organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­benzyl 3,3′,4,4′-tetra­methyl-5,5′-(ethynedi­yl)bis­­(pyrrole-2-carboxyl­ate)

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 20 November 2007; accepted 21 November 2007; online 6 December 2007)

The title mol­ecule, C30H28N2O4, has crystallographic twofold rotation symmetry, with the pyrrole planes forming a dihedral angle of 40.49 (4)°. The pyrrole N—H donor and adjacent ester carbonyl acceptor form R22(10) hydrogen-bonded rings about inversion centers, leading to chains of hydrogen-bonded mol­ecules along [001].

Related literature

For background literature, see: Chinchilla & Najera (2007[Chinchilla, R. & Najera, C. (2007). Chem. Rev. 107, 874-922.]); Black et al. (1999[Black, C. B., Andrioletti, B., Try, A. C., Ruiperez, C. & Sessler, J. L. (1999). J. Am. Chem. Soc. 121, 10438-10439.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Rev. 23, 120-126.]); Vogel (1996[Vogel, E. (1996). Pure Appl. Chem. 68, 1355-1360.]). For related structures, see: Xie et al. (1996[Xie, H., Lee, D. A., Wallace, D. M., Senge, O. M. & Smith, K. M. (1996). J. Org. Chem. 61, 8508-8517.]); Weghorn et al. (1995[Weghorn, S. J., Lynch, V. & Sessler, J. L. (1995). Tetrahedron Lett. 36, 4713-4716.]).

[Scheme 1]

Experimental

Crystal data
  • C30H28N2O4

  • Mr = 480.54

  • Monoclinic, C 2/c

  • a = 19.340 (2) Å

  • b = 9.8955 (10) Å

  • c = 13.8495 (15) Å

  • β = 110.217 (6)°

  • V = 2487.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 90 K

  • 0.30 × 0.22 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer with Oxford Cryostream

  • Absorption correction: none

  • 28071 measured reflections

  • 4748 independent reflections

  • 3948 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.03

  • 4748 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.875 (14) 1.987 (14) 2.8565 (10) 172.1 (12)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Di(5-benzyloxycarbornyl-3,4-dimethyl-2-pyrrolyl)-ethyne (I) is an important intermediate in the synthesis of porphyrin analogues containing a two-carbon interpyrrolic bridge as in corrphycenes (Vogel, 1996). Compound (I) is also an interesting intermediate in the synthesis of dipyrroles with a two carbon bridge, which have shown selective binding properties to fluoride and other ions (Black et al. 1999). The title compound was prepared via an improved Sonogashira coupling reaction (Chinchilla & Najera, 2007), that took place between benzyl 5-iodo-3,4-dimethyl-1H-pyrrole-2-carboxylate and trimethylsilanyl-ethyne, in the presence of palladium(0) and copper(I) catalysts at room temperature. The exact experimental details are described below.

The structure of the title compound (I), which lies on a crystallographic twofold axis, is shown in Fig 1. The triple-bond distance is 1.2088 (17) Å, and the alkyne bridge is not quite linear, with C4—C5—C5i angle 175.61 (10)° (i = 1 - x, y, 1/2 - z). The pyrrole ring is essentially planar, its five atoms having a mean deviation 0.003 Å from their best plane, with maximum 0.0051 (7) Å for C4. The two pyrrole rings are not coplanar, but form a dihedral angle of 40.49 (4)°. The ester COO group lies nearly in the pyrrole plane, with N1—C1—C6—O2 torsion angle 3.67 (13)°.

The pyrrole N—H group and adjacent ester carbonyl form intermolecular hydrogen bonded rings about inversion centers, having graph-set notation (Etter, 1990) R22(10). Thus, each molecule engages in four hydrogen bonds with two other molecules, forming chains in the [0 0 1] direction, as shown in Fig. 2.

Related literature top

For background literature, see: Chinchilla & Najera (2007); Black et al. (1999); Etter (1990); Vogel (1996). For related structures, see: Xie et al. (1996); Weghorn et al. (1995).

Experimental top

To a 100 ml round bottom flask was added benzyl 5-iodo-3,4-dimethyl-1H-pyrrole-2-carboxylate (2.93 g, 10 mmol) followed by Pd(PPh)2Cl2 (0.7019 g, 0.1 mmol) and CuI (0.191 g 0.1 mmol). The flask was sealed and placed in a dry ice bath under N2. Trimethylsilanyl-ethyne (0.6996 ml, 5 mmol), DBU (8.973 ml, 60 mmol) and water (0.072 ml, 40 molar equiv.) were dissolved in 30 ml of acetonitrile and added to the reaction flask. After the mixture froze in the dry ice bath, the flask was evacuated and N2 gas added. The resulting reaction mixture was allowed to warm slowly to room temperature and was stirred until complete disappearance of the starting material by TLC. The reaction mixture was worked up by adding ethyl acetate (150 ml), and washing the organic layer three times with saline. The organic phase was dried over anhydrous sodium bicarbonate and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography using hexane/ethyl acetate (5:1) for elution. The dipyrrole-ethyne (I) was obtained (0.755 g) in 54% yield and recrystallized from dichloromethane to afford colorless crystals. Spectroscopic analysis, 1H NMR (250 MHz, CDCl3, 293 K, δ): 11.99 (2H, s, NH), 7.47–7.32 (10H, m, Ar—H), 5.29 (4H, s, CH2), 2.2 (6H, s, CH3), 2.0 (6H, s, CH3). MS (EI) m/z: 480.129 (M+).

Refinement top

H atoms were placed in idealized positions with C—H distances 0.95 - 0.99 Å and thereafter treated as riding. Uiso for H was assigned as 1.2 times Ueq of the attached C atoms (1.5 for methyl). A torsional parameter was refined for each methyl group.

Structure description top

Di(5-benzyloxycarbornyl-3,4-dimethyl-2-pyrrolyl)-ethyne (I) is an important intermediate in the synthesis of porphyrin analogues containing a two-carbon interpyrrolic bridge as in corrphycenes (Vogel, 1996). Compound (I) is also an interesting intermediate in the synthesis of dipyrroles with a two carbon bridge, which have shown selective binding properties to fluoride and other ions (Black et al. 1999). The title compound was prepared via an improved Sonogashira coupling reaction (Chinchilla & Najera, 2007), that took place between benzyl 5-iodo-3,4-dimethyl-1H-pyrrole-2-carboxylate and trimethylsilanyl-ethyne, in the presence of palladium(0) and copper(I) catalysts at room temperature. The exact experimental details are described below.

The structure of the title compound (I), which lies on a crystallographic twofold axis, is shown in Fig 1. The triple-bond distance is 1.2088 (17) Å, and the alkyne bridge is not quite linear, with C4—C5—C5i angle 175.61 (10)° (i = 1 - x, y, 1/2 - z). The pyrrole ring is essentially planar, its five atoms having a mean deviation 0.003 Å from their best plane, with maximum 0.0051 (7) Å for C4. The two pyrrole rings are not coplanar, but form a dihedral angle of 40.49 (4)°. The ester COO group lies nearly in the pyrrole plane, with N1—C1—C6—O2 torsion angle 3.67 (13)°.

The pyrrole N—H group and adjacent ester carbonyl form intermolecular hydrogen bonded rings about inversion centers, having graph-set notation (Etter, 1990) R22(10). Thus, each molecule engages in four hydrogen bonds with two other molecules, forming chains in the [0 0 1] direction, as shown in Fig. 2.

For background literature, see: Chinchilla & Najera (2007); Black et al. (1999); Etter (1990); Vogel (1996). For related structures, see: Xie et al. (1996); Weghorn et al. (1995).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Ellipsoids at the 50% level, with the asymmetric unit labeled. H atoms are represented with arbitrary radius.
[Figure 2] Fig. 2. View down the twofold axis, showing hydrogen bonding.
Dibenzyl 3,3',4,4'-tetramethyl-5,5'-(ethynediyl)bis(pyrrole-2-carboxylate) top
Crystal data top
C30H28N2O4F(000) = 1016
Mr = 480.54Dx = 1.283 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4869 reflections
a = 19.340 (2) Åθ = 2.5–33.1°
b = 9.8955 (10) ŵ = 0.09 mm1
c = 13.8495 (15) ÅT = 90 K
β = 110.217 (6)°Prism, colorless
V = 2487.2 (5) Å30.30 × 0.22 × 0.15 mm
Z = 4
Data collection top
Nonius KappaCCD (with Oxford Cryostream)
diffractometer
3948 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 33.2°, θmin = 2.6°
ω scans with κ offsetsh = 2929
28071 measured reflectionsk = 1515
4748 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.067P)2 + 1.378P]
where P = (Fo2 + 2Fc2)/3
4748 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C30H28N2O4V = 2487.2 (5) Å3
Mr = 480.54Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.340 (2) ŵ = 0.09 mm1
b = 9.8955 (10) ÅT = 90 K
c = 13.8495 (15) Å0.30 × 0.22 × 0.15 mm
β = 110.217 (6)°
Data collection top
Nonius KappaCCD (with Oxford Cryostream)
diffractometer
3948 reflections with I > 2σ(I)
28071 measured reflectionsRint = 0.022
4748 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.46 e Å3
4748 reflectionsΔρmin = 0.39 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38808 (4)0.18151 (7)0.63308 (5)0.01536 (14)
O20.45716 (4)0.03182 (7)0.58415 (5)0.01670 (14)
N10.46808 (4)0.21012 (7)0.43512 (5)0.01204 (14)
H1N0.4897 (7)0.1328 (14)0.4339 (10)0.014*
C10.43250 (5)0.24465 (9)0.50220 (6)0.01179 (15)
C20.40633 (5)0.37712 (9)0.48108 (6)0.01253 (15)
C30.42701 (5)0.42307 (8)0.39832 (6)0.01261 (15)
C40.46445 (5)0.31725 (8)0.37111 (6)0.01224 (15)
C50.49073 (5)0.31065 (9)0.28744 (6)0.01342 (15)
C60.42810 (5)0.14317 (8)0.57551 (6)0.01202 (15)
C70.36367 (5)0.45910 (9)0.53229 (7)0.01701 (17)
H7A0.39740.51870.58380.026*
H7B0.33890.39850.56600.026*
H7C0.32680.51370.48060.026*
C80.40864 (6)0.55667 (9)0.34548 (7)0.01793 (17)
H8A0.43580.56730.29790.027*
H8B0.42250.62920.39680.027*
H8C0.35560.56120.30710.027*
C90.37901 (5)0.07780 (9)0.70202 (7)0.01577 (16)
H9A0.42740.05530.75430.019*
H9B0.35840.00520.66270.019*
C100.32768 (5)0.13018 (9)0.75362 (6)0.01280 (15)
C110.26606 (5)0.20803 (9)0.70116 (7)0.01592 (16)
H110.25720.23370.63180.019*
C120.21747 (5)0.24831 (10)0.74984 (8)0.01892 (18)
H120.17610.30270.71410.023*
C130.22929 (6)0.20909 (11)0.85086 (8)0.0228 (2)
H130.19540.23460.88350.027*
C140.29082 (6)0.13248 (11)0.90349 (8)0.0235 (2)
H140.29920.10580.97250.028*
C150.34045 (5)0.09438 (10)0.85570 (7)0.01773 (17)
H150.38310.04380.89280.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0226 (3)0.0130 (3)0.0161 (3)0.0032 (2)0.0138 (2)0.0026 (2)
O20.0229 (3)0.0139 (3)0.0171 (3)0.0063 (2)0.0118 (2)0.0028 (2)
N10.0154 (3)0.0107 (3)0.0129 (3)0.0023 (2)0.0085 (2)0.0010 (2)
C10.0147 (3)0.0117 (3)0.0115 (3)0.0011 (3)0.0077 (3)0.0001 (3)
C20.0151 (3)0.0117 (3)0.0128 (3)0.0017 (3)0.0074 (3)0.0004 (3)
C30.0151 (4)0.0111 (3)0.0132 (3)0.0015 (3)0.0069 (3)0.0005 (3)
C40.0145 (3)0.0119 (3)0.0124 (3)0.0002 (3)0.0073 (3)0.0006 (3)
C50.0149 (4)0.0125 (3)0.0147 (3)0.0001 (3)0.0075 (3)0.0000 (3)
C60.0142 (3)0.0127 (3)0.0107 (3)0.0010 (3)0.0063 (3)0.0001 (3)
C70.0224 (4)0.0148 (4)0.0183 (4)0.0043 (3)0.0127 (3)0.0008 (3)
C80.0241 (4)0.0128 (4)0.0192 (4)0.0035 (3)0.0105 (3)0.0038 (3)
C90.0220 (4)0.0145 (4)0.0152 (3)0.0034 (3)0.0119 (3)0.0038 (3)
C100.0159 (4)0.0120 (3)0.0128 (3)0.0016 (3)0.0080 (3)0.0005 (3)
C110.0158 (4)0.0180 (4)0.0145 (3)0.0009 (3)0.0060 (3)0.0004 (3)
C120.0155 (4)0.0186 (4)0.0248 (4)0.0006 (3)0.0095 (3)0.0019 (3)
C130.0274 (5)0.0211 (4)0.0285 (5)0.0009 (4)0.0209 (4)0.0028 (4)
C140.0351 (5)0.0238 (5)0.0190 (4)0.0027 (4)0.0188 (4)0.0021 (4)
C150.0240 (4)0.0169 (4)0.0150 (4)0.0026 (3)0.0101 (3)0.0020 (3)
Geometric parameters (Å, º) top
O1—C61.3436 (10)C8—H8A0.9800
O1—C91.4530 (10)C8—H8B0.9800
O2—C61.2240 (10)C8—H8C0.9800
N1—C41.3680 (11)C9—C101.5018 (12)
N1—C11.3767 (10)C9—H9A0.9900
N1—H1N0.875 (14)C9—H9B0.9900
C1—C21.3992 (12)C10—C111.3940 (12)
C1—C61.4514 (11)C10—C151.3941 (12)
C2—C31.4133 (11)C11—C121.3910 (13)
C2—C71.4987 (12)C11—H110.9500
C3—C41.3969 (12)C12—C131.3925 (15)
C3—C81.4932 (12)C12—H120.9500
C4—C51.4185 (12)C13—C141.3866 (16)
C5—C5i1.2088 (17)C13—H130.9500
C7—H7A0.9800C14—C151.3931 (13)
C7—H7B0.9800C14—H140.9500
C7—H7C0.9800C15—H150.9500
C6—O1—C9114.55 (7)H8A—C8—H8B109.5
C4—N1—C1108.62 (7)C3—C8—H8C109.5
C4—N1—H1N125.7 (8)H8A—C8—H8C109.5
C1—N1—H1N125.7 (8)H8B—C8—H8C109.5
N1—C1—C2108.70 (7)O1—C9—C10108.58 (7)
N1—C1—C6117.66 (7)O1—C9—H9A110.0
C2—C1—C6133.63 (7)C10—C9—H9A110.0
C1—C2—C3106.71 (7)O1—C9—H9B110.0
C1—C2—C7128.81 (8)C10—C9—H9B110.0
C3—C2—C7124.47 (8)H9A—C9—H9B108.4
C4—C3—C2107.22 (7)C11—C10—C15119.27 (8)
C4—C3—C8126.09 (8)C11—C10—C9121.96 (7)
C2—C3—C8126.60 (8)C15—C10—C9118.70 (8)
N1—C4—C3108.75 (7)C12—C11—C10120.32 (8)
N1—C4—C5122.75 (8)C12—C11—H11119.8
C3—C4—C5128.34 (8)C10—C11—H11119.8
C5i—C5—C4175.61 (10)C11—C12—C13120.22 (9)
O2—C6—O1122.38 (8)C11—C12—H12119.9
O2—C6—C1123.73 (8)C13—C12—H12119.9
O1—C6—C1113.89 (7)C14—C13—C12119.58 (9)
C2—C7—H7A109.5C14—C13—H13120.2
C2—C7—H7B109.5C12—C13—H13120.2
H7A—C7—H7B109.5C13—C14—C15120.35 (9)
C2—C7—H7C109.5C13—C14—H14119.8
H7A—C7—H7C109.5C15—C14—H14119.8
H7B—C7—H7C109.5C14—C15—C10120.22 (9)
C3—C8—H8A109.5C14—C15—H15119.9
C3—C8—H8B109.5C10—C15—H15119.9
C4—N1—C1—C20.61 (10)C9—O1—C6—C1176.08 (7)
C4—N1—C1—C6178.33 (7)N1—C1—C6—O23.67 (13)
N1—C1—C2—C30.08 (10)C2—C1—C6—O2177.72 (9)
C6—C1—C2—C3178.63 (9)N1—C1—C6—O1175.51 (7)
N1—C1—C2—C7179.36 (9)C2—C1—C6—O13.10 (14)
C6—C1—C2—C70.65 (16)C6—O1—C9—C10174.76 (7)
C1—C2—C3—C40.47 (10)O1—C9—C10—C1138.88 (11)
C7—C2—C3—C4178.85 (8)O1—C9—C10—C15144.09 (8)
C1—C2—C3—C8177.24 (9)C15—C10—C11—C120.68 (14)
C7—C2—C3—C82.09 (14)C9—C10—C11—C12176.33 (9)
C1—N1—C4—C30.92 (10)C10—C11—C12—C131.15 (14)
C1—N1—C4—C5174.76 (8)C11—C12—C13—C141.62 (16)
C2—C3—C4—N10.86 (10)C12—C13—C14—C150.25 (16)
C8—C3—C4—N1177.64 (8)C13—C14—C15—C101.59 (16)
C2—C3—C4—C5174.51 (8)C11—C10—C15—C142.04 (14)
C8—C3—C4—C52.28 (15)C9—C10—C15—C14175.07 (9)
C9—O1—C6—O23.12 (12)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2ii0.875 (14)1.987 (14)2.8565 (10)172.1 (12)
Symmetry code: (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC30H28N2O4
Mr480.54
Crystal system, space groupMonoclinic, C2/c
Temperature (K)90
a, b, c (Å)19.340 (2), 9.8955 (10), 13.8495 (15)
β (°) 110.217 (6)
V3)2487.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.22 × 0.15
Data collection
DiffractometerNonius KappaCCD (with Oxford Cryostream)
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
28071, 4748, 3948
Rint0.022
(sin θ/λ)max1)0.770
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.03
No. of reflections4748
No. of parameters168
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.39

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.875 (14)1.987 (14)2.8565 (10)172.1 (12)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlack, C. B., Andrioletti, B., Try, A. C., Ruiperez, C. & Sessler, J. L. (1999). J. Am. Chem. Soc. 121, 10438–10439.  Web of Science CrossRef CAS Google Scholar
First citationChinchilla, R. & Najera, C. (2007). Chem. Rev. 107, 874–922.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Rev. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationVogel, E. (1996). Pure Appl. Chem. 68, 1355–1360.  CrossRef CAS Web of Science Google Scholar
First citationWeghorn, S. J., Lynch, V. & Sessler, J. L. (1995). Tetrahedron Lett. 36, 4713–4716.  CrossRef CAS Google Scholar
First citationXie, H., Lee, D. A., Wallace, D. M., Senge, O. M. & Smith, K. M. (1996). J. Org. Chem. 61, 8508–8517.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds