)0.72994 (13)0.51555 (13)0.0570 (4)
N10.1734 (2)0.94148 (15)0.60666 (14)0.0464 (4)
H10.18521.02900.59510.056*
C30.1537 (2)0.90157 (18)0.72263 (17)0.0444 (4)
C40.2336 (2)0.9904 (2)0.81524 (18)0.0518 (5)
H40.30031.07080.79960.062*
C50.2157 (3)0.9613 (2)0.93068 (19)0.0606 (6)
C60.3022 (4)1.0612 (4)1.0296 (2)0.0896 (9)
H6A0.22231.09711.06980.108*0.56 (3)
H6B0.36781.13640.99800.108*0.56 (3)
H6C0.37121.01361.08380.108*0.56 (3)
H6D0.41861.06761.03130.108*0.44 (3)
H6E0.27301.02831.10310.108*0.44 (3)
H6F0.26971.15111.01730.108*0.44 (3)
C70.1180 (3)0.8405 (3)0.9516 (2)0.0731 (7)
H70.10620.81821.02860.088*
C80.0373 (3)0.7520 (3)0.8598 (2)0.0752 (7)
H80.02830.67110.87570.090*
C90.0528 (3)0.7821 (2)0.7446 (2)0.0561 (5)
H90.00340.72330.68300.067*
Cl20.11737 (11)0.34078 (8)0.80955 (6)0.0934 (3)
C100.1373 (3)0.4359 (2)0.68356 (19)0.0552 (5)
H10A0.02960.45340.64830.066*
H10B0.20350.52500.70630.066*
C110.2149 (2)0.36313 (18)0.59258 (17)0.0458 (4)
O20.2274 (2)0.24012 (14)0.59346 (14)0.0646 (4)
N20.26143 (19)0.44939 (15)0.51024 (14)0.0449 (4)
H20.24760.53440.52040.054*
C120.3306 (2)0.41834 (18)0.40855 (16)0.0429 (4)
C130.3227 (2)0.5128 (2)0.31995 (18)0.0508 (5)
H130.27220.59080.32930.061*
C140.3889 (3)0.4929 (2)0.21770 (19)0.0608 (5)
C150.3778 (5)0.5963 (4)0.1217 (3)0.0957 (10)
H15A0.33170.54850.04820.115*0.58 (4)
H15B0.48550.64340.11570.115*0.58 (4)
H15C0.30930.66270.14040.115*0.58 (4)
H15D0.41930.68790.15470.115*0.42 (4)
H15E0.26550.59300.08710.115*0.42 (4)
H15F0.44170.57370.06250.115*0.42 (4)
C160.4629 (3)0.3749 (2)0.2057 (2)0.0634 (6)
H160.50660.35880.13730.076*
C170.4722 (3)0.2827 (2)0.2932 (2)0.0591 (5)
H170.52330.20500.28380.071*
C180.4068 (2)0.30246 (19)0.39596 (18)0.0500 (5)
H180.41410.23910.45520.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0941 (5)0.0763 (4)0.0856 (5)0.0268 (4)0.0434 (4)0.0205 (3)
C10.0660 (13)0.0471 (11)0.0538 (11)0.0150 (9)0.0065 (9)0.0008 (9)
C20.0457 (10)0.0383 (10)0.0517 (10)0.0097 (7)0.0048 (8)0.0024 (8)
O10.0761 (10)0.0348 (7)0.0624 (9)0.0128 (6)0.0136 (7)0.0034 (6)
N10.0570 (9)0.0306 (7)0.0522 (9)0.0080 (6)0.0092 (7)0.0004 (6)
C30.0441 (10)0.0387 (9)0.0525 (11)0.0120 (7)0.0090 (8)0.0004 (8)
C40.0528 (11)0.0478 (10)0.0551 (11)0.0082 (9)0.0089 (9)0.0041 (8)
C50.0609 (13)0.0713 (14)0.0532 (12)0.0228 (11)0.0086 (10)0.0025 (10)
C60.096 (2)0.113 (2)0.0581 (15)0.0220 (17)0.0037 (13)0.0182 (14)
C70.0863 (17)0.0806 (17)0.0607 (14)0.0240 (14)0.0256 (12)0.0161 (12)
C80.0840 (17)0.0607 (14)0.0870 (18)0.0042 (12)0.0381 (14)0.0144 (13)
C90.0550 (12)0.0471 (11)0.0674 (13)0.0047 (9)0.0160 (10)0.0012 (9)
Cl20.1420 (7)0.0821 (5)0.0695 (4)0.0262 (4)0.0490 (4)0.0212 (3)
C100.0652 (13)0.0455 (10)0.0574 (12)0.0059 (9)0.0200 (10)0.0012 (9)
C110.0464 (10)0.0351 (9)0.0555 (11)0.0026 (7)0.0089 (8)0.0005 (8)
O20.0894 (11)0.0347 (7)0.0764 (10)0.0123 (7)0.0312 (8)0.0091 (7)
N20.0530 (9)0.0295 (7)0.0540 (9)0.0056 (6)0.0144 (7)0.0001 (6)
C120.0413 (9)0.0352 (9)0.0500 (10)0.0007 (7)0.0060 (8)0.0043 (7)
C130.0554 (11)0.0431 (10)0.0564 (11)0.0104 (8)0.0129 (9)0.0025 (8)
C140.0697 (14)0.0610 (13)0.0536 (12)0.0078 (10)0.0169 (10)0.0029 (10)
C150.136 (3)0.099 (2)0.0668 (17)0.039 (2)0.0418 (17)0.0267 (15)
C160.0687 (14)0.0658 (14)0.0577 (13)0.0052 (11)0.0221 (10)0.0109 (10)
C170.0582 (12)0.0476 (11)0.0742 (14)0.0101 (9)0.0182 (10)0.0102 (10)
C180.0505 (11)0.0399 (10)0.0598 (12)0.0072 (8)0.0089 (9)0.0013 (8)
Geometric parameters (Å, º) top
Cl1—C11.769 (2)Cl2—C101.750 (2)
C1—C21.510 (3)C10—C111.516 (3)
C1—H1A0.9700C10—H10A0.9700
C1—H1B0.9700C10—H10B0.9700
C2—O11.225 (2)C11—O21.218 (2)
C2—N11.347 (2)C11—N21.340 (2)
N1—C31.421 (3)N2—C121.417 (3)
N1—H10.8600N2—H20.8600
C3—C91.386 (3)C12—C181.385 (3)
C3—C41.389 (3)C12—C131.388 (3)
C4—C51.386 (3)C13—C141.387 (3)
C4—H40.9300C13—H130.9300
C5—C71.379 (4)C14—C161.391 (3)
C5—C61.512 (4)C14—C151.512 (3)
C6—H6A0.9600C15—H15A0.9600
C6—H6B0.9600C15—H15B0.9600
C6—H6C0.9600C15—H15C0.9600
C6—H6D0.9600C15—H15D0.9600
C6—H6E0.9600C15—H15E0.9600
C6—H6F0.9600C15—H15F0.9600
C7—C81.382 (4)C16—C171.364 (3)
C7—H70.9300C16—H160.9300
C8—C91.381 (3)C17—C181.388 (3)
C8—H80.9300C17—H170.9300
C9—H90.9300C18—H180.9300
C2—C1—Cl1109.99 (14)C11—C10—Cl2113.26 (15)
C2—C1—H1A109.7C11—C10—H10A108.9
Cl1—C1—H1A109.7Cl2—C10—H10A108.9
C2—C1—H1B109.7C11—C10—H10B108.9
Cl1—C1—H1B109.7Cl2—C10—H10B108.9
H1A—C1—H1B108.2H10A—C10—H10B107.7
O1—C2—N1124.31 (18)O2—C11—N2124.93 (19)
O1—C2—C1121.44 (17)O2—C11—C10123.32 (18)
N1—C2—C1114.25 (16)N2—C11—C10111.70 (16)
C2—N1—C3126.86 (15)C11—N2—C12128.26 (16)
C2—N1—H1116.6C11—N2—H2115.9
C3—N1—H1116.6C12—N2—H2115.9
C9—C3—C4120.1 (2)C18—C12—C13119.93 (18)
C9—C3—N1122.24 (18)C18—C12—N2123.38 (17)
C4—C3—N1117.60 (17)C13—C12—N2116.68 (17)
C5—C4—C3121.0 (2)C14—C13—C12121.09 (19)
C5—C4—H4119.5C14—C13—H13119.5
C3—C4—H4119.5C12—C13—H13119.5
C7—C5—C4118.3 (2)C13—C14—C16118.2 (2)
C7—C5—C6121.8 (2)C13—C14—C15120.3 (2)
C4—C5—C6119.9 (2)C16—C14—C15121.4 (2)
C5—C6—H6A109.5C14—C15—H15A109.5
C5—C6—H6B109.5C14—C15—H15B109.5
H6A—C6—H6B109.5H15A—C15—H15B109.5
C5—C6—H6C109.5C14—C15—H15C109.5
H6A—C6—H6C109.5H15A—C15—H15C109.5
H6B—C6—H6C109.5H15B—C15—H15C109.5
C5—C6—H6D109.5C14—C15—H15D109.5
H6A—C6—H6D141.1H15A—C15—H15D141.1
H6B—C6—H6D56.3H15B—C15—H15D56.3
H6C—C6—H6D56.3H15C—C15—H15D56.3
C5—C6—H6E109.5C14—C15—H15E109.5
H6A—C6—H6E56.3H15A—C15—H15E56.3
H6B—C6—H6E141.1H15B—C15—H15E141.1
H6C—C6—H6E56.3H15C—C15—H15E56.3
H6D—C6—H6E109.5H15D—C15—H15E109.5
C5—C6—H6F109.5C14—C15—H15F109.5
H6A—C6—H6F56.3H15A—C15—H15F56.3
H6B—C6—H6F56.3H15B—C15—H15F56.3
H6C—C6—H6F141.1H15C—C15—H15F141.1
H6D—C6—H6F109.5H15D—C15—H15F109.5
H6E—C6—H6F109.5H15E—C15—H15F109.5
C5—C7—C8120.9 (2)C17—C16—C14120.7 (2)
C5—C7—H7119.6C17—C16—H16119.6
C8—C7—H7119.6C14—C16—H16119.6
C9—C8—C7120.8 (2)C16—C17—C18121.3 (2)
C9—C8—H8119.6C16—C17—H17119.4
C7—C8—H8119.6C18—C17—H17119.4
C8—C9—C3118.8 (2)C12—C18—C17118.73 (19)
C8—C9—H9120.6C12—C18—H18120.6
C3—C9—H9120.6C17—C18—H18120.6
Cl1—C1—C2—O163.8 (2)Cl2—C10—C11—O216.0 (3)
Cl1—C1—C2—N1116.98 (16)Cl2—C10—C11—N2166.24 (14)
O1—C2—N1—C30.3 (3)O2—C11—N2—C121.1 (3)
C1—C2—N1—C3178.88 (17)C10—C11—N2—C12176.62 (18)
C2—N1—C3—C935.4 (3)C11—N2—C12—C1820.4 (3)
C2—N1—C3—C4147.54 (19)C11—N2—C12—C13161.13 (18)
C9—C3—C4—C50.6 (3)C18—C12—C13—C140.6 (3)
N1—C3—C4—C5177.68 (18)N2—C12—C13—C14179.07 (18)
C3—C4—C5—C70.9 (3)C12—C13—C14—C160.4 (3)
C3—C4—C5—C6179.0 (2)C12—C13—C14—C15179.5 (2)
C4—C5—C7—C81.2 (4)C13—C14—C16—C171.0 (4)
C6—C5—C7—C8178.6 (2)C15—C14—C16—C17179.9 (3)
C5—C7—C8—C90.2 (4)C14—C16—C17—C180.7 (4)
C7—C8—C9—C31.3 (4)C13—C12—C18—C170.9 (3)
C4—C3—C9—C81.7 (3)N2—C12—C18—C17179.25 (17)
N1—C3—C9—C8178.6 (2)C16—C17—C18—C120.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.042.891 (2)171
N2—H2···O10.862.132.970 (2)166
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H10ClNO
Mr183.63
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)8.326 (3), 9.742 (3), 11.491 (4)
α, β, γ (°)91.21 (1), 97.97 (1), 98.08 (1)
V3)913.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.75 × 0.45 × 0.17
Data collection
DiffractometerStoe STADI-4 four-circle
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(North et al., 1968)
Tmin, Tmax0.704, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
3214, 3214, 2651
Rint0.000
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.136, 1.05
No. of reflections3214
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.33

Computer programs: STADI4 (Stoe & Cie, 1987), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.042.891 (2)171.4
N2—H2···O10.862.132.970 (2)166.0
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2333–o2334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o3364.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o4611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595–599.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). STADI4 and REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds