organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-tert-Butyl­benzyl­sulfan­yl)-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde

aDepartment of Chemistry, Huzhou University, Huzhou 313000, People's Republic of China
*Correspondence e-mail: chenyi_wang2006@yahoo.com.cn

(Received 22 November 2007; accepted 6 December 2007; online 12 December 2007)

The title compound, C22H24N2OS, has been synthesized as a potent fungicidal agent and its crystal structure determined. In the crystal structure, weak inter­molecular C—H⋯O inter­actions are observed. The dihedral angles between the planes of the pyrazole and phenyl rings, and between the benzene and pyrazole rings are 54.2 (2) and 25.0 (3)°, respectively. The methyl groups of the tert-butyl group are disordered over two positions; the site occupancies are ca 0.65 and 0.35.

Related literature

For related literature, see: Becher et al. (1986[Becher, J., Olesen, P. H., Knudsen, N. A. & Toftlund, H. (1986). Sulfur Lett. 4, 175-183.]); Bekhit & Abdel-Aziem (2004[Bekhit, A. A. & Abdel-Aziem, T. (2004). Bioorg. Med. Chem. 12, 1935-1945.]); Comber et al. (1991[Comber, R. N., Gray, R. J. & Secrist, J. A. (1991). Carbohydr. Res. 216, 441-452.]); Dannhardt & Kiefer (2001[Dannhardt, G. & Kiefer, W. (2001). Eur. J. Med. Chem. 36, 109-126.]); Gamage et al. (2002[Gamage, S. A., Spicer, J. A., Rewcastle, G. W., Milton, J., Sohal, S., Dangerfield, W., Mistry, P., Vicker, N., Charlton, P. A. & Denny, W. A. (2002). J. Med. Chem. 45, 740-743.]); Goekan-Kelekci et al. (2007[Goekan-Kelekci, N., Yabanolu, S., Kuepeli, E., Salgin, U., Ozen, O., Ucar, G., Yesilada, E., Kendi, E., Yesilada, A. & Bilgin, A. A. (2007). Bioorg. Med. Chem. 15, 5775-5786.]); Hashizume et al. (2004[Hashizume, M., Sakamoto, N. & Takyo, H. (2004). WO Patent 2004085405.]); Park et al. (2005[Park, H. J., Lee, K., Park, S. J., Ahn, B., Lee, J. C., Cho, H. Y. & Lee, K. I. (2005). Bioorg. Med. Chem. Lett. 15, 3307-3312.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24N2OS

  • Mr = 364.49

  • Orthorhombic, P b c a

  • a = 11.129 (3) Å

  • b = 16.181 (4) Å

  • c = 22.429 (6) Å

  • V = 4039.0 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 294 (2) K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.]) Tmin = 0.945, Tmax = 0.973

  • 19461 measured reflections

  • 3568 independent reflections

  • 1788 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.146

  • S = 1.01

  • 3568 reflections

  • 271 parameters

  • 57 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O2i 0.97 2.54 3.486 (3) 165
Symmetry code: (i) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The pyrazole ring is an important structural motif found in many biologically and pharmaceutically active compounds. In the past few years, pyrazoles and their derivatives have attracted much attention because they show several biological activities, such as antimicrobial, anti-inflammatory, antiviral, anticancer, insecticidal, herbicidal and plant growth regulatory (Bekhit et al., 2004; Goekan-Kelekci et al., 2007; Gamage et al., 2002; Hashizume et al., 2004). Many pyrazoles are currently being tested and clinically evaluated as potential new drugs (Dannhardt et al., 2001; Park et al., 2005). For example, the natural pyrazole C-glycoside, pyrazofurin, an antibiotic, was reported to possess a broad spectrum of antimicrobial and antiviral activities in addition to being active against several tumor cell lines (Comber et al., 1991). In the search for more biologically active pyrazole derivatives, the title compound, I, was synthesized and we report here its crystal structure (Fig.1). The title compound contains three planar groups: (a) the phenyl ring composed of atoms C6—C11, (b) the pyrazole ring composed of atoms N, N2, C2, C3 and C4, (c) the C6H4 ring composed of atoms C13—C18, The dihedral angles between the planes of (a) and (b), and between (b) and (c) are 54.2 (2) ° and 25.0 (3) ° respectively. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1 & Fig.2).

Related literature top

For related literature, see: Becher et al. (1986); Bekhit & Abdel-Aziem (2004); Comber et al. (1991); Dannhardt & Kiefer (2001); Gamage et al. (2002); Goekan-Kelekci et al. (2007); Hashizume et al. (2004); Park et al. (2005).

Experimental top

To a cooled solution of sodium hydride (0.023 mol) in anhydrous THF (15 ml), was added dropwise (4-tert-butylphenyl)methanethiol (0.022 mol). The reaction mixture was stirred at room temperature for 1 h, and then a solution of 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde (Becher et al.,1986; 0.020 mol) in anhydrous THF (25 ml) was added dropwise. The mixture was stirred at room temperature for another 2 h, and then poured into water (50 ml) to yield a colourless precipitate (Scheme 1). The resulting precipitate was recrystallized from petroleum ether/ethyl acetate (5:1 v/v) to give colourless crystals (yield 60%).

Refinement top

In the t-butyl group the methyl groups were disordered over two sets positions with occupy factors 0.655 (12)/0.345 (12). The displacement parameters of atoms C20, C21, C22, C20', C21' and C22' were restrained to behave approximately isotropically. The C—C distances of the disordered t-butyl group were restrained to be 1.54 (1) Å. H atoms were placed in calculated positions, with C—H = 0.93 (aryl), 0.96 (methyl) or 0.97 (methylene) Å, using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(CH3).

Structure description top

The pyrazole ring is an important structural motif found in many biologically and pharmaceutically active compounds. In the past few years, pyrazoles and their derivatives have attracted much attention because they show several biological activities, such as antimicrobial, anti-inflammatory, antiviral, anticancer, insecticidal, herbicidal and plant growth regulatory (Bekhit et al., 2004; Goekan-Kelekci et al., 2007; Gamage et al., 2002; Hashizume et al., 2004). Many pyrazoles are currently being tested and clinically evaluated as potential new drugs (Dannhardt et al., 2001; Park et al., 2005). For example, the natural pyrazole C-glycoside, pyrazofurin, an antibiotic, was reported to possess a broad spectrum of antimicrobial and antiviral activities in addition to being active against several tumor cell lines (Comber et al., 1991). In the search for more biologically active pyrazole derivatives, the title compound, I, was synthesized and we report here its crystal structure (Fig.1). The title compound contains three planar groups: (a) the phenyl ring composed of atoms C6—C11, (b) the pyrazole ring composed of atoms N, N2, C2, C3 and C4, (c) the C6H4 ring composed of atoms C13—C18, The dihedral angles between the planes of (a) and (b), and between (b) and (c) are 54.2 (2) ° and 25.0 (3) ° respectively. The crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1 & Fig.2).

For related literature, see: Becher et al. (1986); Bekhit & Abdel-Aziem (2004); Comber et al. (1991); Dannhardt & Kiefer (2001); Gamage et al. (2002); Goekan-Kelekci et al. (2007); Hashizume et al. (2004); Park et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. View of the title compound, I, with displacement ellipsoids drawn at the 30% probability level and minor disorder component omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of I. Dashed lines indicate C—H···O hydrogen-bond interactions.
[Figure 3] Fig. 3. The formation of the title compound.
5-(4-tert-Butylbenzylsulfanyl)-3-methyl-1-phenyl-1H-pyrazole-4- carbaldehyde top
Crystal data top
C22H24N2OSF(000) = 1552
Mr = 364.49Dx = 1.199 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2619 reflections
a = 11.129 (3) Åθ = 2.4–23.4°
b = 16.181 (4) ŵ = 0.17 mm1
c = 22.429 (6) ÅT = 294 K
V = 4039.0 (18) Å3Orthorhombic, colourless
Z = 80.24 × 0.20 × 0.16 mm
Data collection top
Bruker SMART 1000
diffractometer
3568 independent reflections
Radiation source: fine-focus sealed tube1788 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1213
Tmin = 0.945, Tmax = 0.973k = 1619
19461 measured reflectionsl = 2621
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0543P)2 + 1.5678P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
3568 reflectionsΔρmax = 0.19 e Å3
271 parametersΔρmin = 0.21 e Å3
57 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0053 (5)
Crystal data top
C22H24N2OSV = 4039.0 (18) Å3
Mr = 364.49Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.129 (3) ŵ = 0.17 mm1
b = 16.181 (4) ÅT = 294 K
c = 22.429 (6) Å0.24 × 0.20 × 0.16 mm
Data collection top
Bruker SMART 1000
diffractometer
3568 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
1788 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.973Rint = 0.087
19461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04857 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
3568 reflectionsΔρmin = 0.21 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.56005 (9)0.18185 (6)0.52594 (4)0.0692 (3)
O10.7233 (2)0.07664 (16)0.52505 (12)0.0888 (9)
N10.4568 (2)0.09456 (16)0.61696 (12)0.0539 (7)
N20.4616 (3)0.02084 (17)0.64732 (13)0.0622 (8)
C10.5704 (4)0.1109 (2)0.63859 (17)0.0809 (12)
H1A0.52960.12180.67550.121*
H1B0.65560.11460.64470.121*
H1C0.54610.15070.60930.121*
C20.5388 (3)0.0253 (2)0.61720 (16)0.0589 (9)
C30.5853 (3)0.0175 (2)0.56780 (14)0.0520 (8)
C40.5313 (3)0.09467 (19)0.56915 (13)0.0503 (8)
C50.6746 (3)0.0098 (2)0.52514 (16)0.0676 (10)
H50.69640.02730.49530.081*
C60.3817 (3)0.1594 (2)0.63937 (14)0.0535 (9)
C70.3931 (3)0.1839 (2)0.69794 (15)0.0651 (10)
H70.45070.15980.72240.078*
C80.3183 (4)0.2443 (3)0.71983 (18)0.0787 (12)
H80.32490.26070.75940.094*
C90.2340 (4)0.2806 (3)0.6837 (2)0.0861 (13)
H90.18390.32160.69870.103*
C100.2239 (4)0.2559 (3)0.6255 (2)0.0875 (13)
H100.16680.28060.60100.105*
C110.2967 (3)0.1955 (2)0.60299 (16)0.0704 (10)
H110.28900.17890.56350.084*
C120.6681 (3)0.2339 (2)0.57569 (17)0.0752 (11)
H12A0.70270.28080.55500.090*
H12B0.62570.25460.61040.090*
C130.7670 (3)0.17787 (19)0.59573 (16)0.0594 (9)
C140.7591 (3)0.1360 (2)0.64906 (15)0.0621 (10)
H140.69520.14690.67460.075*
C150.8436 (3)0.0784 (2)0.66528 (15)0.0655 (10)
H150.83560.05160.70180.079*
C160.9402 (3)0.0589 (2)0.62918 (15)0.0588 (9)
C170.9495 (3)0.1031 (2)0.57631 (17)0.0720 (11)
H171.01450.09320.55120.086*
C180.8651 (4)0.1614 (2)0.55988 (17)0.0709 (11)
H180.87450.19000.52420.085*
C191.0287 (3)0.0081 (2)0.64643 (16)0.0720 (11)
C200.9655 (8)0.0873 (4)0.6579 (6)0.115 (3)0.655 (12)
H20A1.02270.12840.66990.172*0.655 (12)
H20B0.92560.10510.62220.172*0.655 (12)
H20C0.90730.07960.68900.172*0.655 (12)
C211.1021 (7)0.0212 (5)0.7014 (3)0.073 (2)0.655 (12)
H21A1.04890.02980.73450.110*0.655 (12)
H21B1.14240.07200.69210.110*0.655 (12)
H21C1.16050.02010.71170.110*0.655 (12)
C221.1279 (8)0.0210 (6)0.5970 (3)0.094 (3)0.655 (12)
H22A1.18390.06240.61000.141*0.655 (12)
H22B1.16970.03000.59040.141*0.655 (12)
H22C1.09050.03860.56060.141*0.655 (12)
C20'0.9620 (13)0.0696 (9)0.6921 (7)0.087 (5)0.345 (12)
H20D0.88670.08680.67530.130*0.345 (12)
H20E0.94800.04150.72910.130*0.345 (12)
H20F1.01160.11720.69900.130*0.345 (12)
C21'1.1392 (14)0.0222 (13)0.6765 (9)0.132 (9)0.345 (12)
H21D1.12310.07450.69520.197*0.345 (12)
H21E1.20220.02880.64770.197*0.345 (12)
H21F1.16380.01700.70630.197*0.345 (12)
C22'1.0496 (18)0.0659 (9)0.5928 (5)0.101 (6)0.345 (12)
H22D1.10700.10760.60350.151*0.345 (12)
H22E1.07970.03440.55980.151*0.345 (12)
H22F0.97510.09160.58180.151*0.345 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0791 (7)0.0673 (6)0.0612 (6)0.0141 (5)0.0036 (5)0.0218 (5)
O10.100 (2)0.0657 (18)0.101 (2)0.0241 (16)0.0006 (17)0.0163 (16)
N10.0617 (18)0.0461 (16)0.0538 (16)0.0022 (14)0.0019 (15)0.0038 (13)
N20.069 (2)0.0478 (17)0.0697 (19)0.0030 (15)0.0048 (16)0.0110 (15)
C10.091 (3)0.050 (2)0.102 (3)0.000 (2)0.007 (3)0.014 (2)
C20.061 (2)0.046 (2)0.070 (2)0.0044 (19)0.008 (2)0.0021 (18)
C30.053 (2)0.049 (2)0.054 (2)0.0004 (17)0.0086 (18)0.0034 (16)
C40.056 (2)0.051 (2)0.0435 (18)0.0005 (16)0.0050 (17)0.0027 (15)
C50.072 (3)0.063 (2)0.067 (2)0.004 (2)0.009 (2)0.008 (2)
C60.057 (2)0.048 (2)0.055 (2)0.0002 (17)0.0020 (18)0.0028 (16)
C70.074 (2)0.066 (2)0.055 (2)0.004 (2)0.0009 (19)0.0041 (19)
C80.103 (3)0.072 (3)0.061 (2)0.005 (3)0.014 (3)0.009 (2)
C90.097 (3)0.073 (3)0.088 (3)0.015 (2)0.022 (3)0.007 (2)
C100.089 (3)0.090 (3)0.083 (3)0.030 (3)0.000 (2)0.009 (3)
C110.079 (3)0.072 (3)0.061 (2)0.014 (2)0.006 (2)0.003 (2)
C120.089 (3)0.043 (2)0.094 (3)0.002 (2)0.009 (2)0.008 (2)
C130.065 (2)0.0383 (19)0.075 (2)0.0072 (18)0.003 (2)0.0000 (18)
C140.068 (2)0.067 (2)0.051 (2)0.003 (2)0.0059 (19)0.0109 (19)
C150.081 (3)0.066 (2)0.050 (2)0.001 (2)0.002 (2)0.0011 (18)
C160.065 (2)0.056 (2)0.055 (2)0.0014 (19)0.003 (2)0.0115 (17)
C170.065 (3)0.076 (3)0.075 (3)0.000 (2)0.018 (2)0.001 (2)
C180.074 (3)0.066 (3)0.073 (3)0.011 (2)0.015 (2)0.014 (2)
C190.082 (3)0.067 (3)0.068 (3)0.013 (2)0.005 (2)0.011 (2)
C200.110 (6)0.058 (4)0.175 (8)0.011 (4)0.029 (6)0.012 (5)
C210.053 (4)0.095 (5)0.072 (4)0.011 (3)0.006 (4)0.001 (4)
C220.101 (6)0.100 (6)0.082 (4)0.033 (5)0.001 (4)0.015 (4)
C20'0.101 (9)0.059 (7)0.100 (9)0.018 (6)0.013 (7)0.001 (6)
C21'0.113 (11)0.123 (11)0.158 (13)0.008 (9)0.001 (9)0.008 (9)
C22'0.120 (10)0.085 (8)0.098 (8)0.017 (7)0.014 (7)0.001 (7)
Geometric parameters (Å, º) top
S1—C41.741 (3)C14—H140.9300
S1—C121.844 (4)C15—C161.382 (5)
O1—C51.210 (4)C15—H150.9300
N1—C41.355 (4)C16—C171.389 (5)
N1—N21.375 (3)C16—C191.515 (5)
N1—C61.432 (4)C17—C181.381 (5)
N2—C21.324 (4)C17—H170.9300
C1—C21.507 (4)C18—H180.9300
C1—H1A0.9600C19—C201.485 (6)
C1—H1B0.9600C19—C21'1.487 (9)
C1—H1C0.9600C19—C22'1.541 (8)
C2—C31.406 (4)C19—C211.554 (6)
C3—C41.386 (4)C19—C221.578 (6)
C3—C51.448 (4)C19—C20'1.609 (8)
C5—H50.9300C20—H20A0.9600
C6—C71.378 (4)C20—H20B0.9600
C6—C111.380 (4)C20—H20C0.9600
C7—C81.375 (5)C21—H21A0.9600
C7—H70.9300C21—H21B0.9600
C8—C91.371 (5)C21—H21C0.9600
C8—H80.9300C22—H22A0.9600
C9—C101.371 (5)C22—H22B0.9600
C9—H90.9300C22—H22C0.9600
C10—C111.366 (5)C20'—H20D0.9600
C10—H100.9300C20'—H20E0.9600
C11—H110.9300C20'—H20F0.9600
C12—C131.495 (5)C21'—H21D0.9600
C12—H12A0.9700C21'—H21E0.9600
C12—H12B0.9700C21'—H21F0.9600
C13—C141.378 (4)C22'—H22D0.9600
C13—C181.382 (5)C22'—H22E0.9600
C14—C151.372 (5)C22'—H22F0.9600
C4—S1—C1298.81 (15)C15—C14—H14119.3
C4—N1—N2111.6 (3)C13—C14—H14119.3
C4—N1—C6129.3 (3)C14—C15—C16122.2 (3)
N2—N1—C6119.0 (3)C14—C15—H15118.9
C2—N2—N1105.2 (3)C16—C15—H15118.9
C2—C1—H1A109.5C15—C16—C17116.1 (3)
C2—C1—H1B109.5C15—C16—C19121.3 (3)
H1A—C1—H1B109.5C17—C16—C19122.6 (3)
C2—C1—H1C109.5C18—C17—C16121.9 (3)
H1A—C1—H1C109.5C18—C17—H17119.0
H1B—C1—H1C109.5C16—C17—H17119.0
N2—C2—C3111.3 (3)C17—C18—C13120.9 (3)
N2—C2—C1120.5 (3)C17—C18—H18119.6
C3—C2—C1128.2 (3)C13—C18—H18119.6
C4—C3—C2105.5 (3)C20—C19—C16110.7 (5)
C4—C3—C5125.9 (3)C21'—C19—C16114.7 (9)
C2—C3—C5128.6 (3)C16—C19—C22'109.5 (6)
N1—C4—C3106.4 (3)C20—C19—C21112.0 (5)
N1—C4—S1123.6 (2)C16—C19—C21109.0 (4)
C3—C4—S1129.6 (3)C20—C19—C22109.8 (5)
O1—C5—C3125.5 (4)C16—C19—C22111.8 (4)
O1—C5—H5117.3C21—C19—C22103.3 (4)
C3—C5—H5117.3C16—C19—C20'107.8 (6)
C7—C6—C11120.3 (3)C19—C20—H20A109.5
C7—C6—N1119.5 (3)C19—C20—H20B109.5
C11—C6—N1120.2 (3)C19—C20—H20C109.5
C8—C7—C6119.3 (4)C19—C21—H21A109.5
C8—C7—H7120.3C19—C21—H21B109.5
C6—C7—H7120.3C19—C21—H21C109.5
C9—C8—C7120.5 (4)C19—C22—H22A109.5
C9—C8—H8119.7C19—C22—H22B109.5
C7—C8—H8119.7C19—C22—H22C109.5
C8—C9—C10119.7 (4)C19—C20'—H20D109.5
C8—C9—H9120.2C19—C20'—H20E109.5
C10—C9—H9120.2H20D—C20'—H20E109.5
C11—C10—C9120.7 (4)C19—C20'—H20F109.5
C11—C10—H10119.6H20D—C20'—H20F109.5
C9—C10—H10119.6H20E—C20'—H20F109.5
C10—C11—C6119.5 (3)C19—C21'—H21D109.5
C10—C11—H11120.3C19—C21'—H21E109.5
C6—C11—H11120.3H21D—C21'—H21E109.5
C13—C12—S1112.7 (2)C19—C21'—H21F109.5
C13—C12—H12A109.1H21D—C21'—H21F109.5
S1—C12—H12A109.1H21E—C21'—H21F109.5
C13—C12—H12B109.1C19—C22'—H22D109.5
S1—C12—H12B109.1C19—C22'—H22E109.5
H12A—C12—H12B107.8H22D—C22'—H22E109.5
C14—C13—C18117.4 (3)C19—C22'—H22F109.5
C14—C13—C12120.8 (3)H22D—C22'—H22F109.5
C18—C13—C12121.6 (3)H22E—C22'—H22F109.5
C15—C14—C13121.4 (3)
C4—N1—N2—C20.9 (3)C9—C10—C11—C60.4 (6)
C6—N1—N2—C2178.7 (3)C7—C6—C11—C100.1 (5)
N1—N2—C2—C30.5 (4)N1—C6—C11—C10178.4 (3)
N1—N2—C2—C1178.1 (3)C4—S1—C12—C1350.4 (3)
N2—C2—C3—C40.1 (4)S1—C12—C13—C1494.5 (4)
C1—C2—C3—C4177.3 (3)S1—C12—C13—C1880.7 (4)
N2—C2—C3—C5177.6 (3)C18—C13—C14—C151.8 (5)
C1—C2—C3—C50.2 (6)C12—C13—C14—C15173.6 (3)
N2—N1—C4—C31.0 (3)C13—C14—C15—C160.4 (5)
C6—N1—C4—C3178.5 (3)C14—C15—C16—C172.2 (5)
N2—N1—C4—S1172.5 (2)C14—C15—C16—C19176.7 (3)
C6—N1—C4—S15.0 (5)C15—C16—C17—C181.9 (5)
C2—C3—C4—N10.6 (3)C19—C16—C17—C18177.0 (3)
C5—C3—C4—N1178.2 (3)C16—C17—C18—C130.3 (6)
C2—C3—C4—S1172.3 (3)C14—C13—C18—C172.1 (5)
C5—C3—C4—S15.3 (5)C12—C13—C18—C17173.3 (3)
C12—S1—C4—N178.5 (3)C15—C16—C19—C2055.1 (7)
C12—S1—C4—C393.3 (3)C17—C16—C19—C20123.7 (6)
C4—C3—C5—O1178.3 (3)C15—C16—C19—C21'96.3 (11)
C2—C3—C5—O11.2 (6)C17—C16—C19—C21'84.9 (11)
C4—N1—C6—C7125.0 (4)C15—C16—C19—C22'132.1 (9)
N2—N1—C6—C752.4 (4)C17—C16—C19—C22'46.8 (9)
C4—N1—C6—C1156.7 (5)C15—C16—C19—C2168.6 (5)
N2—N1—C6—C11126.0 (3)C17—C16—C19—C21112.6 (5)
C11—C6—C7—C80.4 (5)C15—C16—C19—C22177.9 (5)
N1—C6—C7—C8177.9 (3)C17—C16—C19—C221.0 (6)
C6—C7—C8—C90.6 (6)C15—C16—C19—C20'23.1 (8)
C7—C8—C9—C100.4 (6)C17—C16—C19—C20'155.8 (7)
C8—C9—C10—C110.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.972.543.486 (3)165
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC22H24N2OS
Mr364.49
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)11.129 (3), 16.181 (4), 22.429 (6)
V3)4039.0 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART 1000
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.945, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
19461, 3568, 1788
Rint0.087
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.146, 1.01
No. of reflections3568
No. of parameters271
No. of restraints57
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.972.543.486 (3)165
Symmetry code: (i) x+3/2, y+1/2, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSFC) (grant No. 30771696) and the Science and Technology Plan of Huzhou (grant No. 2007YS18).

References

First citationBecher, J., Olesen, P. H., Knudsen, N. A. & Toftlund, H. (1986). Sulfur Lett. 4, 175–183.  CAS Google Scholar
First citationBekhit, A. A. & Abdel-Aziem, T. (2004). Bioorg. Med. Chem. 12, 1935–1945.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1997). SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationComber, R. N., Gray, R. J. & Secrist, J. A. (1991). Carbohydr. Res. 216, 441–452.  CrossRef PubMed CAS Google Scholar
First citationDannhardt, G. & Kiefer, W. (2001). Eur. J. Med. Chem. 36, 109–126.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGamage, S. A., Spicer, J. A., Rewcastle, G. W., Milton, J., Sohal, S., Dangerfield, W., Mistry, P., Vicker, N., Charlton, P. A. & Denny, W. A. (2002). J. Med. Chem. 45, 740–743.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGoekan-Kelekci, N., Yabanolu, S., Kuepeli, E., Salgin, U., Ozen, O., Ucar, G., Yesilada, E., Kendi, E., Yesilada, A. & Bilgin, A. A. (2007). Bioorg. Med. Chem. 15, 5775–5786.  Web of Science PubMed Google Scholar
First citationHashizume, M., Sakamoto, N. & Takyo, H. (2004). WO Patent 2004085405.  Google Scholar
First citationPark, H. J., Lee, K., Park, S. J., Ahn, B., Lee, J. C., Cho, H. Y. & Lee, K. I. (2005). Bioorg. Med. Chem. Lett. 15, 3307–3312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds