organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­chloro-N-(3,5-di­methyl­phen­yl)­acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 18 November 2007; accepted 1 December 2007; online 6 December 2007)

The structure of the title compound, C10H11Cl2NO, resembles those of 2,2-dichloro-N-phenyl­acetamide, 2,2-dichloro-N-(2-methyl­phen­yl)acetamide, 2,2-dichloro-N-(3-methyl­phen­yl)­acetamide, 2,2-dichloro-N-(4-methyl­phen­yl)acetamide, N-(3,5-dimethyl­phen­yl)acetamide and other acetanilides, with similar bond parameters. The mol­ecules in the title compound are linked into infinite chains through N—H⋯O and C—H⋯O hydrogen bonding.

Related literature

For related literature, see: Gowda et al. (2001[Gowda, B. T., Paulus, H. & Fuess, H. (2001). Z. Naturforsch. Teil A, 56, 386-394.], 2006[Gowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675-682.], 2007[Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2711.]); Shilpa & Gowda (2007[Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84-90.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11Cl2NO

  • Mr = 232.10

  • Monoclinic, P 21 /c

  • a = 11.412 (4) Å

  • b = 10.570 (4) Å

  • c = 9.163 (3) Å

  • β = 110.99 (2)°

  • V = 1031.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 297 (2) K

  • 0.80 × 0.26 × 0.13 mm

Data collection
  • Stoe STADI-4 four-circle diffractometer

  • Absorption correction: ψ-sacn (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.873, Tmax = 0.927

  • 1825 measured reflections

  • 1825 independent reflections

  • 1445 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.179

  • S = 1.07

  • 1825 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6N⋯O5i 0.78 (4) 2.12 (4) 2.857 (4) 159 (4)
C3—H3⋯O5i 0.98 2.38 3.252 (4) 148
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: STADI4 (Stoe & Cie, 1987[Stoe & Cie (1987). STADI4 and REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). STADI4 and REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, the structure of 2,2-dichloro-N- (3,5-dimethylphenyl)-acetamide (35DMPDCA) has been determined to explore the substituent effects on the structures of N-aromatic amides (Gowda et al., 2001, 2006, 2007). The structure of 35DMPDCA (Fig. 1) resembles those of 2,2-dichloro-N-(phenyl)acetamide (PDCA)(Gowda et al., 2001), 2,2-dichloro-N-(2-methylphenyl)acetamide (2MPDCA)(Gowda et al., 2006), 2,2-dichloro-N-(3-methylphenyl)-acetamide (3MPDCA) (Gowda et al., 2006), 2,2-dichloro-N-(4-methylphenyl)-acetamide (4MPDCA)(Gowda et al., 2001) and N-(3,5-dimethylphenyl)-acetamide (35DMPA)(Gowda et al., 2007). But the 35DMPDCA has a single molecule in its asymmetric unit, in contrast to two molecules observed in the asymmetric unit of 35DMPA. The bond parameters in 35DMPDCA are similar to those in PDCA, 2MPDCA, 3MPDCA, 4MPDCA, 35DMPA and other acetanilides (Gowda et al., 2001, 2006; 2007). The molecules in 35DMPDcA are linked into zigzag chains through N—H···O and C—H···O hydrogen bonding (Table 1 and Fig.2).

Related literature top

For related literature, see: Gowda et al. (2001, 2006, 2007); Shilpa & Gowda (2007).

Experimental top

The title compound was prepared according to the literature method (Shilpa and Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa and Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å (CH aromatic) or 0.96 Å (CH3) or 0.98 Å (CHCl2) with Uiso(H) = 1.2 Ueq(CH) and Uiso(H) = 1.4 Ueq(CH3).

Structure description top

In the present work, the structure of 2,2-dichloro-N- (3,5-dimethylphenyl)-acetamide (35DMPDCA) has been determined to explore the substituent effects on the structures of N-aromatic amides (Gowda et al., 2001, 2006, 2007). The structure of 35DMPDCA (Fig. 1) resembles those of 2,2-dichloro-N-(phenyl)acetamide (PDCA)(Gowda et al., 2001), 2,2-dichloro-N-(2-methylphenyl)acetamide (2MPDCA)(Gowda et al., 2006), 2,2-dichloro-N-(3-methylphenyl)-acetamide (3MPDCA) (Gowda et al., 2006), 2,2-dichloro-N-(4-methylphenyl)-acetamide (4MPDCA)(Gowda et al., 2001) and N-(3,5-dimethylphenyl)-acetamide (35DMPA)(Gowda et al., 2007). But the 35DMPDCA has a single molecule in its asymmetric unit, in contrast to two molecules observed in the asymmetric unit of 35DMPA. The bond parameters in 35DMPDCA are similar to those in PDCA, 2MPDCA, 3MPDCA, 4MPDCA, 35DMPA and other acetanilides (Gowda et al., 2001, 2006; 2007). The molecules in 35DMPDcA are linked into zigzag chains through N—H···O and C—H···O hydrogen bonding (Table 1 and Fig.2).

For related literature, see: Gowda et al. (2001, 2006, 2007); Shilpa & Gowda (2007).

Computing details top

Data collection: STADI4 (Stoe & Cie, 1987); cell refinement: STADI4 (Stoe & Cie, 1987); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the formation of the chain through N—H···O hydrogen bondings. H atoms not involved in H bonds have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry code: (i) x, -y + 1/2, z + 1/2]
2,2-Dichloro-N-(3,5-dimethylphenyl)acetamide top
Crystal data top
C10H11Cl2NOF(000) = 480
Mr = 232.10Dx = 1.494 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 44 reflections
a = 11.412 (4) Åθ = 17.6–19.7°
b = 10.570 (4) ŵ = 0.59 mm1
c = 9.163 (3) ÅT = 297 K
β = 110.99 (2)°Prism, light yellow
V = 1031.9 (6) Å30.80 × 0.26 × 0.13 mm
Z = 4
Data collection top
Stoe STADI-4 four-circle
diffractometer
1445 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
Profile fitted scans 2θ/ω=1/1h = 1312
Absorption correction: numerical
(North et al., 1968)
k = 012
Tmin = 0.873, Tmax = 0.927l = 010
1825 measured reflections3 standard reflections every 120 min
1825 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0889P)2 + 0.8161P]
where P = (Fo2 + 2Fc2)/3
1825 reflections(Δ/σ)max = 0.015
133 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C10H11Cl2NOV = 1031.9 (6) Å3
Mr = 232.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.412 (4) ŵ = 0.59 mm1
b = 10.570 (4) ÅT = 297 K
c = 9.163 (3) Å0.80 × 0.26 × 0.13 mm
β = 110.99 (2)°
Data collection top
Stoe STADI-4 four-circle
diffractometer
1445 reflections with I > 2σ(I)
Absorption correction: numerical
(North et al., 1968)
Rint = 0.000
Tmin = 0.873, Tmax = 0.9273 standard reflections every 120 min
1825 measured reflections intensity decay: 1%
1825 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.62 e Å3
1825 reflectionsΔρmin = 0.49 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.00025 (11)0.11758 (11)0.14291 (16)0.0946 (5)
Cl20.03634 (11)0.35402 (11)0.07162 (15)0.0921 (5)
C30.0997 (3)0.2384 (3)0.2002 (4)0.0532 (8)
H30.10840.26530.30590.064*
C40.2273 (3)0.2054 (3)0.1930 (3)0.0471 (7)
O50.2424 (2)0.1976 (3)0.0688 (2)0.0668 (7)
N60.3146 (2)0.1846 (2)0.3333 (3)0.0460 (6)
H6N0.300 (3)0.199 (3)0.408 (4)0.055*
C70.4409 (3)0.1498 (3)0.3696 (3)0.0442 (7)
C80.4852 (3)0.1039 (3)0.2593 (4)0.0522 (8)
H80.43180.09550.15580.063*
C90.6106 (3)0.0702 (3)0.3040 (4)0.0580 (8)
C100.6875 (3)0.0818 (3)0.4575 (4)0.0602 (9)
H100.77130.05830.48660.072*
C110.6444 (3)0.1270 (3)0.5694 (4)0.0574 (8)
C120.5203 (3)0.1600 (3)0.5236 (4)0.0511 (8)
H120.48890.18990.59770.061*
C130.6583 (4)0.0221 (5)0.1825 (5)0.0855 (13)
H13A0.63460.07950.09560.120*
H13B0.62290.05980.14760.120*
H13C0.74810.01550.22620.120*
C140.7311 (4)0.1379 (4)0.7388 (5)0.0799 (12)
H14A0.81490.15550.74340.112*0.46 (5)
H14B0.73040.05980.79200.112*0.46 (5)
H14C0.70290.20530.78830.112*0.46 (5)
H14D0.68390.12500.80570.112*0.54 (5)
H14E0.76840.22060.75710.112*0.54 (5)
H14F0.79590.07510.76090.112*0.54 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0748 (8)0.0835 (8)0.1257 (11)0.0243 (5)0.0362 (7)0.0154 (6)
Cl20.0778 (8)0.0821 (8)0.1134 (9)0.0310 (6)0.0306 (6)0.0280 (6)
C30.0472 (16)0.0593 (19)0.0507 (16)0.0001 (14)0.0146 (13)0.0023 (14)
C40.0502 (17)0.0486 (16)0.0425 (15)0.0020 (13)0.0165 (13)0.0035 (12)
O50.0634 (15)0.0949 (19)0.0436 (12)0.0195 (13)0.0211 (10)0.0148 (12)
N60.0494 (14)0.0508 (14)0.0388 (13)0.0056 (11)0.0171 (11)0.0011 (11)
C70.0463 (16)0.0370 (14)0.0482 (16)0.0021 (11)0.0156 (13)0.0052 (11)
C80.0566 (19)0.0501 (16)0.0490 (16)0.0047 (14)0.0176 (14)0.0033 (13)
C90.0567 (19)0.0496 (17)0.070 (2)0.0057 (14)0.0258 (17)0.0038 (15)
C100.0480 (18)0.0505 (17)0.076 (2)0.0062 (14)0.0153 (16)0.0040 (16)
C110.0530 (19)0.0431 (16)0.065 (2)0.0012 (13)0.0074 (16)0.0028 (14)
C120.0547 (19)0.0457 (16)0.0479 (16)0.0013 (14)0.0123 (14)0.0001 (13)
C130.080 (3)0.096 (3)0.089 (3)0.027 (2)0.041 (2)0.001 (2)
C140.065 (2)0.072 (2)0.074 (2)0.0028 (19)0.0092 (19)0.0078 (19)
Geometric parameters (Å, º) top
Cl1—C31.667 (3)C10—C111.372 (5)
Cl2—C31.671 (3)C10—H100.9300
C3—C41.522 (4)C11—C121.371 (5)
C3—H30.9800C11—C141.518 (5)
C4—O51.213 (4)C12—H120.9300
C4—N61.333 (4)C13—H13A0.9600
N6—C71.407 (4)C13—H13B0.9600
N6—H6N0.78 (4)C13—H13C0.9600
C7—C81.370 (4)C14—H14A0.9600
C7—C121.381 (4)C14—H14B0.9600
C8—C91.387 (5)C14—H14C0.9600
C8—H80.9300C14—H14D0.9600
C9—C101.370 (5)C14—H14E0.9600
C9—C131.493 (5)C14—H14F0.9600
C4—C3—Cl1111.6 (2)C7—C12—H12119.3
C4—C3—Cl2108.4 (2)C9—C13—H13A109.5
Cl1—C3—Cl2105.31 (18)C9—C13—H13B109.5
C4—C3—H3110.5H13A—C13—H13B109.5
Cl1—C3—H3110.5C9—C13—H13C109.5
Cl2—C3—H3110.5H13A—C13—H13C109.5
O5—C4—N6125.8 (3)H13B—C13—H13C109.5
O5—C4—C3121.0 (3)C11—C14—H14A109.5
N6—C4—C3113.1 (3)C11—C14—H14B109.5
C4—N6—C7128.3 (3)H14A—C14—H14B109.5
C4—N6—H6N120 (3)C11—C14—H14C109.5
C7—N6—H6N112 (3)H14A—C14—H14C109.5
C8—C7—C12120.1 (3)H14B—C14—H14C109.5
C8—C7—N6122.4 (3)C11—C14—H14D109.5
C12—C7—N6117.6 (3)H14A—C14—H14D141.1
C7—C8—C9119.2 (3)H14B—C14—H14D56.3
C7—C8—H8120.4H14C—C14—H14D56.3
C9—C8—H8120.4C11—C14—H14E109.5
C10—C9—C8119.6 (3)H14A—C14—H14E56.3
C10—C9—C13121.7 (3)H14B—C14—H14E141.1
C8—C9—C13118.7 (3)H14C—C14—H14E56.3
C9—C10—C11121.9 (3)H14D—C14—H14E109.5
C9—C10—H10119.0C11—C14—H14F109.5
C11—C10—H10119.0H14A—C14—H14F56.3
C12—C11—C10117.9 (3)H14B—C14—H14F56.3
C12—C11—C14121.2 (4)H14C—C14—H14F141.1
C10—C11—C14121.0 (3)H14D—C14—H14F109.5
C11—C12—C7121.4 (3)H14E—C14—H14F109.5
C11—C12—H12119.3
Cl1—C3—C4—O573.5 (4)C7—C8—C9—C100.8 (5)
Cl2—C3—C4—O542.1 (4)C7—C8—C9—C13179.2 (3)
Cl1—C3—C4—N6105.2 (3)C8—C9—C10—C110.6 (5)
Cl2—C3—C4—N6139.3 (2)C13—C9—C10—C11179.4 (4)
O5—C4—N6—C70.0 (5)C9—C10—C11—C120.5 (5)
C3—C4—N6—C7178.5 (3)C9—C10—C11—C14179.5 (3)
C4—N6—C7—C815.4 (5)C10—C11—C12—C70.8 (5)
C4—N6—C7—C12166.3 (3)C14—C11—C12—C7179.8 (3)
C12—C7—C8—C91.1 (5)C8—C7—C12—C111.1 (5)
N6—C7—C8—C9179.3 (3)N6—C7—C12—C11179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6N···O5i0.78 (4)2.12 (4)2.857 (4)159 (4)
C3—H3···O5i0.982.383.252 (4)148
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H11Cl2NO
Mr232.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)11.412 (4), 10.570 (4), 9.163 (3)
β (°) 110.99 (2)
V3)1031.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.80 × 0.26 × 0.13
Data collection
DiffractometerStoe STADI-4 four-circle
diffractometer
Absorption correctionNumerical
(North et al., 1968)
Tmin, Tmax0.873, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
1825, 1825, 1445
Rint0.000
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.179, 1.07
No. of reflections1825
No. of parameters133
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.49

Computer programs: STADI4 (Stoe & Cie, 1987), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6N···O5i0.78 (4)2.12 (4)2.857 (4)159 (4)
C3—H3···O5i0.982.383.252 (4)148.2
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Paulus, H. & Fuess, H. (2001). Z. Naturforsch. Teil A, 56, 386–394.  CAS Google Scholar
First citationGowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675–682.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). STADI4 and REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds