metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Chlorido[6-chloro-4-(4-meth­oxy­benz­yl)-3-oxo-3,4-di­hydro­pyrazin-2-yl]­bis­­(tri­phenyl­phosphine)palladium(II)

aBiomolecular Architecture, Katholieke Universiteit Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Heverlee), Belgium, and bMolecular Design and Synthesis, Katholieke Universiteit Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Heverlee), Belgium
*Correspondence e-mail: luc.vanmeervelt@chem.kuleuven.be

(Received 19 November 2007; accepted 26 November 2007; online 6 December 2007)

The title compound, [Pd(C12H10ClN2O2)Cl(C18H15P)2], is the inter­mediate of the reduction of a 3,5-dichloro­pyrazinone [Loosen, Tutonda, Khorasani, Compernolle & Hoornaert (1991[Loosen, P. K., Tutonda, M. G., Khorasani, M. F., Compernolle, F. & Hoornaert, G. J. (1991). Tetrahedron, 47, 9259-9268.]). Tetra­hedron, 47, 9259–9268]. This species is formed by oxidative addition of coordinatively unsaturated Pd0 to the reactive 3-position of the heterocycle. The coordination around the Pd atom is square planar, with two trans PPh3 ligands. ππ inter­actions are observed between the centroid of the pyrazinone ring and planes of two adjacent phenyl rings, one from each PPh3 group (3.25 and 3.078 Å), stabilizing the inter­mediate structure. This could explain the reduced reactivity towards substitution of the Cl atom by the formate anion, resulting in poor yield of the reduced compound. 3-Substituted pyrazinones are important precursors in the synthesis of 5-amino­piperidinone-2-carboxyl­ate (APC) systems.

Related literature

For related literature on the reduction of 3,5-dichloro­pyrazinones, see: Loosen et al. (1991[Loosen, P. K., Tutonda, M. G., Khorasani, M. F., Compernolle, F. & Hoornaert, G. J. (1991). Tetrahedron, 47, 9259-9268.]). For related literature on 3,5-dichloro­pyrazinones, see: Pawar & De Borggraeve (2006[Pawar, V. G. & De Borggraeve, W. M. (2006). Synthesis, 17, 2799-2814.]). For related literature on APC systems, see: De Borggraeve et al. (2004[De Borggraeve, W. M., Verbist, B. M. P., Rombouts, F. J. R., Pawar, V. G., Smets, W. J., Kamoune, L., Alen, J., Van der Eycken, E. V., Compernolle, F. & Hoornaert, G. J. (2004). Tetrahedron, 60, 11597-11612.]); Alen et al. (2007[Alen, J., Smets, W. J., Dobrzańska, L., De Borggraeve, W. M., Compernolle, F. & Hoornaert, G. J. (2007). Eur. J. Org. Chem. 6, 965-971.]). For the Cambridge Structural Database (Version 5.28), see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C12H10ClN2O2)Cl(C18H15P)2]

  • Mr = 916.06

  • Triclinic, [P \overline 1]

  • a = 10.7544 (1) Å

  • b = 13.1526 (1) Å

  • c = 16.9967 (1) Å

  • α = 91.811 (1)°

  • β = 94.39 (1)°

  • γ = 98.451 (1)°

  • V = 2368.83 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 5.13 mm−1

  • T = 100 (2) K

  • 0.5 × 0.24 × 0.24 mm

Data collection
  • Bruker SMART 6000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.175, Tmax = 0.292

  • 23121 measured reflections

  • 8422 independent reflections

  • 7879 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.073

  • S = 1.08

  • 8422 reflections

  • 515 parameters

  • 318 restraints

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The target structure 5-chloro-1-(4-methoxybenzyl)-2(1H)-pyrazinone) was synthesized as a starting product for the synthesis of dipeptide mimics (Alen et al., 2007; De Borggraeve et al., 2004). This compound can be formed by reduction of a 3,5-dichloropyrazinone with sodium formate using Pd(PPh3)4 as a catalyst. Surprisingly, the title compound (I) was isolated as an intermediate (Scheme 1, Fig. 1). This means that substitution of the chlorine atom with sodium formate and subsequent proton shift leading to the desired compound, did not occur. In similar reactions the yields are high and no traces of the intermediate substance are found. However, the presence of a hydrogen atom para to the palladium atom and a para-methoxybenzyl substituent on the N-1 nitrogen atom of the pyrazinone scaffold, seem to increase the stability of the intermediate. This stability might arise from the ππ interactions between the pyrazinone and two phenyl rings of the PPh3 groups. The centroid of the pyrazinone makes a distance of 3.25 Å and 3.078 Å with the planes formed by the two adjacent phenyl rings. Searches in the CSD database (Version 5.28) (Allen, 2002) for similar structures (59 hits in 50 crystal structures) revealed that the angle between the pyrazinone ring and an adjacent phenyl ring is on average 27.6° (range 13.0° - 65.2°). As fragment for the CSD search a Pd atom with only four substituents (2 PPh3 groups, any halogen and an aromatic ring consisting of any atom type) was used. In the represented structure the angles are 15.4° and 13.9°, resulting in almost parallel pyrazinone and adjacent phenyl rings.

Related literature top

For related literature on the reduction of 3,5-dichloropyrazinones, see: Loosen et al. (1991). For related literature on 3,5-dichloropyrazinones, see: Pawar & De Borggraeve (2006). For related literature on APC systems, see: De Borggraeve et al. (2004); Alen et al. (2007). For the Cambridge Structural Database, see: Allen (2002).

Experimental top

To a solution of 570 mg (2 mmol) 3,5-dichloropyrazinone in 20 ml DMF, 204 mg (3 mmol) sodium formate and 115 mg Pd(PPh3)4 are added. The solution is stirred for 4 h at 110 °C under inert atmosphere. After removal of the solvent, the residue is treated with 50 ml of water and extracted with 3x 50 ml dichloromethane. After drying over magnesium sulfate and evaporation of the solvent, the product was chromatographically purified (Heptane/EtOAc 50:50). The title compound was formed as a by-product with a yield of 45% and spontaneously crystallized from the Heptane/EtOAc mixture.

Refinement top

Hydrogen atoms were positioned geometrically; Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for all other H atoms.

The asymmetric unit contains a solvent accessible void (164.3 Å3). The contribution of the disordered solvent atoms were taken into acount by the squeeze algorithm implemented in the PLATON program (Spek, 2003) for a total of 52.4 electrons.

Structure description top

The target structure 5-chloro-1-(4-methoxybenzyl)-2(1H)-pyrazinone) was synthesized as a starting product for the synthesis of dipeptide mimics (Alen et al., 2007; De Borggraeve et al., 2004). This compound can be formed by reduction of a 3,5-dichloropyrazinone with sodium formate using Pd(PPh3)4 as a catalyst. Surprisingly, the title compound (I) was isolated as an intermediate (Scheme 1, Fig. 1). This means that substitution of the chlorine atom with sodium formate and subsequent proton shift leading to the desired compound, did not occur. In similar reactions the yields are high and no traces of the intermediate substance are found. However, the presence of a hydrogen atom para to the palladium atom and a para-methoxybenzyl substituent on the N-1 nitrogen atom of the pyrazinone scaffold, seem to increase the stability of the intermediate. This stability might arise from the ππ interactions between the pyrazinone and two phenyl rings of the PPh3 groups. The centroid of the pyrazinone makes a distance of 3.25 Å and 3.078 Å with the planes formed by the two adjacent phenyl rings. Searches in the CSD database (Version 5.28) (Allen, 2002) for similar structures (59 hits in 50 crystal structures) revealed that the angle between the pyrazinone ring and an adjacent phenyl ring is on average 27.6° (range 13.0° - 65.2°). As fragment for the CSD search a Pd atom with only four substituents (2 PPh3 groups, any halogen and an aromatic ring consisting of any atom type) was used. In the represented structure the angles are 15.4° and 13.9°, resulting in almost parallel pyrazinone and adjacent phenyl rings.

For related literature on the reduction of 3,5-dichloropyrazinones, see: Loosen et al. (1991). For related literature on 3,5-dichloropyrazinones, see: Pawar & De Borggraeve (2006). For related literature on APC systems, see: De Borggraeve et al. (2004); Alen et al. (2007). For the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I), showing the atom-labeling scheme with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The title compound (I) is the stable intermediate in the synthesis of 5-chloro-1-(4-methoxybenzyl)-2(1H)-pyrazinone.
trans-Chlorido[6-chloro-4-(4-methoxybenzyl)-3-oxo-3,4-dihydropyrazin-2- yl]bis(triphenylphosphine)palladium(II) top
Crystal data top
[Pd(C12H10ClN2O2)Cl(C18H15P)2]Z = 2
Mr = 916.06F(000) = 936
Triclinic, P1Dx = 1.284 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 10.7544 (1) ÅCell parameters from 6414 reflections
b = 13.1526 (1) Åθ = 2.6–70.6°
c = 16.9967 (1) ŵ = 5.13 mm1
α = 91.811 (1)°T = 100 K
β = 94.39 (1)°Block, transparent
γ = 98.451 (1)°0.5 × 0.24 × 0.24 mm
V = 2368.83 (3) Å3
Data collection top
Bruker SMART 6000
diffractometer
8422 independent reflections
Radiation source: fine-focus sealed tube7879 reflections with I > 2σ(I)
Crossed Goebel mirrors monochromatorRint = 0.041
ω and φ scansθmax = 68.8°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1212
Tmin = 0.175, Tmax = 0.292k = 1515
23121 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.3456P]
where P = (Fo2 + 2Fc2)/3
8422 reflections(Δ/σ)max = 0.002
515 parametersΔρmax = 0.58 e Å3
318 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Pd(C12H10ClN2O2)Cl(C18H15P)2]γ = 98.451 (1)°
Mr = 916.06V = 2368.83 (3) Å3
Triclinic, P1Z = 2
a = 10.7544 (1) ÅCu Kα radiation
b = 13.1526 (1) ŵ = 5.13 mm1
c = 16.9967 (1) ÅT = 100 K
α = 91.811 (1)°0.5 × 0.24 × 0.24 mm
β = 94.39 (1)°
Data collection top
Bruker SMART 6000
diffractometer
8422 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
7879 reflections with I > 2σ(I)
Tmin = 0.175, Tmax = 0.292Rint = 0.041
23121 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029318 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.08Δρmax = 0.58 e Å3
8422 reflectionsΔρmin = 0.58 e Å3
515 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.882642 (11)0.283301 (9)0.798987 (7)0.00908 (6)
P20.83318 (4)0.22202 (3)0.92192 (2)0.00951 (10)
C30.84174 (17)0.08526 (14)0.92756 (11)0.0124 (3)
C40.83393 (19)0.02691 (15)0.85665 (11)0.0177 (4)
H40.83010.05940.80760.021*
C50.8318 (2)0.07905 (15)0.85853 (12)0.0221 (4)
H50.82580.11890.81040.027*
C60.83855 (19)0.12702 (15)0.93000 (13)0.0210 (4)
H60.83770.19930.93080.025*
C70.84646 (18)0.06874 (15)1.00047 (12)0.0184 (4)
H70.85120.10131.04950.022*
C80.84748 (17)0.03648 (15)0.99934 (11)0.0152 (4)
H80.85210.07581.04760.018*
C90.93153 (18)0.28969 (14)1.00503 (11)0.0141 (4)
C100.8973 (2)0.28020 (16)1.08230 (12)0.0196 (4)
H100.82110.23791.09210.023*
C110.9737 (2)0.33190 (17)1.14494 (12)0.0255 (4)
H110.95030.32431.19740.031*
C121.0844 (2)0.39479 (16)1.13073 (13)0.0272 (5)
H121.13670.43031.17360.033*
C131.1187 (2)0.40580 (15)1.05453 (14)0.0252 (5)
H131.19430.44931.04520.030*
C141.0431 (2)0.35355 (14)0.99098 (12)0.0188 (4)
H141.06720.36130.93860.023*
C150.67328 (18)0.23049 (15)0.94789 (10)0.0139 (4)
C160.6417 (2)0.32462 (15)0.97354 (12)0.0196 (4)
H160.70610.38210.98450.023*
C170.5173 (2)0.33501 (17)0.98318 (13)0.0265 (5)
H170.49700.39931.00100.032*
C180.4222 (2)0.25182 (18)0.96699 (13)0.0264 (5)
H180.33680.25940.97250.032*
C190.4529 (2)0.15776 (17)0.94274 (13)0.0238 (4)
H190.38830.10030.93260.029*
C200.5775 (2)0.14669 (16)0.93306 (11)0.0186 (4)
H200.59750.08190.91630.022*
P210.90967 (4)0.34277 (3)0.67295 (2)0.00962 (10)
C221.06025 (17)0.42371 (13)0.66477 (11)0.0123 (3)
O220.63099 (13)0.14734 (10)0.74606 (8)0.0164 (3)
C231.11981 (18)0.47685 (15)0.73317 (11)0.0162 (4)
H231.08580.46510.78260.019*
C241.2293 (2)0.54722 (16)0.72865 (13)0.0234 (4)
H241.26870.58460.77490.028*
C251.2805 (2)0.56260 (17)0.65720 (14)0.0265 (5)
H251.35510.61050.65440.032*
C261.2236 (2)0.50845 (17)0.58949 (13)0.0242 (4)
H261.26010.51820.54060.029*
C271.1130 (2)0.43986 (15)0.59306 (11)0.0187 (4)
H271.07320.40380.54640.022*
C280.89390 (18)0.23888 (15)0.59781 (11)0.0155 (4)
C290.9105 (2)0.14114 (15)0.62008 (12)0.0191 (4)
H290.93470.12970.67360.023*
C300.8916 (2)0.05938 (17)0.56403 (14)0.0278 (5)
H300.90430.00740.57930.033*
C310.8544 (2)0.07548 (17)0.48620 (14)0.0293 (5)
H310.83930.01930.44850.035*
C320.8392 (2)0.17322 (19)0.46310 (13)0.0295 (5)
H320.81520.18420.40940.035*
C330.8591 (2)0.25544 (17)0.51857 (12)0.0226 (4)
H330.84910.32260.50270.027*
C340.79522 (19)0.42356 (15)0.63620 (10)0.0153 (4)
C350.8235 (2)0.53018 (15)0.64354 (11)0.0192 (4)
H350.90640.56190.66160.023*
C360.7301 (2)0.59064 (18)0.62441 (12)0.0274 (5)
H360.74940.66350.62940.033*
C370.6096 (2)0.5446 (2)0.59829 (13)0.0304 (5)
H370.54640.58600.58500.037*
C380.5802 (2)0.4381 (2)0.59132 (12)0.0274 (5)
H380.49690.40670.57380.033*
C390.67304 (19)0.37767 (17)0.61004 (11)0.0197 (4)
H390.65330.30480.60500.024*
Cl401.08823 (4)0.23058 (3)0.81045 (3)0.01784 (10)
C410.71073 (17)0.32121 (14)0.78835 (10)0.0112 (3)
N420.68875 (15)0.41388 (12)0.80409 (9)0.0134 (3)
C430.56729 (19)0.43210 (15)0.79552 (11)0.0155 (4)
Cl450.54465 (5)0.55731 (4)0.82009 (3)0.02764 (12)
C460.46835 (18)0.36031 (15)0.77103 (10)0.0156 (4)
H460.38530.37720.76550.019*
N470.49052 (15)0.26179 (12)0.75423 (9)0.0136 (3)
C480.61075 (17)0.23561 (14)0.76109 (10)0.0122 (3)
C490.38425 (18)0.18064 (15)0.72664 (11)0.0168 (4)
H49A0.30670.19550.74970.020*
H49B0.40250.11350.74560.020*
C500.36165 (18)0.17346 (14)0.63773 (12)0.0157 (4)
C510.25756 (19)0.20966 (15)0.60036 (12)0.0185 (4)
H510.20030.23840.63120.022*
C520.2369 (2)0.20408 (15)0.51874 (12)0.0222 (4)
H520.16560.22870.49390.027*
C530.3206 (2)0.16237 (14)0.47317 (12)0.0188 (4)
C540.4253 (2)0.12637 (16)0.50919 (12)0.0216 (4)
H540.48310.09860.47820.026*
C550.44411 (19)0.13164 (16)0.59098 (12)0.0203 (4)
H550.51480.10620.61570.024*
O560.29196 (16)0.15893 (12)0.39257 (9)0.0268 (3)
C570.3688 (3)0.1064 (3)0.34498 (15)0.0500 (8)
H57A0.45680.13940.35390.075*
H57B0.33990.10950.28910.075*
H57C0.36230.03440.35940.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.00829 (8)0.01200 (8)0.00741 (8)0.00311 (5)0.00019 (5)0.00213 (5)
P20.0098 (2)0.0118 (2)0.0068 (2)0.00126 (16)0.00014 (16)0.00116 (15)
C30.0102 (8)0.0130 (8)0.0138 (8)0.0015 (6)0.0006 (7)0.0018 (6)
C40.0197 (10)0.0199 (9)0.0136 (9)0.0042 (8)0.0006 (7)0.0001 (7)
C50.0253 (11)0.0175 (9)0.0228 (10)0.0045 (8)0.0016 (8)0.0062 (8)
C60.0152 (10)0.0148 (9)0.0331 (11)0.0028 (7)0.0002 (8)0.0028 (8)
C70.0127 (9)0.0197 (9)0.0240 (10)0.0034 (7)0.0024 (7)0.0111 (8)
C80.0119 (9)0.0201 (9)0.0140 (9)0.0030 (7)0.0020 (7)0.0034 (7)
C90.0169 (9)0.0120 (8)0.0130 (8)0.0033 (7)0.0029 (7)0.0008 (6)
C100.0210 (10)0.0233 (10)0.0141 (9)0.0049 (8)0.0014 (8)0.0048 (7)
C110.0313 (12)0.0287 (11)0.0164 (9)0.0097 (9)0.0030 (8)0.0093 (8)
C120.0332 (12)0.0202 (10)0.0261 (11)0.0063 (9)0.0110 (9)0.0099 (8)
C130.0246 (11)0.0121 (9)0.0351 (12)0.0028 (8)0.0104 (9)0.0000 (8)
C140.0210 (10)0.0130 (9)0.0214 (9)0.0010 (7)0.0030 (8)0.0026 (7)
C150.0134 (9)0.0203 (9)0.0085 (8)0.0034 (7)0.0021 (7)0.0026 (7)
C160.0204 (10)0.0184 (9)0.0212 (10)0.0038 (8)0.0068 (8)0.0043 (7)
C170.0295 (12)0.0243 (10)0.0305 (11)0.0142 (9)0.0121 (9)0.0066 (9)
C180.0175 (10)0.0363 (12)0.0292 (11)0.0101 (9)0.0110 (8)0.0110 (9)
C190.0159 (10)0.0311 (11)0.0235 (10)0.0000 (8)0.0033 (8)0.0020 (8)
C200.0186 (10)0.0222 (10)0.0149 (9)0.0026 (8)0.0021 (7)0.0007 (7)
P210.0116 (2)0.0115 (2)0.0060 (2)0.00296 (16)0.00008 (15)0.00123 (15)
C220.0127 (9)0.0123 (8)0.0132 (8)0.0056 (7)0.0013 (7)0.0035 (6)
O220.0156 (7)0.0142 (6)0.0195 (7)0.0057 (5)0.0031 (5)0.0020 (5)
C230.0150 (9)0.0175 (9)0.0166 (9)0.0036 (7)0.0022 (7)0.0000 (7)
C240.0184 (10)0.0245 (10)0.0260 (10)0.0012 (8)0.0012 (8)0.0028 (8)
C250.0173 (10)0.0242 (10)0.0378 (12)0.0003 (8)0.0061 (9)0.0037 (9)
C260.0244 (11)0.0248 (10)0.0264 (10)0.0058 (8)0.0133 (8)0.0086 (8)
C270.0238 (10)0.0193 (9)0.0147 (9)0.0074 (8)0.0046 (8)0.0021 (7)
C280.0149 (9)0.0177 (9)0.0131 (9)0.0014 (7)0.0012 (7)0.0030 (7)
C290.0220 (10)0.0165 (9)0.0182 (9)0.0018 (8)0.0010 (8)0.0001 (7)
C300.0356 (13)0.0178 (10)0.0287 (11)0.0012 (9)0.0024 (9)0.0059 (8)
C310.0334 (12)0.0241 (11)0.0271 (11)0.0026 (9)0.0006 (9)0.0140 (9)
C320.0353 (13)0.0362 (12)0.0164 (10)0.0093 (10)0.0047 (9)0.0081 (9)
C330.0300 (11)0.0242 (10)0.0139 (9)0.0084 (9)0.0033 (8)0.0028 (8)
C340.0176 (9)0.0231 (9)0.0071 (8)0.0078 (7)0.0019 (7)0.0044 (7)
C350.0248 (11)0.0214 (10)0.0141 (9)0.0106 (8)0.0032 (8)0.0055 (7)
C360.0380 (13)0.0315 (11)0.0195 (10)0.0230 (10)0.0087 (9)0.0100 (8)
C370.0315 (12)0.0505 (14)0.0181 (10)0.0291 (11)0.0081 (9)0.0154 (9)
C380.0177 (10)0.0545 (14)0.0128 (9)0.0131 (10)0.0009 (8)0.0125 (9)
C390.0162 (10)0.0343 (11)0.0094 (8)0.0045 (8)0.0014 (7)0.0074 (7)
Cl400.0125 (2)0.0251 (2)0.0184 (2)0.00943 (17)0.00230 (16)0.00715 (17)
C410.0136 (9)0.0156 (8)0.0045 (7)0.0024 (7)0.0010 (6)0.0010 (6)
N420.0158 (8)0.0163 (7)0.0084 (7)0.0048 (6)0.0007 (6)0.0007 (5)
C430.0191 (10)0.0169 (9)0.0119 (8)0.0091 (7)0.0011 (7)0.0025 (7)
Cl450.0266 (3)0.0223 (2)0.0346 (3)0.01454 (19)0.0088 (2)0.0137 (2)
C460.0155 (9)0.0230 (9)0.0102 (8)0.0104 (7)0.0004 (7)0.0016 (7)
N470.0116 (8)0.0176 (7)0.0113 (7)0.0026 (6)0.0003 (6)0.0008 (6)
C480.0134 (9)0.0166 (9)0.0069 (8)0.0038 (7)0.0010 (6)0.0015 (6)
C490.0108 (9)0.0197 (9)0.0190 (9)0.0002 (7)0.0004 (7)0.0008 (7)
C500.0133 (9)0.0126 (8)0.0200 (9)0.0002 (7)0.0013 (7)0.0011 (7)
C510.0166 (10)0.0176 (9)0.0213 (10)0.0046 (7)0.0013 (8)0.0006 (7)
C520.0257 (11)0.0180 (9)0.0230 (10)0.0090 (8)0.0087 (8)0.0016 (8)
C530.0254 (10)0.0131 (8)0.0163 (9)0.0009 (7)0.0040 (8)0.0005 (7)
C540.0220 (10)0.0233 (10)0.0196 (10)0.0055 (8)0.0003 (8)0.0052 (8)
C550.0172 (10)0.0227 (10)0.0211 (10)0.0080 (8)0.0056 (8)0.0018 (8)
O560.0393 (9)0.0273 (8)0.0151 (7)0.0131 (7)0.0047 (6)0.0004 (6)
C570.0578 (19)0.084 (2)0.0150 (11)0.0361 (17)0.0002 (11)0.0048 (12)
Geometric parameters (Å, º) top
Pd1—C411.9812 (19)C26—C271.389 (3)
Pd1—P212.3280 (4)C26—H260.9500
Pd1—P22.3343 (4)C27—H270.9500
Pd1—Cl402.4084 (4)C28—C291.384 (3)
P2—C31.8198 (18)C28—C331.402 (3)
P2—C91.8225 (18)C29—C301.395 (3)
P2—C151.8259 (19)C29—H290.9500
C3—C41.398 (3)C30—C311.384 (3)
C3—C81.398 (3)C30—H300.9500
C4—C51.392 (3)C31—C321.385 (4)
C4—H40.9500C31—H310.9500
C5—C61.388 (3)C32—C331.393 (3)
C5—H50.9500C32—H320.9500
C6—C71.392 (3)C33—H330.9500
C6—H60.9500C34—C351.390 (3)
C7—C81.383 (3)C34—C391.396 (3)
C7—H70.9500C35—C361.396 (3)
C8—H80.9500C35—H350.9500
C9—C101.395 (3)C36—C371.381 (4)
C9—C141.401 (3)C36—H360.9500
C10—C111.388 (3)C37—C381.390 (4)
C10—H100.9500C37—H370.9500
C11—C121.388 (4)C38—C391.390 (3)
C11—H110.9500C38—H380.9500
C12—C131.380 (4)C39—H390.9500
C12—H120.9500C41—N421.299 (2)
C13—C141.398 (3)C41—C481.474 (3)
C13—H130.9500N42—C431.360 (3)
C14—H140.9500C43—C461.345 (3)
C15—C201.396 (3)C43—Cl451.7423 (19)
C15—C161.396 (3)C46—N471.377 (2)
C16—C171.387 (3)C46—H460.9500
C16—H160.9500N47—C481.384 (2)
C17—C181.388 (3)N47—C491.481 (2)
C17—H170.9500C49—C501.510 (3)
C18—C191.385 (3)C49—H49A0.9900
C18—H180.9500C49—H49B0.9900
C19—C201.391 (3)C50—C551.394 (3)
C19—H190.9500C50—C511.397 (3)
C20—H200.9500C51—C521.386 (3)
P21—C221.8199 (19)C51—H510.9500
P21—C281.8208 (19)C52—C531.392 (3)
P21—C341.8283 (19)C52—H520.9500
C22—C271.393 (3)C53—O561.379 (2)
C22—C231.398 (3)C53—C541.391 (3)
O22—C481.235 (2)C54—C551.387 (3)
C23—C241.395 (3)C54—H540.9500
C23—H230.9500C55—H550.9500
C24—C251.380 (3)O56—C571.432 (3)
C24—H240.9500C57—H57A0.9800
C25—C261.385 (3)C57—H57B0.9800
C25—H250.9500C57—H57C0.9800
C41—Pd1—P2187.89 (5)C26—C27—C22120.32 (18)
C41—Pd1—P286.59 (5)C26—C27—H27119.8
P21—Pd1—P2174.088 (16)C22—C27—H27119.8
C41—Pd1—Cl40177.83 (5)C29—C28—C33119.68 (18)
P21—Pd1—Cl4092.403 (15)C29—C28—P21119.31 (15)
P2—Pd1—Cl4093.033 (15)C33—C28—P21120.94 (15)
C3—P2—C9108.29 (8)C28—C29—C30120.10 (19)
C3—P2—C15102.83 (9)C28—C29—H29119.9
C9—P2—C15103.12 (9)C30—C29—H29119.9
C3—P2—Pd1111.86 (6)C31—C30—C29120.1 (2)
C9—P2—Pd1114.02 (6)C31—C30—H30120.0
C15—P2—Pd1115.72 (6)C29—C30—H30120.0
C4—C3—C8119.60 (17)C32—C31—C30120.24 (19)
C4—C3—P2117.83 (14)C32—C31—H31119.9
C8—C3—P2122.43 (14)C30—C31—H31119.9
C5—C4—C3119.52 (18)C31—C32—C33120.0 (2)
C5—C4—H4120.2C31—C32—H32120.0
C3—C4—H4120.2C33—C32—H32120.0
C6—C5—C4120.65 (19)C32—C33—C28119.9 (2)
C6—C5—H5119.7C32—C33—H33120.1
C4—C5—H5119.7C28—C33—H33120.1
C5—C6—C7119.69 (18)C35—C34—C39119.60 (18)
C5—C6—H6120.2C35—C34—P21120.60 (15)
C7—C6—H6120.2C39—C34—P21119.27 (15)
C8—C7—C6120.18 (18)C34—C35—C36120.0 (2)
C8—C7—H7119.9C34—C35—H35120.0
C6—C7—H7119.9C36—C35—H35120.0
C7—C8—C3120.35 (18)C37—C36—C35120.0 (2)
C7—C8—H8119.8C37—C36—H36120.0
C3—C8—H8119.8C35—C36—H36120.0
C10—C9—C14119.27 (17)C36—C37—C38120.4 (2)
C10—C9—P2121.40 (15)C36—C37—H37119.8
C14—C9—P2119.33 (15)C38—C37—H37119.8
C11—C10—C9120.6 (2)C37—C38—C39119.7 (2)
C11—C10—H10119.7C37—C38—H38120.2
C9—C10—H10119.7C39—C38—H38120.2
C12—C11—C10119.9 (2)C38—C39—C34120.3 (2)
C12—C11—H11120.1C38—C39—H39119.9
C10—C11—H11120.1C34—C39—H39119.9
C13—C12—C11120.12 (19)N42—C41—C48123.17 (17)
C13—C12—H12119.9N42—C41—Pd1122.49 (13)
C11—C12—H12119.9C48—C41—Pd1114.33 (13)
C12—C13—C14120.6 (2)C41—N42—C43118.09 (16)
C12—C13—H13119.7C46—C43—N42124.11 (17)
C14—C13—H13119.7C46—C43—Cl45120.40 (15)
C13—C14—C9119.5 (2)N42—C43—Cl45115.49 (14)
C13—C14—H14120.2C43—C46—N47118.31 (17)
C9—C14—H14120.2C43—C46—H46120.8
C20—C15—C16118.82 (18)N47—C46—H46120.8
C20—C15—P2120.50 (15)C46—N47—C48121.92 (16)
C16—C15—P2120.19 (15)C46—N47—C49119.99 (16)
C17—C16—C15120.59 (19)C48—N47—C49118.08 (15)
C17—C16—H16119.7O22—C48—N47122.10 (17)
C15—C16—H16119.7O22—C48—C41123.50 (17)
C16—C17—C18120.3 (2)N47—C48—C41114.40 (16)
C16—C17—H17119.9N47—C49—C50112.06 (15)
C18—C17—H17119.9N47—C49—H49A109.2
C19—C18—C17119.5 (2)C50—C49—H49A109.2
C19—C18—H18120.3N47—C49—H49B109.2
C17—C18—H18120.3C50—C49—H49B109.2
C18—C19—C20120.6 (2)H49A—C49—H49B107.9
C18—C19—H19119.7C55—C50—C51118.42 (18)
C20—C19—H19119.7C55—C50—C49121.16 (18)
C19—C20—C15120.24 (19)C51—C50—C49120.43 (18)
C19—C20—H20119.9C52—C51—C50120.69 (19)
C15—C20—H20119.9C52—C51—H51119.7
C22—P21—C28107.68 (9)C50—C51—H51119.7
C22—P21—C34102.95 (9)C51—C52—C53119.96 (19)
C28—P21—C34103.53 (9)C51—C52—H52120.0
C22—P21—Pd1113.86 (6)C53—C52—H52120.0
C28—P21—Pd1112.69 (6)O56—C53—C54123.74 (19)
C34—P21—Pd1115.12 (6)O56—C53—C52115.97 (18)
C27—C22—C23119.38 (18)C54—C53—C52120.28 (18)
C27—C22—P21122.84 (14)C55—C54—C53119.10 (19)
C23—C22—P21117.63 (14)C55—C54—H54120.5
C24—C23—C22119.85 (18)C53—C54—H54120.5
C24—C23—H23120.1C54—C55—C50121.55 (19)
C22—C23—H23120.1C54—C55—H55119.2
C25—C24—C23120.17 (19)C50—C55—H55119.2
C25—C24—H24119.9C53—O56—C57116.97 (18)
C23—C24—H24119.9O56—C57—H57A109.5
C24—C25—C26120.3 (2)O56—C57—H57B109.5
C24—C25—H25119.9H57A—C57—H57B109.5
C26—C25—H25119.9O56—C57—H57C109.5
C25—C26—C27120.0 (2)H57A—C57—H57C109.5
C25—C26—H26120.0H57B—C57—H57C109.5
C27—C26—H26120.0

Experimental details

Crystal data
Chemical formula[Pd(C12H10ClN2O2)Cl(C18H15P)2]
Mr916.06
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.7544 (1), 13.1526 (1), 16.9967 (1)
α, β, γ (°)91.811 (1), 94.39 (1), 98.451 (1)
V3)2368.83 (3)
Z2
Radiation typeCu Kα
µ (mm1)5.13
Crystal size (mm)0.5 × 0.24 × 0.24
Data collection
DiffractometerBruker SMART 6000
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.175, 0.292
No. of measured, independent and
observed [I > 2σ(I)] reflections
23121, 8422, 7879
Rint0.041
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.08
No. of reflections8422
No. of parameters515
No. of restraints318
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.58

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2003).

 

Acknowledgements

The Katholieke Universiteit Leuven is gratefully acknowledged for financial support. The authors thank the FWO [Fund for Scientific Research–Flanders (Belgium)] for financial support. JA and WMDB (Postdoctoral Fellows of the FWO–Flanders) thank the FWO for Fellowships received. WMDB also thanks the FWO for a `Krediet aan Navorsers'.

References

First citationAlen, J., Smets, W. J., Dobrzańska, L., De Borggraeve, W. M., Compernolle, F. & Hoornaert, G. J. (2007). Eur. J. Org. Chem. 6, 965–971.  Web of Science CSD CrossRef Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDe Borggraeve, W. M., Verbist, B. M. P., Rombouts, F. J. R., Pawar, V. G., Smets, W. J., Kamoune, L., Alen, J., Van der Eycken, E. V., Compernolle, F. & Hoornaert, G. J. (2004). Tetrahedron, 60, 11597–11612.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLoosen, P. K., Tutonda, M. G., Khorasani, M. F., Compernolle, F. & Hoornaert, G. J. (1991). Tetrahedron, 47, 9259–9268.  CrossRef CAS Web of Science Google Scholar
First citationPawar, V. G. & De Borggraeve, W. M. (2006). Synthesis, 17, 2799–2814.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds