metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[N3-(2-hy­droxy­benzo­yl)pyridine-2-carboxamidrazonato-κ3N1,N2,O]manganese(II)

aDepartment of Environmental Engineering, Anhui University of Technology, Maanshan 243002, People's Republic of China
*Correspondence e-mail: farnesene@gmail.com

(Received 19 November 2007; accepted 26 November 2007; online 6 December 2007)

In the title compound, [Mn(C13H11N4O2)2], the Mn atom is coordinated in a distorted octa­hedral manner by pyridyl N atoms, amidrazonato N atoms and carbamoy O atoms from two tridentate N3-salicyloylpyridine-2-carboxamidrazonato ligands. N—H⋯O hydrogen bonds result in the formation of two chains, one parallel to the b axis and the other one parallel to the c axis. These two chains are cross-linked, building up layers parallel to the (100) plane.

Related literature

For related structures, see: Van Koningsbruggen et al. (1993[Van Koningsbruggen, P. J., Haasnoot, J. G., Graaff, R. A. G. & Reedijk, J. (1993). J. Chem. Soc. Dalton Trans. pp. 483-484.], 1995[Van Koningsbruggen, P. J., Haasnoot, J. G., de Graaff, R. A. G. & Reedijk, J. (1995). Inorg. Chim. Acta, 234, 87-94.]); Li (2007[Li, Y. (2007). Acta Cryst. E63, m2837.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C13H11N4O2)2]

  • Mr = 565.46

  • Monoclinic, P 2/c

  • a = 10.7661 (16) Å

  • b = 13.049 (2) Å

  • c = 19.998 (3) Å

  • β = 116.192 (7)°

  • V = 2521.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 173 (2) K

  • 0.35 × 0.32 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.816, Tmax = 0.850

  • 13210 measured reflections

  • 4676 independent reflections

  • 4155 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.110

  • S = 1.07

  • 4676 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N4 0.84 1.82 2.564 (2) 146
O4—H4A⋯N8 0.84 1.80 2.541 (2) 147
N3—H3A⋯O2i 0.88 2.37 3.072 (3) 137
N3—H3B⋯O3ii 0.88 2.20 2.847 (2) 130
N6—H6A⋯O4iii 0.88 2.44 3.065 (3) 129
N6—H6B⋯O1iv 0.88 2.19 2.907 (3) 138
Symmetry codes: (i) [-x+1, y, -z-{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) [-x+1, y, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL ; molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and XP (in SHELXTL); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The N3-salicyloylpyridine-2-carboxamidrazonato ligand (abbreviated as Hspa) has several potential donor atoms and can occur in different chemical and structural conformations. In the Copper(II) coordination compound containing the dehydrogenated spa ligand (Van Koningsbruggen et al., 1995), this spa ligand is fairly planar, whereas in the title complex it is slighted bent around the central Mn—N bonds, with a dihedral angle of 20.53 (7)° between the two aromatic rings (Fig. 1).

Hydrogen bonds N6—H6A···O4 and N3—H3B···O3 forms chain parallel to the b axis (Table 1) whereas hydrogen bonds of N6—H6A···O4 and N3—H3A···O2 result in a chain parallels to c axis. These two chains are crosslinked to build up layers parallel to the (1 0 0) plane. There are also intramolecular O—H···N hydrogen bonds which do not participate to the packing (Table 1).

Related literature top

For related structures, see: Van Koningsbruggen et al. (1993, 1995); Li (2007).

Experimental top

The ligand N3-salicyloylpyridine-2-carboxamidrazonato (Hspa) was synthesized according to literature (Van Koningsbruggen et al., 1995). [Mn(C13H11N4O2)2] was synthesized by adding ligand (0.0256 g, 0.10 mmol) and Et3N (0.010 g, 0.1 mmol) in 1 ml DMSO to a solution of Mn(acac)2 (0.0253 g, 0.10 mmol) in CH2Cl2 (4 ml). The compound crystallized upon evaporation of the solvent at room temperature after a few days.

Refinement top

H atoms bonded to N and O atoms were located in a difference map and refined with distance restraints, and with Uiso(H) = 1.2Ueq(N,O). Other H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 times Ueq(C).

Structure description top

The N3-salicyloylpyridine-2-carboxamidrazonato ligand (abbreviated as Hspa) has several potential donor atoms and can occur in different chemical and structural conformations. In the Copper(II) coordination compound containing the dehydrogenated spa ligand (Van Koningsbruggen et al., 1995), this spa ligand is fairly planar, whereas in the title complex it is slighted bent around the central Mn—N bonds, with a dihedral angle of 20.53 (7)° between the two aromatic rings (Fig. 1).

Hydrogen bonds N6—H6A···O4 and N3—H3B···O3 forms chain parallel to the b axis (Table 1) whereas hydrogen bonds of N6—H6A···O4 and N3—H3A···O2 result in a chain parallels to c axis. These two chains are crosslinked to build up layers parallel to the (1 0 0) plane. There are also intramolecular O—H···N hydrogen bonds which do not participate to the packing (Table 1).

For related structures, see: Van Koningsbruggen et al. (1993, 1995); Li (2007).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and XP (in SHELXTL; Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. View down a, showing the crosslinking chains by hydrogen bonds. The c axis is horizontal. H atoms not involved in H bondings are removed for purpose of clarity.
Bis[N3-(2-hydroxybenzoyl)pyridine-2-carboxamidrazonato- κ3N1,N2,O]manganese(II) top
Crystal data top
[Mn(C13H11N4O2)2]F(000) = 1164
Mr = 565.46Dx = 1.490 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 9514 reflections
a = 10.7661 (16) Åθ = 2.5–28.3°
b = 13.049 (2) ŵ = 0.57 mm1
c = 19.998 (3) ÅT = 173 K
β = 116.192 (7)°Block, red
V = 2521.0 (7) Å30.35 × 0.32 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4676 independent reflections
Radiation source: fine-focus sealed tube4155 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
φ and ω scansθmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1312
Tmin = 0.816, Tmax = 0.850k = 1515
13210 measured reflectionsl = 2422
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0484P)2 + 2.5739P]
where P = (Fo2 + 2Fc2)/3
4676 reflections(Δ/σ)max < 0.001
352 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Mn(C13H11N4O2)2]V = 2521.0 (7) Å3
Mr = 565.46Z = 4
Monoclinic, P2/cMo Kα radiation
a = 10.7661 (16) ŵ = 0.57 mm1
b = 13.049 (2) ÅT = 173 K
c = 19.998 (3) Å0.35 × 0.32 × 0.28 mm
β = 116.192 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4676 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4155 reflections with I > 2σ(I)
Tmin = 0.816, Tmax = 0.850Rint = 0.051
13210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.07Δρmax = 0.71 e Å3
4676 reflectionsΔρmin = 0.46 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.48496 (3)0.24317 (2)0.001305 (18)0.01994 (12)
O10.34073 (16)0.27345 (12)0.11489 (9)0.0227 (3)
O20.34502 (18)0.06726 (13)0.27699 (9)0.0303 (4)
H2A0.40170.07200.23180.045*
O30.33067 (16)0.22300 (12)0.04389 (9)0.0230 (3)
O40.33727 (19)0.43655 (13)0.20316 (10)0.0327 (4)
H4A0.39580.42770.18660.049*
N10.64892 (19)0.12437 (15)0.07874 (10)0.0229 (4)
N20.52421 (19)0.13187 (14)0.06626 (10)0.0210 (4)
N30.6414 (2)0.01103 (14)0.08148 (11)0.0243 (4)
H3A0.60110.00630.13040.029*
H3B0.70180.06020.05960.029*
N40.44572 (19)0.13650 (14)0.14337 (10)0.0218 (4)
N50.64734 (19)0.35892 (15)0.00045 (11)0.0242 (4)
N60.6224 (2)0.51303 (15)0.14364 (11)0.0287 (5)
H6A0.58140.51150.17310.034*
H6B0.67720.56450.14620.034*
N70.52385 (19)0.35738 (14)0.08584 (10)0.0218 (4)
N80.4424 (2)0.35657 (15)0.12401 (11)0.0238 (4)
C10.6845 (2)0.05120 (16)0.04260 (12)0.0194 (4)
C20.7836 (2)0.02275 (18)0.08055 (13)0.0249 (5)
H20.80650.07390.05400.030*
C30.8486 (2)0.02049 (19)0.15777 (14)0.0289 (5)
H30.91600.07070.18490.035*
C40.8145 (2)0.0552 (2)0.19479 (13)0.0291 (5)
H40.85890.05880.24770.035*
C50.7136 (2)0.12593 (19)0.15304 (13)0.0270 (5)
H50.68950.17780.17860.032*
C60.6109 (2)0.05651 (16)0.04034 (12)0.0195 (4)
C70.3522 (2)0.21080 (16)0.16168 (12)0.0202 (4)
C80.2524 (2)0.21631 (18)0.24186 (13)0.0228 (5)
C90.1513 (3)0.2926 (2)0.26567 (14)0.0327 (6)
H90.15090.34190.23080.039*
C100.0521 (3)0.2982 (2)0.33867 (15)0.0391 (6)
H100.01470.35160.35380.047*
C110.0499 (3)0.2261 (2)0.38990 (14)0.0345 (6)
H110.01990.22900.43990.041*
C120.1491 (3)0.1499 (2)0.36856 (14)0.0309 (5)
H120.14800.10110.40410.037*
C130.2511 (2)0.14416 (17)0.29498 (12)0.0235 (5)
C140.6746 (2)0.43915 (17)0.04641 (12)0.0202 (4)
C150.7624 (2)0.51802 (18)0.04861 (13)0.0264 (5)
H150.77870.57420.08170.032*
C160.8263 (3)0.51342 (19)0.00135 (14)0.0297 (5)
H160.88700.56650.00170.036*
C170.8001 (3)0.4310 (2)0.04579 (14)0.0319 (6)
H170.84270.42590.07830.038*
C180.7105 (3)0.3555 (2)0.04503 (14)0.0306 (5)
H180.69300.29860.07760.037*
C190.6018 (2)0.43734 (16)0.09498 (12)0.0208 (5)
C200.3441 (2)0.28614 (17)0.09614 (12)0.0218 (5)
C210.2390 (2)0.28714 (18)0.12565 (12)0.0236 (5)
C220.1321 (3)0.21487 (19)0.09977 (14)0.0285 (5)
H220.13390.16120.06810.034*
C230.0237 (3)0.2198 (2)0.11919 (15)0.0348 (6)
H230.04810.17010.10100.042*
C240.0211 (3)0.2983 (2)0.16550 (15)0.0389 (6)
H240.05440.30330.17790.047*
C250.1270 (3)0.3689 (2)0.19368 (15)0.0361 (6)
H250.12500.42120.22630.043*
C260.2376 (3)0.36451 (18)0.17467 (13)0.0267 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02221 (19)0.01706 (19)0.0222 (2)0.00067 (13)0.01128 (15)0.00370 (13)
O10.0249 (8)0.0214 (8)0.0214 (8)0.0025 (6)0.0099 (7)0.0026 (6)
O20.0325 (9)0.0330 (9)0.0216 (8)0.0076 (7)0.0085 (7)0.0036 (7)
O30.0269 (8)0.0200 (8)0.0253 (8)0.0025 (6)0.0144 (7)0.0038 (6)
O40.0392 (10)0.0340 (10)0.0344 (10)0.0081 (8)0.0250 (8)0.0119 (8)
N10.0224 (9)0.0242 (10)0.0232 (10)0.0024 (8)0.0112 (8)0.0025 (8)
N20.0223 (9)0.0209 (9)0.0184 (9)0.0006 (8)0.0078 (8)0.0013 (7)
N30.0295 (10)0.0225 (10)0.0210 (10)0.0074 (8)0.0113 (8)0.0012 (7)
N40.0224 (9)0.0219 (10)0.0197 (9)0.0015 (8)0.0079 (8)0.0015 (7)
N50.0248 (10)0.0253 (10)0.0249 (10)0.0018 (8)0.0132 (8)0.0031 (8)
N60.0400 (12)0.0236 (10)0.0303 (11)0.0106 (9)0.0227 (10)0.0082 (8)
N70.0241 (9)0.0236 (10)0.0217 (9)0.0030 (8)0.0138 (8)0.0028 (8)
N80.0273 (10)0.0243 (10)0.0255 (10)0.0026 (8)0.0169 (8)0.0030 (8)
C10.0187 (10)0.0188 (11)0.0226 (11)0.0041 (8)0.0108 (9)0.0006 (8)
C20.0239 (11)0.0218 (11)0.0284 (12)0.0010 (9)0.0112 (10)0.0004 (9)
C30.0248 (12)0.0300 (13)0.0270 (12)0.0007 (10)0.0071 (10)0.0053 (10)
C40.0263 (12)0.0387 (14)0.0186 (11)0.0060 (10)0.0066 (10)0.0001 (10)
C50.0282 (12)0.0318 (13)0.0230 (12)0.0036 (10)0.0133 (10)0.0033 (10)
C60.0185 (10)0.0171 (11)0.0249 (11)0.0041 (8)0.0114 (9)0.0010 (8)
C70.0227 (11)0.0183 (10)0.0212 (11)0.0014 (9)0.0111 (9)0.0003 (8)
C80.0229 (11)0.0234 (11)0.0225 (11)0.0004 (9)0.0103 (10)0.0012 (9)
C90.0323 (13)0.0338 (14)0.0302 (13)0.0082 (11)0.0122 (11)0.0003 (11)
C100.0320 (14)0.0450 (16)0.0336 (14)0.0164 (12)0.0084 (12)0.0074 (12)
C110.0276 (13)0.0460 (16)0.0215 (12)0.0006 (11)0.0032 (10)0.0059 (11)
C120.0313 (13)0.0358 (14)0.0257 (12)0.0037 (11)0.0128 (11)0.0031 (10)
C130.0249 (11)0.0243 (12)0.0226 (11)0.0023 (9)0.0117 (10)0.0000 (9)
C140.0170 (10)0.0221 (11)0.0190 (10)0.0017 (8)0.0057 (9)0.0018 (9)
C150.0236 (12)0.0262 (12)0.0281 (12)0.0028 (9)0.0102 (10)0.0025 (10)
C160.0226 (11)0.0334 (14)0.0360 (14)0.0040 (10)0.0155 (11)0.0029 (11)
C170.0291 (13)0.0392 (15)0.0351 (14)0.0000 (11)0.0212 (11)0.0006 (11)
C180.0324 (13)0.0333 (13)0.0318 (13)0.0012 (10)0.0195 (11)0.0059 (10)
C190.0207 (11)0.0197 (11)0.0210 (11)0.0017 (8)0.0085 (9)0.0011 (9)
C200.0266 (11)0.0183 (11)0.0216 (11)0.0008 (9)0.0116 (9)0.0019 (9)
C210.0274 (12)0.0242 (12)0.0219 (11)0.0004 (9)0.0133 (10)0.0029 (9)
C220.0322 (13)0.0276 (12)0.0284 (13)0.0035 (10)0.0157 (11)0.0004 (10)
C230.0302 (13)0.0389 (15)0.0383 (15)0.0085 (11)0.0180 (12)0.0019 (12)
C240.0351 (14)0.0535 (17)0.0394 (15)0.0013 (13)0.0267 (13)0.0005 (13)
C250.0392 (15)0.0420 (15)0.0364 (14)0.0009 (12)0.0251 (12)0.0050 (12)
C260.0313 (12)0.0286 (12)0.0233 (12)0.0005 (10)0.0149 (10)0.0010 (10)
Geometric parameters (Å, º) top
Mn1—N22.1488 (18)C4—C51.389 (3)
Mn1—N72.1517 (18)C4—H40.9500
Mn1—O12.1868 (16)C5—H50.9500
Mn1—O32.1915 (16)C7—C81.487 (3)
Mn1—N52.3223 (19)C8—C91.394 (3)
Mn1—N12.3461 (19)C8—C131.415 (3)
O1—C71.289 (3)C9—C101.379 (4)
O2—C131.356 (3)C9—H90.9500
O2—H2A0.8410C10—C111.384 (4)
O3—C201.288 (3)C10—H100.9500
O4—C261.349 (3)C11—C121.382 (4)
O4—H4A0.8398C11—H110.9500
N1—C51.334 (3)C12—C131.396 (3)
N1—C11.351 (3)C12—H120.9500
N2—C61.296 (3)C14—C151.385 (3)
N2—N41.395 (3)C14—C191.493 (3)
N3—C61.342 (3)C15—C161.394 (3)
N3—H3A0.8795C15—H150.9500
N3—H3B0.8798C16—C171.375 (4)
N4—C71.328 (3)C16—H160.9500
N5—C181.340 (3)C17—C181.383 (4)
N5—C141.348 (3)C17—H170.9500
N6—C191.335 (3)C18—H180.9500
N6—H6A0.8795C20—C211.490 (3)
N6—H6B0.8797C21—C221.398 (3)
N7—C191.301 (3)C21—C261.412 (3)
N7—N81.394 (2)C22—C231.384 (4)
N8—C201.324 (3)C22—H220.9500
C1—C21.390 (3)C23—C241.389 (4)
C1—C61.491 (3)C23—H230.9500
C2—C31.386 (3)C24—C251.379 (4)
C2—H20.9500C24—H240.9500
C3—C41.377 (4)C25—C261.402 (3)
C3—H30.9500C25—H250.9500
N2—Mn1—N7159.74 (7)N4—C7—C8115.58 (19)
N2—Mn1—O172.45 (6)C9—C8—C13118.1 (2)
N7—Mn1—O1120.69 (7)C9—C8—C7119.1 (2)
N2—Mn1—O3123.80 (7)C13—C8—C7122.7 (2)
N7—Mn1—O372.29 (6)C10—C9—C8121.5 (2)
O1—Mn1—O397.47 (6)C10—C9—H9119.2
N2—Mn1—N594.12 (7)C8—C9—H9119.2
N7—Mn1—N571.01 (7)C9—C10—C11120.0 (2)
O1—Mn1—N593.02 (6)C9—C10—H10120.0
O3—Mn1—N5142.07 (6)C11—C10—H10120.0
N2—Mn1—N170.67 (7)C12—C11—C10120.2 (2)
N7—Mn1—N196.34 (7)C12—C11—H11119.9
O1—Mn1—N1142.69 (6)C10—C11—H11119.9
O3—Mn1—N198.21 (6)C11—C12—C13120.3 (2)
N5—Mn1—N195.03 (7)C11—C12—H12119.8
C7—O1—Mn1113.97 (14)C13—C12—H12119.8
C13—O2—H2A109.5O2—C13—C12117.8 (2)
C20—O3—Mn1113.91 (14)O2—C13—C8122.3 (2)
C26—O4—H4A109.5C12—C13—C8119.9 (2)
C5—N1—C1118.4 (2)N5—C14—C15122.3 (2)
C5—N1—Mn1126.56 (16)N5—C14—C19115.11 (19)
C1—N1—Mn1114.98 (14)C15—C14—C19122.5 (2)
C6—N2—N4116.92 (18)C14—C15—C16118.7 (2)
C6—N2—Mn1124.63 (15)C14—C15—H15120.6
N4—N2—Mn1118.34 (13)C16—C15—H15120.6
C6—N3—H3A120.1C17—C16—C15119.0 (2)
C6—N3—H3B120.0C17—C16—H16120.5
H3A—N3—H3B119.9C15—C16—H16120.5
C7—N4—N2110.61 (17)C16—C17—C18118.9 (2)
C18—N5—C14118.0 (2)C16—C17—H17120.6
C18—N5—Mn1126.52 (16)C18—C17—H17120.6
C14—N5—Mn1115.39 (14)N5—C18—C17123.0 (2)
C19—N6—H6A120.1N5—C18—H18118.5
C19—N6—H6B119.9C17—C18—H18118.5
H6A—N6—H6B120.0N7—C19—N6125.8 (2)
C19—N7—N8116.90 (18)N7—C19—C14114.38 (19)
C19—N7—Mn1123.76 (14)N6—C19—C14119.8 (2)
N8—N7—Mn1118.28 (13)O3—C20—N8124.7 (2)
C20—N8—N7110.70 (18)O3—C20—C21119.6 (2)
N1—C1—C2122.0 (2)N8—C20—C21115.63 (19)
N1—C1—C6115.17 (19)C22—C21—C26118.7 (2)
C2—C1—C6122.9 (2)C22—C21—C20119.5 (2)
C3—C2—C1118.8 (2)C26—C21—C20121.6 (2)
C3—C2—H2120.6C23—C22—C21121.5 (2)
C1—C2—H2120.6C23—C22—H22119.2
C4—C3—C2119.4 (2)C21—C22—H22119.2
C4—C3—H3120.3C22—C23—C24119.3 (2)
C2—C3—H3120.3C22—C23—H23120.4
C3—C4—C5118.5 (2)C24—C23—H23120.4
C3—C4—H4120.8C25—C24—C23120.6 (2)
C5—C4—H4120.8C25—C24—H24119.7
N1—C5—C4123.0 (2)C23—C24—H24119.7
N1—C5—H5118.5C24—C25—C26120.7 (2)
C4—C5—H5118.5C24—C25—H25119.7
N2—C6—N3125.5 (2)C26—C25—H25119.7
N2—C6—C1114.53 (19)O4—C26—C25118.0 (2)
N3—C6—C1119.87 (19)O4—C26—C21122.8 (2)
O1—C7—N4124.5 (2)C25—C26—C21119.2 (2)
O1—C7—C8119.82 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N40.841.822.564 (2)146
O4—H4A···N80.841.802.541 (2)147
N3—H3A···O2i0.882.373.072 (3)137
N3—H3B···O3ii0.882.202.847 (2)130
N6—H6A···O4iii0.882.443.065 (3)129
N6—H6B···O1iv0.882.192.907 (3)138
Symmetry codes: (i) x+1, y, z1/2; (ii) x+1, y, z; (iii) x+1, y, z+1/2; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn(C13H11N4O2)2]
Mr565.46
Crystal system, space groupMonoclinic, P2/c
Temperature (K)173
a, b, c (Å)10.7661 (16), 13.049 (2), 19.998 (3)
β (°) 116.192 (7)
V3)2521.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.35 × 0.32 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.816, 0.850
No. of measured, independent and
observed [I > 2σ(I)] reflections
13210, 4676, 4155
Rint0.051
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.110, 1.07
No. of reflections4676
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.46

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SHELXTL (Bruker, 2000), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and XP (in SHELXTL; Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N40.841.822.564 (2)146
O4—H4A···N80.841.802.541 (2)147
N3—H3A···O2i0.882.373.072 (3)137
N3—H3B···O3ii0.882.202.847 (2)130.
N6—H6A···O4iii0.882.443.065 (3)129
N6—H6B···O1iv0.882.192.907 (3)138
Symmetry codes: (i) x+1, y, z1/2; (ii) x+1, y, z; (iii) x+1, y, z+1/2; (iv) x+1, y+1, z.
 

References

First citationBruker (2000). SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, Y. (2007). Acta Cryst. E63, m2837.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVan Koningsbruggen, P. J., Haasnoot, J. G., de Graaff, R. A. G. & Reedijk, J. (1995). Inorg. Chim. Acta, 234, 87–94.  CSD CrossRef CAS Web of Science Google Scholar
First citationVan Koningsbruggen, P. J., Haasnoot, J. G., Graaff, R. A. G. & Reedijk, J. (1993). J. Chem. Soc. Dalton Trans. pp. 483–484.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds