organic compounds
2,2-Dichloro-N-(3,5-dimethylphenyl)acetamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
The structure of the title compound, C10H11Cl2NO, resembles those of 2,2-dichloro-N-phenylacetamide, 2,2-dichloro-N-(2-methylphenyl)acetamide, 2,2-dichloro-N-(3-methylphenyl)acetamide, 2,2-dichloro-N-(4-methylphenyl)acetamide, N-(3,5-dimethylphenyl)acetamide and other acetanilides, with similar bond parameters. The molecules in the title compound are linked into infinite chains through N—H⋯O and C—H⋯O hydrogen bonding.
Related literature
For related literature, see: Gowda et al. (2001, 2006, 2007); Shilpa & Gowda (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: STADI4 (Stoe & Cie, 1987); cell STADI4; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536807064914/dn2290sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807064914/dn2290Isup2.hkl
The title compound was prepared according to the literature method (Shilpa and Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa and Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.
The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å (CH aromatic) or 0.96 Å (CH3) or 0.98 Å (CHCl2) with Uiso(H) = 1.2 Ueq(CH) and Uiso(H) = 1.4 Ueq(CH3).
In the present work, the structure of 2,2-dichloro-N- (3,5-dimethylphenyl)-acetamide (35DMPDCA) has been determined to explore the substituent effects on the structures of N-aromatic
(Gowda et al., 2001, 2006, 2007). The structure of 35DMPDCA (Fig. 1) resembles those of 2,2-dichloro-N-(phenyl)acetamide (PDCA)(Gowda et al., 2001), 2,2-dichloro-N-(2-methylphenyl)acetamide (2MPDCA)(Gowda et al., 2006), 2,2-dichloro-N-(3-methylphenyl)-acetamide (3MPDCA) (Gowda et al., 2006), 2,2-dichloro-N-(4-methylphenyl)-acetamide (4MPDCA)(Gowda et al., 2001) and N-(3,5-dimethylphenyl)-acetamide (35DMPA)(Gowda et al., 2007). But the 35DMPDCA has a single molecule in its in contrast to two molecules observed in the of 35DMPA. The bond parameters in 35DMPDCA are similar to those in PDCA, 2MPDCA, 3MPDCA, 4MPDCA, 35DMPA and other acetanilides (Gowda et al., 2001, 2006; 2007). The molecules in 35DMPDcA are linked into zigzag chains through N—H···O and C—H···O hydrogen bonding (Table 1 and Fig.2).For related literature, see: Gowda et al. (2001, 2006, 2007); Shilpa & Gowda (2007).
Data collection: STADI4 (Stoe & Cie, 1987); cell
STADI4 (Stoe & Cie, 1987); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).C10H11Cl2NO | F(000) = 480 |
Mr = 232.10 | Dx = 1.494 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 44 reflections |
a = 11.412 (4) Å | θ = 17.6–19.7° |
b = 10.570 (4) Å | µ = 0.59 mm−1 |
c = 9.163 (3) Å | T = 297 K |
β = 110.99 (2)° | Prism, light yellow |
V = 1031.9 (6) Å3 | 0.80 × 0.26 × 0.13 mm |
Z = 4 |
Stoe STADI-4 four-circle diffractometer | 1445 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 25.0°, θmin = 1.9° |
Profile fitted scans 2θ/ω=1/1 | h = −13→12 |
Absorption correction: numerical (North et al., 1968) | k = 0→12 |
Tmin = 0.873, Tmax = 0.927 | l = 0→10 |
1825 measured reflections | 3 standard reflections every 120 min |
1825 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.059 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.179 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0889P)2 + 0.8161P] where P = (Fo2 + 2Fc2)/3 |
1825 reflections | (Δ/σ)max = 0.015 |
133 parameters | Δρmax = 0.62 e Å−3 |
0 restraints | Δρmin = −0.49 e Å−3 |
C10H11Cl2NO | V = 1031.9 (6) Å3 |
Mr = 232.10 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.412 (4) Å | µ = 0.59 mm−1 |
b = 10.570 (4) Å | T = 297 K |
c = 9.163 (3) Å | 0.80 × 0.26 × 0.13 mm |
β = 110.99 (2)° |
Stoe STADI-4 four-circle diffractometer | 1445 reflections with I > 2σ(I) |
Absorption correction: numerical (North et al., 1968) | Rint = 0.000 |
Tmin = 0.873, Tmax = 0.927 | 3 standard reflections every 120 min |
1825 measured reflections | intensity decay: 1% |
1825 independent reflections |
R[F2 > 2σ(F2)] = 0.059 | 0 restraints |
wR(F2) = 0.179 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.62 e Å−3 |
1825 reflections | Δρmin = −0.49 e Å−3 |
133 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | −0.00025 (11) | 0.11758 (11) | 0.14291 (16) | 0.0946 (5) | |
Cl2 | 0.03634 (11) | 0.35402 (11) | 0.07162 (15) | 0.0921 (5) | |
C3 | 0.0997 (3) | 0.2384 (3) | 0.2002 (4) | 0.0532 (8) | |
H3 | 0.1084 | 0.2653 | 0.3059 | 0.064* | |
C4 | 0.2273 (3) | 0.2054 (3) | 0.1930 (3) | 0.0471 (7) | |
O5 | 0.2424 (2) | 0.1976 (3) | 0.0688 (2) | 0.0668 (7) | |
N6 | 0.3146 (2) | 0.1846 (2) | 0.3333 (3) | 0.0460 (6) | |
H6N | 0.300 (3) | 0.199 (3) | 0.408 (4) | 0.055* | |
C7 | 0.4409 (3) | 0.1498 (3) | 0.3696 (3) | 0.0442 (7) | |
C8 | 0.4852 (3) | 0.1039 (3) | 0.2593 (4) | 0.0522 (8) | |
H8 | 0.4318 | 0.0955 | 0.1558 | 0.063* | |
C9 | 0.6106 (3) | 0.0702 (3) | 0.3040 (4) | 0.0580 (8) | |
C10 | 0.6875 (3) | 0.0818 (3) | 0.4575 (4) | 0.0602 (9) | |
H10 | 0.7713 | 0.0583 | 0.4866 | 0.072* | |
C11 | 0.6444 (3) | 0.1270 (3) | 0.5694 (4) | 0.0574 (8) | |
C12 | 0.5203 (3) | 0.1600 (3) | 0.5236 (4) | 0.0511 (8) | |
H12 | 0.4889 | 0.1899 | 0.5977 | 0.061* | |
C13 | 0.6583 (4) | 0.0221 (5) | 0.1825 (5) | 0.0855 (13) | |
H13A | 0.6346 | 0.0795 | 0.0956 | 0.120* | |
H13B | 0.6229 | −0.0598 | 0.1476 | 0.120* | |
H13C | 0.7481 | 0.0155 | 0.2262 | 0.120* | |
C14 | 0.7311 (4) | 0.1379 (4) | 0.7388 (5) | 0.0799 (12) | |
H14A | 0.8149 | 0.1555 | 0.7434 | 0.112* | 0.46 (5) |
H14B | 0.7304 | 0.0598 | 0.7920 | 0.112* | 0.46 (5) |
H14C | 0.7029 | 0.2053 | 0.7883 | 0.112* | 0.46 (5) |
H14D | 0.6839 | 0.1250 | 0.8057 | 0.112* | 0.54 (5) |
H14E | 0.7684 | 0.2206 | 0.7571 | 0.112* | 0.54 (5) |
H14F | 0.7959 | 0.0751 | 0.7609 | 0.112* | 0.54 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0748 (8) | 0.0835 (8) | 0.1257 (11) | −0.0243 (5) | 0.0362 (7) | −0.0154 (6) |
Cl2 | 0.0778 (8) | 0.0821 (8) | 0.1134 (9) | 0.0310 (6) | 0.0306 (6) | 0.0280 (6) |
C3 | 0.0472 (16) | 0.0593 (19) | 0.0507 (16) | 0.0001 (14) | 0.0146 (13) | −0.0023 (14) |
C4 | 0.0502 (17) | 0.0486 (16) | 0.0425 (15) | 0.0020 (13) | 0.0165 (13) | 0.0035 (12) |
O5 | 0.0634 (15) | 0.0949 (19) | 0.0436 (12) | 0.0195 (13) | 0.0211 (10) | 0.0148 (12) |
N6 | 0.0494 (14) | 0.0508 (14) | 0.0388 (13) | 0.0056 (11) | 0.0171 (11) | 0.0011 (11) |
C7 | 0.0463 (16) | 0.0370 (14) | 0.0482 (16) | 0.0021 (11) | 0.0156 (13) | 0.0052 (11) |
C8 | 0.0566 (19) | 0.0501 (16) | 0.0490 (16) | 0.0047 (14) | 0.0176 (14) | 0.0033 (13) |
C9 | 0.0567 (19) | 0.0496 (17) | 0.070 (2) | 0.0057 (14) | 0.0258 (17) | 0.0038 (15) |
C10 | 0.0480 (18) | 0.0505 (17) | 0.076 (2) | 0.0062 (14) | 0.0153 (16) | 0.0040 (16) |
C11 | 0.0530 (19) | 0.0431 (16) | 0.065 (2) | −0.0012 (13) | 0.0074 (16) | 0.0028 (14) |
C12 | 0.0547 (19) | 0.0457 (16) | 0.0479 (16) | 0.0013 (14) | 0.0123 (14) | −0.0001 (13) |
C13 | 0.080 (3) | 0.096 (3) | 0.089 (3) | 0.027 (2) | 0.041 (2) | −0.001 (2) |
C14 | 0.065 (2) | 0.072 (2) | 0.074 (2) | 0.0028 (19) | −0.0092 (19) | −0.0078 (19) |
Cl1—C3 | 1.667 (3) | C10—C11 | 1.372 (5) |
Cl2—C3 | 1.671 (3) | C10—H10 | 0.9300 |
C3—C4 | 1.522 (4) | C11—C12 | 1.371 (5) |
C3—H3 | 0.9800 | C11—C14 | 1.518 (5) |
C4—O5 | 1.213 (4) | C12—H12 | 0.9300 |
C4—N6 | 1.333 (4) | C13—H13A | 0.9600 |
N6—C7 | 1.407 (4) | C13—H13B | 0.9600 |
N6—H6N | 0.78 (4) | C13—H13C | 0.9600 |
C7—C8 | 1.370 (4) | C14—H14A | 0.9600 |
C7—C12 | 1.381 (4) | C14—H14B | 0.9600 |
C8—C9 | 1.387 (5) | C14—H14C | 0.9600 |
C8—H8 | 0.9300 | C14—H14D | 0.9600 |
C9—C10 | 1.370 (5) | C14—H14E | 0.9600 |
C9—C13 | 1.493 (5) | C14—H14F | 0.9600 |
C4—C3—Cl1 | 111.6 (2) | C7—C12—H12 | 119.3 |
C4—C3—Cl2 | 108.4 (2) | C9—C13—H13A | 109.5 |
Cl1—C3—Cl2 | 105.31 (18) | C9—C13—H13B | 109.5 |
C4—C3—H3 | 110.5 | H13A—C13—H13B | 109.5 |
Cl1—C3—H3 | 110.5 | C9—C13—H13C | 109.5 |
Cl2—C3—H3 | 110.5 | H13A—C13—H13C | 109.5 |
O5—C4—N6 | 125.8 (3) | H13B—C13—H13C | 109.5 |
O5—C4—C3 | 121.0 (3) | C11—C14—H14A | 109.5 |
N6—C4—C3 | 113.1 (3) | C11—C14—H14B | 109.5 |
C4—N6—C7 | 128.3 (3) | H14A—C14—H14B | 109.5 |
C4—N6—H6N | 120 (3) | C11—C14—H14C | 109.5 |
C7—N6—H6N | 112 (3) | H14A—C14—H14C | 109.5 |
C8—C7—C12 | 120.1 (3) | H14B—C14—H14C | 109.5 |
C8—C7—N6 | 122.4 (3) | C11—C14—H14D | 109.5 |
C12—C7—N6 | 117.6 (3) | H14A—C14—H14D | 141.1 |
C7—C8—C9 | 119.2 (3) | H14B—C14—H14D | 56.3 |
C7—C8—H8 | 120.4 | H14C—C14—H14D | 56.3 |
C9—C8—H8 | 120.4 | C11—C14—H14E | 109.5 |
C10—C9—C8 | 119.6 (3) | H14A—C14—H14E | 56.3 |
C10—C9—C13 | 121.7 (3) | H14B—C14—H14E | 141.1 |
C8—C9—C13 | 118.7 (3) | H14C—C14—H14E | 56.3 |
C9—C10—C11 | 121.9 (3) | H14D—C14—H14E | 109.5 |
C9—C10—H10 | 119.0 | C11—C14—H14F | 109.5 |
C11—C10—H10 | 119.0 | H14A—C14—H14F | 56.3 |
C12—C11—C10 | 117.9 (3) | H14B—C14—H14F | 56.3 |
C12—C11—C14 | 121.2 (4) | H14C—C14—H14F | 141.1 |
C10—C11—C14 | 121.0 (3) | H14D—C14—H14F | 109.5 |
C11—C12—C7 | 121.4 (3) | H14E—C14—H14F | 109.5 |
C11—C12—H12 | 119.3 | ||
Cl1—C3—C4—O5 | 73.5 (4) | C7—C8—C9—C10 | 0.8 (5) |
Cl2—C3—C4—O5 | −42.1 (4) | C7—C8—C9—C13 | −179.2 (3) |
Cl1—C3—C4—N6 | −105.2 (3) | C8—C9—C10—C11 | −0.6 (5) |
Cl2—C3—C4—N6 | 139.3 (2) | C13—C9—C10—C11 | 179.4 (4) |
O5—C4—N6—C7 | 0.0 (5) | C9—C10—C11—C12 | 0.5 (5) |
C3—C4—N6—C7 | 178.5 (3) | C9—C10—C11—C14 | 179.5 (3) |
C4—N6—C7—C8 | −15.4 (5) | C10—C11—C12—C7 | −0.8 (5) |
C4—N6—C7—C12 | 166.3 (3) | C14—C11—C12—C7 | −179.8 (3) |
C12—C7—C8—C9 | −1.1 (5) | C8—C7—C12—C11 | 1.1 (5) |
N6—C7—C8—C9 | −179.3 (3) | N6—C7—C12—C11 | 179.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6N···O5i | 0.78 (4) | 2.12 (4) | 2.857 (4) | 159 (4) |
C3—H3···O5i | 0.98 | 2.38 | 3.252 (4) | 148 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H11Cl2NO |
Mr | 232.10 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 297 |
a, b, c (Å) | 11.412 (4), 10.570 (4), 9.163 (3) |
β (°) | 110.99 (2) |
V (Å3) | 1031.9 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.59 |
Crystal size (mm) | 0.80 × 0.26 × 0.13 |
Data collection | |
Diffractometer | Stoe STADI-4 four-circle diffractometer |
Absorption correction | Numerical (North et al., 1968) |
Tmin, Tmax | 0.873, 0.927 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1825, 1825, 1445 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.179, 1.07 |
No. of reflections | 1825 |
No. of parameters | 133 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.62, −0.49 |
Computer programs: STADI4 (Stoe & Cie, 1987), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H6N···O5i | 0.78 (4) | 2.12 (4) | 2.857 (4) | 159 (4) |
C3—H3···O5i | 0.98 | 2.38 | 3.252 (4) | 148.2 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Acknowledgements
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.
References
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2711. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Paulus, H. & Fuess, H. (2001). Z. Naturforsch. Teil A, 56, 386–394. CAS Google Scholar
Gowda, B. T., Paulus, H., Kozisek, J., Tokarcik, M. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 675–682. CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1987). STADI4 and REDU4. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the present work, the structure of 2,2-dichloro-N- (3,5-dimethylphenyl)-acetamide (35DMPDCA) has been determined to explore the substituent effects on the structures of N-aromatic amides (Gowda et al., 2001, 2006, 2007). The structure of 35DMPDCA (Fig. 1) resembles those of 2,2-dichloro-N-(phenyl)acetamide (PDCA)(Gowda et al., 2001), 2,2-dichloro-N-(2-methylphenyl)acetamide (2MPDCA)(Gowda et al., 2006), 2,2-dichloro-N-(3-methylphenyl)-acetamide (3MPDCA) (Gowda et al., 2006), 2,2-dichloro-N-(4-methylphenyl)-acetamide (4MPDCA)(Gowda et al., 2001) and N-(3,5-dimethylphenyl)-acetamide (35DMPA)(Gowda et al., 2007). But the 35DMPDCA has a single molecule in its asymmetric unit, in contrast to two molecules observed in the asymmetric unit of 35DMPA. The bond parameters in 35DMPDCA are similar to those in PDCA, 2MPDCA, 3MPDCA, 4MPDCA, 35DMPA and other acetanilides (Gowda et al., 2001, 2006; 2007). The molecules in 35DMPDcA are linked into zigzag chains through N—H···O and C—H···O hydrogen bonding (Table 1 and Fig.2).