organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3H-2,1-Benzoxaborole-1-spiro-4′-(5-oxa-3a-aza-4-borapyrene)

aDepartment of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
*Correspondence e-mail: vnemykin@d.umn.edu

(Received 22 November 2007; accepted 12 December 2007; online 21 December 2007)

In the title compound, C20H14BNO2, the B atom has a tetra­hedral geometry with two short B—O and two long B—C and B—N bonds, revealing a significant difference between Car—O—B and Calk­yl—O—B bond distances. Inter­molecular Ar—H⋯O hydrogen bonds and strong ππ inter­actions (3.368 Å) between aromatic cores of neighbouring mol­ecules result in hexa­gonal channels along the crystallographic c axis, which are potentially accessible for small mol­ecules.

Related literature

For the general synthesis and applications of benzoboroxoles, see: Nicolaou et al. (1998[Nicolaou, K. C., Natarajan, S., Li, H., Jain, N. F., Hughes, R., Solomon, M. E., Ramanjulu, J. M., Boddy, C. N. C. & Takayanagi, M. (1998). Angew. Chem. Int. Ed. 37, 2708-2714.], 1999[Nicolaou, K. C., Li, H., Boody, C. N. C., Ramanjulu, J. M., Yue, T. Y., Natarajan, S., Chu, X. J., Brase, S. & Rubsam, F. (1999). Chem. Eur. J. 5, 2584-2601.]); Tan et al. (2001[Tan, Y. L., White, A. J. P., Widdowson, D. A., Wilhelm, R. & Williams, D. J. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 3269-3280.]); Benkovic et al. (2005[Benkovic, S. J., Baker, S. J., Alley, M. R. K., Woo, Y. H., Zhang, Y. K., Akama, T., Mao, W., Baboval, J., Rajagopalan, P. T. R., Wall, M., Kahng, L. S., Tavassoli, A. & Shapiro, L. (2005). J. Med. Chem. 48, 7468-7476.]); Baker et al. (2006[Baker, S. J., Zhang, Y. K., Akama, T., Lau, A., Zhou, H., Hernandez, V., Mao, W., Alley, M. R. K., Sanders, V. & Plattner, J. J. (2006). J. Med. Chem. 49, 4447-4450.]); Alexander et al. (1999[Alexander, C., Smith, C. R., Whitcombe, M. J. & Vulfson, E. N. (1999). J. Am. Chem. Soc. 121, 6640-6651.]). For the crystal structures of benzoboroxoles, see: Tan et al. (2001[Tan, Y. L., White, A. J. P., Widdowson, D. A., Wilhelm, R. & Williams, D. J. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 3269-3280.]); Sporzynski et al. (2005[Sporzynski, A., Lewandowski, R., Rogowska, P. & Cyranski, M. K. (2005). Appl. Organomet. Chem. 19, 1202-1203.]); Coghlan et al. (2005[Coghlan, S. W., Giles, R. L., Howard, J. A. K., Patrick, L. G. F., Probert, M. R., Smith, G. E. & Whiting, A. (2005). J. Organomet. Chem. 690, 4784-4794.]); Arcus et al. (1993[Arcus, V. L., Main, L. & Nicholson, B. K. (1993). J. Organomet. Chem. 460, 139-147.]); Murafuji et al. (1999[Murafuji, T., Sugihara, Y., Moriya, T., Mikata, Y. & Yano, S. (1999). New J. Chem. 23, 683-685.]); Zhdankin et al. (1999[Zhdankin, V. V., Persichini, P. J. III, Zhang, L., Fix, S. & Kiprof, P. (1999). Tetrahedron Lett. 40, 6705-6708.]); Yamamoto et al. (2005[Yamamoto, Y., Ishii, J., Nishiyama, H. & Itoh, K. (2005). J. Am. Chem. Soc. 127, 9625-9631.]); Gunasekera et al. (2007[Gunasekera, D. S., Gerold, D. J., Aalderks, N. S., Chandra, J. S., Maanu, C. A., Kiprof, P., Zhdankin, V. V. & Reddy, M. V. R. (2007). Tetrahedron, 63, 9401-9405.]).

For related literature, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Prince (1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14BNO2

  • Mr = 311.13

  • Trigonal, [R \overline 3]

  • a = 33.079 (5) Å

  • c = 7.358 (5) Å

  • V = 6973 (5) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.58 × 0.12 × 0.07 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.96, Tmax = 0.99

  • 3564 measured reflections

  • 3564 independent reflections

  • 1558 reflections with I > 2.0σ(I)

  • 3 standard reflections every 150 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.093

  • S = 1.07

  • 1779 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected bond lengths (Å)

B1—O2 1.479 (6)
B1—N1 1.646 (6)
B1—O1 1.432 (6)
B1—C1 1.602 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H16⋯O2i 0.93 2.59 3.490 (8) 163
Symmetry code: (i) [x-y+{\script{1\over 3}}, x-{\script{1\over 3}}, -z+{\script{2\over 3}}].

Data collection: AFC-7R Diffractometer Control Software (Rigaku/MSC, 1997[Rigaku/MSC (1997). AFC-7R Diffractometer Control Software. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: WinAFC (Rigaku/MSC, 2000[Rigaku/MSC (2000). WinAFC. Version 1.0.2. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); data reduction: TEXSAN (Rigaku/MSC, 2004[Rigaku/MSC (2004). TEXSAN. Version 10.3b. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Benzoboroxoles are useful synthons for cross-coupling reactions (Nicolaou et al., 1998; Nicolaou et al., 1999; Tan et al., 2001) and are utilized in a wide variety of applications in medicinal (Benkovic et al., 2005; Baker et al., 2006) and materials (Alexander et al., 1999) chemistry.

The number of known structures of boroxoles and their adducts with a tetrahedral boron atom is very small (CSD 2007; Tan et al. 2001; Sporzynski et al., 2005; Coghlan et al., 2005; Arcus et al., 1993; Murafuji et al., 1999; Zhdankin et al., 1999; Yamamoto et al., 2005; Gunasekera et al., 2007). 10-(benzo[c][1,2]oxaborol-1(3H)-yloxy)benzo[h]quinoline, I, (Fig. 1) is the first known structure of a boroxole derivative in which the boron atom is coordinated to two oxygen, one carbon, and one nitrogen atoms and has a tetrahedral geometry. The B1—O1 and B1—O2 distances, in spite of their similar nature, are quite different (Table 1) and, probably reflect the difference in the electron density on the phenolic and benzylic type oxygen atoms. The B1—C1 and B1—N1 bond distances are significantly longer than boron-oxygen bond distances with B1—N1 being the longest.

The molecules of I are linked together into two-dimensional polymeric units by weak C(ar)—H···O hydrogen bonds (Table 2) formed between the H16 aryl hydrogen atom and the phenolic oxygen O2 of a neighboring molecule at (x-y + 1/3, x - 1/3, -z + 2/3), generated by a translation along threefold screw axis (Fig. 2). This two-dimensional polymeric chain forms small hexagonal channels oriented along the c axis.The hexagonal channels are further stabilized by strongπ-π interactions between molecules related by inversion with the shortest C···C contacts being between C10 and C20ii (3.368 Å; symmetry operator ii = 1 - x, 1 - y, 1 - z).

Related literature top

For the general synthesis and applications of benzoboroxoles, see: Nicolaou et al. (1998, 1999); Tan et al. (2001); Benkovic et al. (2005); Baker et al. (2006); Alexander et al. (1999). For the crystal structures of benzoboroxoles, see: Tan et al. (2001); Sporzynski et al. (2005); Coghlan et al. (2005); Arcus et al. (1993); Murafuji et al. (1999); Zhdankin et al. (1999); Yamamoto et al. (2005); Gunasekera et al. (2007).

For related literature, see: Allen (2002); Prince (1982); Watkin (1994).

Experimental top

The title compound was prepared by the reaction between equivalent amounts of benzoboroxole and 10-hydroxybenzo[h]quinoline in dry hexane under an argon atmosphere. Crystals suitable for X-ray analysis were grown by slow diffusion of pentane into a methylenechloride solution of I. Selected data for title compound: Analysis calculated for C20H14BNO2; C, 77.20%; H, 4.54%; N, 4.5%. Found C, 73.41%; H, 4.59%; N, 4.19% (Note: %C found is low because of the formation of highly stable boron carbide during the combustion process). 1H NMR (CDCl3): δ 5.2 (d, 2H), 5.3 (d, 2H). 11B NMR (CDCl3): δ 11.14. 13C NMR (CDCl3) δ 159, 155.9, 148.8, 42.3, 139.6, 134.5, 132.8, 130.6, 128.4, 127.8, 126.5, 123.4, 121.5, 120.8, 117.9, 116.9, 72.3. A bsorption λmax = 248, 303, and 413 nm.

Refinement top

In the absence of significant anomalous scattering, Friedel pairs were merged. All H atoms were placed in calculated positions with C—H distances of 0.93 (aromatic) and 0.98 Å (alkyl). All hydrogen atoms were refined with Uiso(H) = 1.3Ueq of their respective carrier atom using riding constraints.

Structure description top

Benzoboroxoles are useful synthons for cross-coupling reactions (Nicolaou et al., 1998; Nicolaou et al., 1999; Tan et al., 2001) and are utilized in a wide variety of applications in medicinal (Benkovic et al., 2005; Baker et al., 2006) and materials (Alexander et al., 1999) chemistry.

The number of known structures of boroxoles and their adducts with a tetrahedral boron atom is very small (CSD 2007; Tan et al. 2001; Sporzynski et al., 2005; Coghlan et al., 2005; Arcus et al., 1993; Murafuji et al., 1999; Zhdankin et al., 1999; Yamamoto et al., 2005; Gunasekera et al., 2007). 10-(benzo[c][1,2]oxaborol-1(3H)-yloxy)benzo[h]quinoline, I, (Fig. 1) is the first known structure of a boroxole derivative in which the boron atom is coordinated to two oxygen, one carbon, and one nitrogen atoms and has a tetrahedral geometry. The B1—O1 and B1—O2 distances, in spite of their similar nature, are quite different (Table 1) and, probably reflect the difference in the electron density on the phenolic and benzylic type oxygen atoms. The B1—C1 and B1—N1 bond distances are significantly longer than boron-oxygen bond distances with B1—N1 being the longest.

The molecules of I are linked together into two-dimensional polymeric units by weak C(ar)—H···O hydrogen bonds (Table 2) formed between the H16 aryl hydrogen atom and the phenolic oxygen O2 of a neighboring molecule at (x-y + 1/3, x - 1/3, -z + 2/3), generated by a translation along threefold screw axis (Fig. 2). This two-dimensional polymeric chain forms small hexagonal channels oriented along the c axis.The hexagonal channels are further stabilized by strongπ-π interactions between molecules related by inversion with the shortest C···C contacts being between C10 and C20ii (3.368 Å; symmetry operator ii = 1 - x, 1 - y, 1 - z).

For the general synthesis and applications of benzoboroxoles, see: Nicolaou et al. (1998, 1999); Tan et al. (2001); Benkovic et al. (2005); Baker et al. (2006); Alexander et al. (1999). For the crystal structures of benzoboroxoles, see: Tan et al. (2001); Sporzynski et al. (2005); Coghlan et al. (2005); Arcus et al. (1993); Murafuji et al. (1999); Zhdankin et al. (1999); Yamamoto et al. (2005); Gunasekera et al. (2007).

For related literature, see: Allen (2002); Prince (1982); Watkin (1994).

Computing details top

Data collection: AFC-7R Diffractometer Control Software (Rigaku/MSC, 1997); cell refinement: WinAFC (Rigaku/MSC, 2000); data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. Unit cell representation showing the small hexagonal channels along c axis. Hexagonal channels are labeled in red with 'Ch'.
3H-2,1-Benzoxaborole-1-spiro-4'-(5-oxa-3a-aza-4-borapyrene) top
Crystal data top
C20H14BNO2Dx = 1.334 Mg m3
Mr = 311.13Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 25 reflections
Hall symbol: -R 3θ = 15–18°
a = 33.079 (5) ŵ = 0.09 mm1
c = 7.358 (5) ÅT = 295 K
V = 6973 (5) Å3Needle, yellow
Z = 180.58 × 0.12 × 0.07 mm
F(000) = 2916
Data collection top
Serial
diffractometer
Rint = 0.000
Graphite monochromatorθmax = 27.5°, θmin = 2.9°
ω/2θ scansh = 042
Absorption correction: ψ scan
(North et al., 1968)
k = 3636
Tmin = 0.96, Tmax = 0.99l = 09
3564 measured reflections3 standard reflections every 150 reflections
3564 independent reflections intensity decay: 0.0%
1558 reflections with I > 2.0σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.093 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 6.52 6.79 1.78
S = 1.07(Δ/σ)max = 0.000267
1779 reflectionsΔρmax = 0.31 e Å3
218 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: Larson (1970), Equation 22
0 constraintsExtinction coefficient: 269 (15)
Crystal data top
C20H14BNO2Z = 18
Mr = 311.13Mo Kα radiation
Trigonal, R3µ = 0.09 mm1
a = 33.079 (5) ÅT = 295 K
c = 7.358 (5) Å0.58 × 0.12 × 0.07 mm
V = 6973 (5) Å3
Data collection top
Serial
diffractometer
1558 reflections with I > 2.0σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.96, Tmax = 0.993 standard reflections every 150 reflections
3564 measured reflections intensity decay: 0.0%
3564 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
1779 reflectionsΔρmin = 0.28 e Å3
218 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.60386 (17)0.50314 (19)0.3431 (8)0.0461
N10.54645 (12)0.47492 (12)0.3338 (5)0.0441
O10.61889 (10)0.50681 (11)0.1583 (4)0.0556
O20.61678 (10)0.54880 (11)0.4258 (5)0.0557
C10.62617 (15)0.47612 (16)0.4450 (7)0.0470
C20.62919 (18)0.46446 (19)0.6229 (7)0.0641
C30.65528 (19)0.4431 (2)0.6641 (8)0.0738
C40.67847 (17)0.43392 (18)0.5313 (8)0.0612
C50.67633 (15)0.44539 (16)0.3534 (7)0.0536
C60.64948 (15)0.46632 (15)0.3118 (7)0.0453
C70.64298 (16)0.48142 (17)0.1297 (7)0.0549
C80.52178 (17)0.42836 (16)0.3387 (7)0.0556
C90.47493 (17)0.40339 (17)0.2966 (7)0.0615
C100.45304 (16)0.42688 (17)0.2430 (7)0.0568
C110.47733 (16)0.47560 (17)0.2342 (7)0.0465
C120.52458 (15)0.49909 (15)0.2852 (6)0.0420
C130.45737 (18)0.5029 (2)0.1721 (7)0.0611
C140.48327 (19)0.5502 (2)0.1649 (7)0.0603
C150.53031 (18)0.57485 (17)0.2257 (7)0.0524
C160.55138 (15)0.54933 (15)0.2865 (6)0.0441
C170.5559 (2)0.62379 (19)0.2316 (8)0.0699
C180.5997 (2)0.64575 (19)0.3060 (9)0.0767
C190.62077 (18)0.62144 (17)0.3711 (8)0.0655
C200.59680 (16)0.57271 (16)0.3584 (7)0.0492
H110.61350.47060.71390.0862*
H120.65690.43520.78410.1024*
H130.69550.41940.56140.0794*
H140.69220.43960.26240.0612*
H150.53720.41250.37180.0623*
H160.45860.37100.30450.0698*
H170.42150.41070.21280.0625*
H710.67320.50150.07120.0750*
H720.62420.45410.05280.0750*
H1310.42630.48790.13520.0773*
H1410.46980.56690.11930.0818*
H1710.54300.64120.18770.0923*
H1810.61620.67820.31000.0853*
H1910.65010.63700.42490.0712*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.033 (3)0.048 (3)0.056 (4)0.020 (3)0.000 (3)0.000 (3)
N10.033 (2)0.039 (2)0.060 (3)0.0174 (18)0.0013 (19)0.0006 (19)
O10.049 (2)0.060 (2)0.063 (2)0.0316 (19)0.0060 (18)0.0093 (18)
O20.0365 (18)0.046 (2)0.083 (3)0.0192 (16)0.0066 (17)0.0093 (18)
C10.034 (3)0.048 (3)0.057 (3)0.019 (2)0.002 (2)0.007 (2)
C20.060 (3)0.086 (4)0.061 (4)0.048 (3)0.000 (3)0.000 (3)
C30.077 (4)0.105 (5)0.063 (4)0.062 (4)0.002 (3)0.007 (3)
C40.053 (3)0.072 (4)0.071 (4)0.041 (3)0.006 (3)0.002 (3)
C50.039 (3)0.054 (3)0.068 (4)0.024 (3)0.004 (3)0.002 (3)
C60.035 (3)0.042 (3)0.054 (3)0.016 (2)0.002 (2)0.004 (2)
C70.050 (3)0.056 (3)0.063 (4)0.030 (3)0.009 (3)0.001 (3)
C80.048 (3)0.038 (3)0.080 (4)0.022 (2)0.006 (3)0.003 (3)
C90.047 (3)0.041 (3)0.084 (4)0.012 (3)0.004 (3)0.007 (3)
C100.034 (3)0.055 (3)0.069 (4)0.013 (3)0.003 (3)0.010 (3)
C110.039 (3)0.051 (3)0.051 (3)0.024 (2)0.001 (2)0.006 (2)
C120.036 (3)0.044 (3)0.048 (3)0.021 (2)0.001 (2)0.004 (2)
C130.045 (3)0.081 (4)0.067 (4)0.039 (3)0.005 (3)0.005 (3)
C140.068 (4)0.072 (4)0.063 (4)0.052 (3)0.007 (3)0.007 (3)
C150.056 (3)0.056 (3)0.055 (3)0.036 (3)0.010 (3)0.005 (3)
C160.040 (3)0.040 (3)0.055 (3)0.021 (2)0.006 (2)0.002 (2)
C170.079 (4)0.054 (4)0.093 (5)0.045 (3)0.023 (4)0.015 (3)
C180.081 (4)0.041 (3)0.110 (5)0.032 (3)0.031 (4)0.010 (3)
C190.048 (3)0.043 (3)0.092 (5)0.013 (3)0.014 (3)0.009 (3)
C200.043 (3)0.040 (3)0.065 (3)0.022 (2)0.007 (2)0.004 (2)
Geometric parameters (Å, º) top
O2—C201.354 (5)C3—H120.930
B1—O21.479 (6)C4—C51.374 (7)
C20—C161.405 (6)C4—H130.930
C20—C191.399 (6)C5—H140.930
C16—C121.440 (6)C8—C91.378 (6)
C16—C151.410 (6)C8—H150.930
C12—N11.367 (5)C9—C101.359 (6)
C12—C111.405 (6)C9—H160.930
B1—N11.646 (6)C10—C111.397 (6)
N1—C81.335 (5)C10—H170.930
B1—O11.432 (6)C11—C131.434 (6)
B1—C11.602 (7)C13—C141.358 (7)
O1—C71.433 (5)C13—H1310.930
C7—C61.482 (6)C14—C151.420 (7)
C7—H710.980C14—H1410.930
C7—H720.980C15—C171.403 (7)
C6—C11.382 (6)C17—C181.368 (7)
C6—C51.406 (6)C17—H1710.930
C1—C21.382 (6)C18—C191.387 (7)
C2—C31.396 (7)C18—H1810.930
C2—H110.930C19—H1910.930
C3—C41.366 (7)
C20—O2—B1118.0 (4)C4—C3—H12120.0
O2—C20—C16121.1 (4)C3—C4—C5120.5 (5)
O2—C20—C19119.2 (5)C3—C4—H13119.7
C16—C20—C19119.6 (5)C5—C4—H13119.8
C20—C16—C12120.6 (4)C6—C5—C4118.4 (5)
C20—C16—C15120.2 (4)C6—C5—H14120.5
C12—C16—C15119.1 (4)C4—C5—H14121.1
C16—C12—N1118.2 (4)N1—C8—C9122.8 (5)
C16—C12—C11120.8 (4)N1—C8—H15117.9
N1—C12—C11120.9 (4)C9—C8—H15119.3
C12—N1—B1118.5 (4)C8—C9—C10118.9 (5)
C12—N1—C8119.0 (4)C8—C9—H16120.6
B1—N1—C8121.3 (4)C10—C9—H16120.5
N1—B1—O2105.0 (4)C9—C10—C11120.6 (4)
N1—B1—O1105.2 (4)C9—C10—H17120.3
O2—B1—O1113.1 (4)C11—C10—H17119.0
N1—B1—C1115.2 (4)C12—C11—C10117.7 (4)
O2—B1—C1113.5 (4)C12—C11—C13118.2 (5)
O1—B1—C1104.7 (4)C10—C11—C13124.1 (5)
B1—O1—C7111.2 (4)C11—C13—C14120.9 (5)
O1—C7—C6106.4 (4)C11—C13—H131119.4
O1—C7—H71110.0C14—C13—H131119.7
C6—C7—H71110.8C13—C14—C15121.9 (5)
O1—C7—H72110.0C13—C14—H141119.0
C6—C7—H72110.1C15—C14—H141119.1
H71—C7—H72109.5C14—C15—C16118.9 (5)
C7—C6—C1111.7 (4)C14—C15—C17121.9 (5)
C7—C6—C5126.6 (4)C16—C15—C17119.1 (5)
C1—C6—C5121.6 (5)C15—C17—C18119.6 (5)
B1—C1—C6105.4 (4)C15—C17—H171120.2
B1—C1—C2135.8 (5)C18—C17—H171120.2
C6—C1—C2118.7 (4)C17—C18—C19122.4 (5)
C1—C2—C3119.8 (5)C17—C18—H181118.6
C1—C2—H11119.6C19—C18—H181119.0
C3—C2—H11120.6C20—C19—C18119.0 (5)
C2—C3—C4121.0 (5)C20—C19—H191120.0
C2—C3—H12119.0C18—C19—H191120.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H16···O2i0.932.593.490 (8)163
Symmetry code: (i) xy+1/3, x1/3, z+2/3.

Experimental details

Crystal data
Chemical formulaC20H14BNO2
Mr311.13
Crystal system, space groupTrigonal, R3
Temperature (K)295
a, c (Å)33.079 (5), 7.358 (5)
V3)6973 (5)
Z18
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.58 × 0.12 × 0.07
Data collection
DiffractometerSerial
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.96, 0.99
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
3564, 3564, 1558
Rint0.000
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.093, 1.07
No. of reflections1779
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.28

Computer programs: AFC-7R Diffractometer Control Software (Rigaku/MSC, 1997), WinAFC (Rigaku/MSC, 2000), TEXSAN (Rigaku/MSC, 2004), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

Selected bond lengths (Å) top
B1—O21.479 (6)B1—O11.432 (6)
B1—N11.646 (6)B1—C11.602 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H16···O2i0.932.593.490 (8)163
Symmetry code: (i) xy+1/3, x1/3, z+2/3.
 

Acknowledgements

Generous support from the Department of Chemistry and Biochemistry, University of Minnesota Duluth, is greatly appreciated. X-ray data were collected at the University of Minnesota Duluth X-ray crystallography facility.

References

First citationAlexander, C., Smith, C. R., Whitcombe, M. J. & Vulfson, E. N. (1999). J. Am. Chem. Soc. 121, 6640–6651.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationArcus, V. L., Main, L. & Nicholson, B. K. (1993). J. Organomet. Chem. 460, 139–147.  CSD CrossRef CAS Web of Science Google Scholar
First citationBaker, S. J., Zhang, Y. K., Akama, T., Lau, A., Zhou, H., Hernandez, V., Mao, W., Alley, M. R. K., Sanders, V. & Plattner, J. J. (2006). J. Med. Chem. 49, 4447–4450.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBenkovic, S. J., Baker, S. J., Alley, M. R. K., Woo, Y. H., Zhang, Y. K., Akama, T., Mao, W., Baboval, J., Rajagopalan, P. T. R., Wall, M., Kahng, L. S., Tavassoli, A. & Shapiro, L. (2005). J. Med. Chem. 48, 7468–7476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCoghlan, S. W., Giles, R. L., Howard, J. A. K., Patrick, L. G. F., Probert, M. R., Smith, G. E. & Whiting, A. (2005). J. Organomet. Chem. 690, 4784–4794.  Web of Science CSD CrossRef CAS Google Scholar
First citationGunasekera, D. S., Gerold, D. J., Aalderks, N. S., Chandra, J. S., Maanu, C. A., Kiprof, P., Zhdankin, V. V. & Reddy, M. V. R. (2007). Tetrahedron, 63, 9401–9405.  Web of Science CSD CrossRef CAS Google Scholar
First citationMurafuji, T., Sugihara, Y., Moriya, T., Mikata, Y. & Yano, S. (1999). New J. Chem. 23, 683–685.  Web of Science CSD CrossRef CAS Google Scholar
First citationNicolaou, K. C., Li, H., Boody, C. N. C., Ramanjulu, J. M., Yue, T. Y., Natarajan, S., Chu, X. J., Brase, S. & Rubsam, F. (1999). Chem. Eur. J. 5, 2584–2601.  CrossRef CAS Google Scholar
First citationNicolaou, K. C., Natarajan, S., Li, H., Jain, N. F., Hughes, R., Solomon, M. E., Ramanjulu, J. M., Boddy, C. N. C. & Takayanagi, M. (1998). Angew. Chem. Int. Ed. 37, 2708–2714.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationRigaku/MSC (1997). AFC-7R Diffractometer Control Software. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2000). WinAFC. Version 1.0.2. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2004). TEXSAN. Version 10.3b. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSporzynski, A., Lewandowski, R., Rogowska, P. & Cyranski, M. K. (2005). Appl. Organomet. Chem. 19, 1202–1203.  CAS Google Scholar
First citationTan, Y. L., White, A. J. P., Widdowson, D. A., Wilhelm, R. & Williams, D. J. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 3269–3280.  Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationYamamoto, Y., Ishii, J., Nishiyama, H. & Itoh, K. (2005). J. Am. Chem. Soc. 127, 9625–9631.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhdankin, V. V., Persichini, P. J. III, Zhang, L., Fix, S. & Kiprof, P. (1999). Tetrahedron Lett. 40, 6705–6708.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds