organic compounds
3H-2,1-Benzoxaborole-1-spiro-4′-(5-oxa-3a-aza-4-borapyrene)
aDepartment of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
*Correspondence e-mail: vnemykin@d.umn.edu
In the title compound, C20H14BNO2, the B atom has a tetrahedral geometry with two short B—O and two long B—C and B—N bonds, revealing a significant difference between Car—O—B and Calkyl—O—B bond distances. Intermolecular Ar—H⋯O hydrogen bonds and strong π–π interactions (3.368 Å) between aromatic cores of neighbouring molecules result in hexagonal channels along the crystallographic c axis, which are potentially accessible for small molecules.
Related literature
For the general synthesis and applications of benzoboroxoles, see: Nicolaou et al. (1998, 1999); Tan et al. (2001); Benkovic et al. (2005); Baker et al. (2006); Alexander et al. (1999). For the crystal structures of benzoboroxoles, see: Tan et al. (2001); Sporzynski et al. (2005); Coghlan et al. (2005); Arcus et al. (1993); Murafuji et al. (1999); Zhdankin et al. (1999); Yamamoto et al. (2005); Gunasekera et al. (2007).
For related literature, see: Allen (2002); Prince (1982); Watkin (1994).
Experimental
Crystal data
|
Refinement
|
|
Data collection: AFC-7R Diffractometer Control Software (Rigaku/MSC, 1997); cell WinAFC (Rigaku/MSC, 2000); data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536807066731/em2005sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807066731/em2005Isup2.hkl
The title compound was prepared by the reaction between equivalent amounts of benzoboroxole and 10-hydroxybenzo[h]quinoline in dry hexane under an argon atmosphere. Crystals suitable for X-ray analysis were grown by slow diffusion of pentane into a methylenechloride solution of I. Selected data for title compound: Analysis calculated for C20H14BNO2; C, 77.20%; H, 4.54%; N, 4.5%. Found C, 73.41%; H, 4.59%; N, 4.19% (Note: %C found is low because of the formation of highly stable boron carbide during the combustion process). 1H NMR (CDCl3): δ 5.2 (d, 2H), 5.3 (d, 2H). 11B NMR (CDCl3): δ 11.14. 13C NMR (CDCl3) δ 159, 155.9, 148.8, 42.3, 139.6, 134.5, 132.8, 130.6, 128.4, 127.8, 126.5, 123.4, 121.5, 120.8, 117.9, 116.9, 72.3. A bsorption λmax = 248, 303, and 413 nm.
In the absence of significant
Friedel pairs were merged. All H atoms were placed in calculated positions with C—H distances of 0.93 (aromatic) and 0.98 Å (alkyl). All hydrogen atoms were refined with Uiso(H) = 1.3Ueq of their respective using riding constraints.Benzoboroxoles are useful synthons for cross-coupling reactions (Nicolaou et al., 1998; Nicolaou et al., 1999; Tan et al., 2001) and are utilized in a wide variety of applications in medicinal (Benkovic et al., 2005; Baker et al., 2006) and materials (Alexander et al., 1999) chemistry.
The number of known structures of boroxoles and their adducts with a tetrahedral boron atom is very small (CSD 2007; Tan et al. 2001; Sporzynski et al., 2005; Coghlan et al., 2005; Arcus et al., 1993; Murafuji et al., 1999; Zhdankin et al., 1999; Yamamoto et al., 2005; Gunasekera et al., 2007). 10-(benzo[c][1,2]oxaborol-1(3H)-yloxy)benzo[h]quinoline, I, (Fig. 1) is the first known structure of a boroxole derivative in which the boron atom is coordinated to two oxygen, one carbon, and one nitrogen atoms and has a tetrahedral geometry. The B1—O1 and B1—O2 distances, in spite of their similar nature, are quite different (Table 1) and, probably reflect the difference in the electron density on the phenolic and benzylic type oxygen atoms. The B1—C1 and B1—N1 bond distances are significantly longer than boron-oxygen bond distances with B1—N1 being the longest.
The molecules of I are linked together into two-dimensional polymeric units by weak C(ar)—H···O hydrogen bonds (Table 2) formed between the H16 aryl hydrogen atom and the phenolic oxygen O2 of a neighboring molecule at (x-y + 1/3, x - 1/3, -z + 2/3), generated by a translation along threefold screw axis (Fig. 2). This two-dimensional polymeric chain forms small hexagonal channels oriented along the c axis.The hexagonal channels are further stabilized by strongπ-π interactions between molecules related by inversion with the shortest C···C contacts being between C10 and C20ii (3.368 Å; symmetry operator ii = 1 - x, 1 - y, 1 - z).
For the general synthesis and applications of benzoboroxoles, see: Nicolaou et al. (1998, 1999); Tan et al. (2001); Benkovic et al. (2005); Baker et al. (2006); Alexander et al. (1999). For the crystal structures of benzoboroxoles, see: Tan et al. (2001); Sporzynski et al. (2005); Coghlan et al. (2005); Arcus et al. (1993); Murafuji et al. (1999); Zhdankin et al. (1999); Yamamoto et al. (2005); Gunasekera et al. (2007).
For related literature, see: Allen (2002); Prince (1982); Watkin (1994).
Data collection: AFC-7R Diffractometer Control Software (Rigaku/MSC, 1997); cell
WinAFC (Rigaku/MSC, 2000); data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).C20H14BNO2 | Dx = 1.334 Mg m−3 |
Mr = 311.13 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3 | Cell parameters from 25 reflections |
Hall symbol: -R 3 | θ = 15–18° |
a = 33.079 (5) Å | µ = 0.09 mm−1 |
c = 7.358 (5) Å | T = 295 K |
V = 6973 (5) Å3 | Needle, yellow |
Z = 18 | 0.58 × 0.12 × 0.07 mm |
F(000) = 2916 |
Serial diffractometer | Rint = 0.000 |
Graphite monochromator | θmax = 27.5°, θmin = 2.9° |
ω/2θ scans | h = 0→42 |
Absorption correction: ψ scan (North et al., 1968) | k = −36→36 |
Tmin = 0.96, Tmax = 0.99 | l = 0→9 |
3564 measured reflections | 3 standard reflections every 150 reflections |
3564 independent reflections | intensity decay: 0.0% |
1558 reflections with I > 2.0σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.068 | H-atom parameters constrained |
wR(F2) = 0.093 | Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 6.52 6.79 1.78 |
S = 1.07 | (Δ/σ)max = 0.000267 |
1779 reflections | Δρmax = 0.31 e Å−3 |
218 parameters | Δρmin = −0.28 e Å−3 |
0 restraints | Extinction correction: Larson (1970), Equation 22 |
0 constraints | Extinction coefficient: 269 (15) |
C20H14BNO2 | Z = 18 |
Mr = 311.13 | Mo Kα radiation |
Trigonal, R3 | µ = 0.09 mm−1 |
a = 33.079 (5) Å | T = 295 K |
c = 7.358 (5) Å | 0.58 × 0.12 × 0.07 mm |
V = 6973 (5) Å3 |
Serial diffractometer | 1558 reflections with I > 2.0σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.000 |
Tmin = 0.96, Tmax = 0.99 | 3 standard reflections every 150 reflections |
3564 measured reflections | intensity decay: 0.0% |
3564 independent reflections |
R[F2 > 2σ(F2)] = 0.068 | 0 restraints |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.31 e Å−3 |
1779 reflections | Δρmin = −0.28 e Å−3 |
218 parameters |
x | y | z | Uiso*/Ueq | ||
B1 | 0.60386 (17) | 0.50314 (19) | 0.3431 (8) | 0.0461 | |
N1 | 0.54645 (12) | 0.47492 (12) | 0.3338 (5) | 0.0441 | |
O1 | 0.61889 (10) | 0.50681 (11) | 0.1583 (4) | 0.0556 | |
O2 | 0.61678 (10) | 0.54880 (11) | 0.4258 (5) | 0.0557 | |
C1 | 0.62617 (15) | 0.47612 (16) | 0.4450 (7) | 0.0470 | |
C2 | 0.62919 (18) | 0.46446 (19) | 0.6229 (7) | 0.0641 | |
C3 | 0.65528 (19) | 0.4431 (2) | 0.6641 (8) | 0.0738 | |
C4 | 0.67847 (17) | 0.43392 (18) | 0.5313 (8) | 0.0612 | |
C5 | 0.67633 (15) | 0.44539 (16) | 0.3534 (7) | 0.0536 | |
C6 | 0.64948 (15) | 0.46632 (15) | 0.3118 (7) | 0.0453 | |
C7 | 0.64298 (16) | 0.48142 (17) | 0.1297 (7) | 0.0549 | |
C8 | 0.52178 (17) | 0.42836 (16) | 0.3387 (7) | 0.0556 | |
C9 | 0.47493 (17) | 0.40339 (17) | 0.2966 (7) | 0.0615 | |
C10 | 0.45304 (16) | 0.42688 (17) | 0.2430 (7) | 0.0568 | |
C11 | 0.47733 (16) | 0.47560 (17) | 0.2342 (7) | 0.0465 | |
C12 | 0.52458 (15) | 0.49909 (15) | 0.2852 (6) | 0.0420 | |
C13 | 0.45737 (18) | 0.5029 (2) | 0.1721 (7) | 0.0611 | |
C14 | 0.48327 (19) | 0.5502 (2) | 0.1649 (7) | 0.0603 | |
C15 | 0.53031 (18) | 0.57485 (17) | 0.2257 (7) | 0.0524 | |
C16 | 0.55138 (15) | 0.54933 (15) | 0.2865 (6) | 0.0441 | |
C17 | 0.5559 (2) | 0.62379 (19) | 0.2316 (8) | 0.0699 | |
C18 | 0.5997 (2) | 0.64575 (19) | 0.3060 (9) | 0.0767 | |
C19 | 0.62077 (18) | 0.62144 (17) | 0.3711 (8) | 0.0655 | |
C20 | 0.59680 (16) | 0.57271 (16) | 0.3584 (7) | 0.0492 | |
H11 | 0.6135 | 0.4706 | 0.7139 | 0.0862* | |
H12 | 0.6569 | 0.4352 | 0.7841 | 0.1024* | |
H13 | 0.6955 | 0.4194 | 0.5614 | 0.0794* | |
H14 | 0.6922 | 0.4396 | 0.2624 | 0.0612* | |
H15 | 0.5372 | 0.4125 | 0.3718 | 0.0623* | |
H16 | 0.4586 | 0.3710 | 0.3045 | 0.0698* | |
H17 | 0.4215 | 0.4107 | 0.2128 | 0.0625* | |
H71 | 0.6732 | 0.5015 | 0.0712 | 0.0750* | |
H72 | 0.6242 | 0.4541 | 0.0528 | 0.0750* | |
H131 | 0.4263 | 0.4879 | 0.1352 | 0.0773* | |
H141 | 0.4698 | 0.5669 | 0.1193 | 0.0818* | |
H171 | 0.5430 | 0.6412 | 0.1877 | 0.0923* | |
H181 | 0.6162 | 0.6782 | 0.3100 | 0.0853* | |
H191 | 0.6501 | 0.6370 | 0.4249 | 0.0712* |
U11 | U22 | U33 | U12 | U13 | U23 | |
B1 | 0.033 (3) | 0.048 (3) | 0.056 (4) | 0.020 (3) | 0.000 (3) | 0.000 (3) |
N1 | 0.033 (2) | 0.039 (2) | 0.060 (3) | 0.0174 (18) | 0.0013 (19) | −0.0006 (19) |
O1 | 0.049 (2) | 0.060 (2) | 0.063 (2) | 0.0316 (19) | 0.0060 (18) | 0.0093 (18) |
O2 | 0.0365 (18) | 0.046 (2) | 0.083 (3) | 0.0192 (16) | −0.0066 (17) | −0.0093 (18) |
C1 | 0.034 (3) | 0.048 (3) | 0.057 (3) | 0.019 (2) | −0.002 (2) | −0.007 (2) |
C2 | 0.060 (3) | 0.086 (4) | 0.061 (4) | 0.048 (3) | 0.000 (3) | 0.000 (3) |
C3 | 0.077 (4) | 0.105 (5) | 0.063 (4) | 0.062 (4) | −0.002 (3) | 0.007 (3) |
C4 | 0.053 (3) | 0.072 (4) | 0.071 (4) | 0.041 (3) | −0.006 (3) | −0.002 (3) |
C5 | 0.039 (3) | 0.054 (3) | 0.068 (4) | 0.024 (3) | 0.004 (3) | −0.002 (3) |
C6 | 0.035 (3) | 0.042 (3) | 0.054 (3) | 0.016 (2) | 0.002 (2) | −0.004 (2) |
C7 | 0.050 (3) | 0.056 (3) | 0.063 (4) | 0.030 (3) | 0.009 (3) | −0.001 (3) |
C8 | 0.048 (3) | 0.038 (3) | 0.080 (4) | 0.022 (2) | 0.006 (3) | 0.003 (3) |
C9 | 0.047 (3) | 0.041 (3) | 0.084 (4) | 0.012 (3) | 0.004 (3) | −0.007 (3) |
C10 | 0.034 (3) | 0.055 (3) | 0.069 (4) | 0.013 (3) | −0.003 (3) | −0.010 (3) |
C11 | 0.039 (3) | 0.051 (3) | 0.051 (3) | 0.024 (2) | 0.001 (2) | −0.006 (2) |
C12 | 0.036 (3) | 0.044 (3) | 0.048 (3) | 0.021 (2) | 0.001 (2) | −0.004 (2) |
C13 | 0.045 (3) | 0.081 (4) | 0.067 (4) | 0.039 (3) | −0.005 (3) | −0.005 (3) |
C14 | 0.068 (4) | 0.072 (4) | 0.063 (4) | 0.052 (3) | 0.007 (3) | 0.007 (3) |
C15 | 0.056 (3) | 0.056 (3) | 0.055 (3) | 0.036 (3) | 0.010 (3) | 0.005 (3) |
C16 | 0.040 (3) | 0.040 (3) | 0.055 (3) | 0.021 (2) | 0.006 (2) | −0.002 (2) |
C17 | 0.079 (4) | 0.054 (4) | 0.093 (5) | 0.045 (3) | 0.023 (4) | 0.015 (3) |
C18 | 0.081 (4) | 0.041 (3) | 0.110 (5) | 0.032 (3) | 0.031 (4) | 0.010 (3) |
C19 | 0.048 (3) | 0.043 (3) | 0.092 (5) | 0.013 (3) | 0.014 (3) | −0.009 (3) |
C20 | 0.043 (3) | 0.040 (3) | 0.065 (3) | 0.022 (2) | 0.007 (2) | −0.004 (2) |
O2—C20 | 1.354 (5) | C3—H12 | 0.930 |
B1—O2 | 1.479 (6) | C4—C5 | 1.374 (7) |
C20—C16 | 1.405 (6) | C4—H13 | 0.930 |
C20—C19 | 1.399 (6) | C5—H14 | 0.930 |
C16—C12 | 1.440 (6) | C8—C9 | 1.378 (6) |
C16—C15 | 1.410 (6) | C8—H15 | 0.930 |
C12—N1 | 1.367 (5) | C9—C10 | 1.359 (6) |
C12—C11 | 1.405 (6) | C9—H16 | 0.930 |
B1—N1 | 1.646 (6) | C10—C11 | 1.397 (6) |
N1—C8 | 1.335 (5) | C10—H17 | 0.930 |
B1—O1 | 1.432 (6) | C11—C13 | 1.434 (6) |
B1—C1 | 1.602 (7) | C13—C14 | 1.358 (7) |
O1—C7 | 1.433 (5) | C13—H131 | 0.930 |
C7—C6 | 1.482 (6) | C14—C15 | 1.420 (7) |
C7—H71 | 0.980 | C14—H141 | 0.930 |
C7—H72 | 0.980 | C15—C17 | 1.403 (7) |
C6—C1 | 1.382 (6) | C17—C18 | 1.368 (7) |
C6—C5 | 1.406 (6) | C17—H171 | 0.930 |
C1—C2 | 1.382 (6) | C18—C19 | 1.387 (7) |
C2—C3 | 1.396 (7) | C18—H181 | 0.930 |
C2—H11 | 0.930 | C19—H191 | 0.930 |
C3—C4 | 1.366 (7) | ||
C20—O2—B1 | 118.0 (4) | C4—C3—H12 | 120.0 |
O2—C20—C16 | 121.1 (4) | C3—C4—C5 | 120.5 (5) |
O2—C20—C19 | 119.2 (5) | C3—C4—H13 | 119.7 |
C16—C20—C19 | 119.6 (5) | C5—C4—H13 | 119.8 |
C20—C16—C12 | 120.6 (4) | C6—C5—C4 | 118.4 (5) |
C20—C16—C15 | 120.2 (4) | C6—C5—H14 | 120.5 |
C12—C16—C15 | 119.1 (4) | C4—C5—H14 | 121.1 |
C16—C12—N1 | 118.2 (4) | N1—C8—C9 | 122.8 (5) |
C16—C12—C11 | 120.8 (4) | N1—C8—H15 | 117.9 |
N1—C12—C11 | 120.9 (4) | C9—C8—H15 | 119.3 |
C12—N1—B1 | 118.5 (4) | C8—C9—C10 | 118.9 (5) |
C12—N1—C8 | 119.0 (4) | C8—C9—H16 | 120.6 |
B1—N1—C8 | 121.3 (4) | C10—C9—H16 | 120.5 |
N1—B1—O2 | 105.0 (4) | C9—C10—C11 | 120.6 (4) |
N1—B1—O1 | 105.2 (4) | C9—C10—H17 | 120.3 |
O2—B1—O1 | 113.1 (4) | C11—C10—H17 | 119.0 |
N1—B1—C1 | 115.2 (4) | C12—C11—C10 | 117.7 (4) |
O2—B1—C1 | 113.5 (4) | C12—C11—C13 | 118.2 (5) |
O1—B1—C1 | 104.7 (4) | C10—C11—C13 | 124.1 (5) |
B1—O1—C7 | 111.2 (4) | C11—C13—C14 | 120.9 (5) |
O1—C7—C6 | 106.4 (4) | C11—C13—H131 | 119.4 |
O1—C7—H71 | 110.0 | C14—C13—H131 | 119.7 |
C6—C7—H71 | 110.8 | C13—C14—C15 | 121.9 (5) |
O1—C7—H72 | 110.0 | C13—C14—H141 | 119.0 |
C6—C7—H72 | 110.1 | C15—C14—H141 | 119.1 |
H71—C7—H72 | 109.5 | C14—C15—C16 | 118.9 (5) |
C7—C6—C1 | 111.7 (4) | C14—C15—C17 | 121.9 (5) |
C7—C6—C5 | 126.6 (4) | C16—C15—C17 | 119.1 (5) |
C1—C6—C5 | 121.6 (5) | C15—C17—C18 | 119.6 (5) |
B1—C1—C6 | 105.4 (4) | C15—C17—H171 | 120.2 |
B1—C1—C2 | 135.8 (5) | C18—C17—H171 | 120.2 |
C6—C1—C2 | 118.7 (4) | C17—C18—C19 | 122.4 (5) |
C1—C2—C3 | 119.8 (5) | C17—C18—H181 | 118.6 |
C1—C2—H11 | 119.6 | C19—C18—H181 | 119.0 |
C3—C2—H11 | 120.6 | C20—C19—C18 | 119.0 (5) |
C2—C3—C4 | 121.0 (5) | C20—C19—H191 | 120.0 |
C2—C3—H12 | 119.0 | C18—C19—H191 | 120.9 |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H16···O2i | 0.93 | 2.59 | 3.490 (8) | 163 |
Symmetry code: (i) x−y+1/3, x−1/3, −z+2/3. |
Experimental details
Crystal data | |
Chemical formula | C20H14BNO2 |
Mr | 311.13 |
Crystal system, space group | Trigonal, R3 |
Temperature (K) | 295 |
a, c (Å) | 33.079 (5), 7.358 (5) |
V (Å3) | 6973 (5) |
Z | 18 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.58 × 0.12 × 0.07 |
Data collection | |
Diffractometer | Serial |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.96, 0.99 |
No. of measured, independent and observed [I > 2.0σ(I)] reflections | 3564, 3564, 1558 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.068, 0.093, 1.07 |
No. of reflections | 1779 |
No. of parameters | 218 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.28 |
Computer programs: AFC-7R Diffractometer Control Software (Rigaku/MSC, 1997), WinAFC (Rigaku/MSC, 2000), TEXSAN (Rigaku/MSC, 2004), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H16···O2i | 0.93 | 2.59 | 3.490 (8) | 163 |
Symmetry code: (i) x−y+1/3, x−1/3, −z+2/3. |
Acknowledgements
Generous support from the Department of Chemistry and Biochemistry, University of Minnesota Duluth, is greatly appreciated. X-ray data were collected at the University of Minnesota Duluth X-ray crystallography facility.
References
Alexander, C., Smith, C. R., Whitcombe, M. J. & Vulfson, E. N. (1999). J. Am. Chem. Soc. 121, 6640–6651. Web of Science CrossRef CAS Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Arcus, V. L., Main, L. & Nicholson, B. K. (1993). J. Organomet. Chem. 460, 139–147. CSD CrossRef CAS Web of Science Google Scholar
Baker, S. J., Zhang, Y. K., Akama, T., Lau, A., Zhou, H., Hernandez, V., Mao, W., Alley, M. R. K., Sanders, V. & Plattner, J. J. (2006). J. Med. Chem. 49, 4447–4450. Web of Science CrossRef PubMed CAS Google Scholar
Benkovic, S. J., Baker, S. J., Alley, M. R. K., Woo, Y. H., Zhang, Y. K., Akama, T., Mao, W., Baboval, J., Rajagopalan, P. T. R., Wall, M., Kahng, L. S., Tavassoli, A. & Shapiro, L. (2005). J. Med. Chem. 48, 7468–7476. Web of Science CrossRef PubMed CAS Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Coghlan, S. W., Giles, R. L., Howard, J. A. K., Patrick, L. G. F., Probert, M. R., Smith, G. E. & Whiting, A. (2005). J. Organomet. Chem. 690, 4784–4794. Web of Science CSD CrossRef CAS Google Scholar
Gunasekera, D. S., Gerold, D. J., Aalderks, N. S., Chandra, J. S., Maanu, C. A., Kiprof, P., Zhdankin, V. V. & Reddy, M. V. R. (2007). Tetrahedron, 63, 9401–9405. Web of Science CSD CrossRef CAS Google Scholar
Murafuji, T., Sugihara, Y., Moriya, T., Mikata, Y. & Yano, S. (1999). New J. Chem. 23, 683–685. Web of Science CSD CrossRef CAS Google Scholar
Nicolaou, K. C., Li, H., Boody, C. N. C., Ramanjulu, J. M., Yue, T. Y., Natarajan, S., Chu, X. J., Brase, S. & Rubsam, F. (1999). Chem. Eur. J. 5, 2584–2601. CrossRef CAS Google Scholar
Nicolaou, K. C., Natarajan, S., Li, H., Jain, N. F., Hughes, R., Solomon, M. E., Ramanjulu, J. M., Boddy, C. N. C. & Takayanagi, M. (1998). Angew. Chem. Int. Ed. 37, 2708–2714. CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag. Google Scholar
Rigaku/MSC (1997). AFC-7R Diffractometer Control Software. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Rigaku/MSC (2000). WinAFC. Version 1.0.2. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Rigaku/MSC (2004). TEXSAN. Version 10.3b. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sporzynski, A., Lewandowski, R., Rogowska, P. & Cyranski, M. K. (2005). Appl. Organomet. Chem. 19, 1202–1203. CAS Google Scholar
Tan, Y. L., White, A. J. P., Widdowson, D. A., Wilhelm, R. & Williams, D. J. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 3269–3280. Google Scholar
Watkin, D. (1994). Acta Cryst. A50, 411–437. CrossRef CAS Web of Science IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
Yamamoto, Y., Ishii, J., Nishiyama, H. & Itoh, K. (2005). J. Am. Chem. Soc. 127, 9625–9631. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhdankin, V. V., Persichini, P. J. III, Zhang, L., Fix, S. & Kiprof, P. (1999). Tetrahedron Lett. 40, 6705–6708. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzoboroxoles are useful synthons for cross-coupling reactions (Nicolaou et al., 1998; Nicolaou et al., 1999; Tan et al., 2001) and are utilized in a wide variety of applications in medicinal (Benkovic et al., 2005; Baker et al., 2006) and materials (Alexander et al., 1999) chemistry.
The number of known structures of boroxoles and their adducts with a tetrahedral boron atom is very small (CSD 2007; Tan et al. 2001; Sporzynski et al., 2005; Coghlan et al., 2005; Arcus et al., 1993; Murafuji et al., 1999; Zhdankin et al., 1999; Yamamoto et al., 2005; Gunasekera et al., 2007). 10-(benzo[c][1,2]oxaborol-1(3H)-yloxy)benzo[h]quinoline, I, (Fig. 1) is the first known structure of a boroxole derivative in which the boron atom is coordinated to two oxygen, one carbon, and one nitrogen atoms and has a tetrahedral geometry. The B1—O1 and B1—O2 distances, in spite of their similar nature, are quite different (Table 1) and, probably reflect the difference in the electron density on the phenolic and benzylic type oxygen atoms. The B1—C1 and B1—N1 bond distances are significantly longer than boron-oxygen bond distances with B1—N1 being the longest.
The molecules of I are linked together into two-dimensional polymeric units by weak C(ar)—H···O hydrogen bonds (Table 2) formed between the H16 aryl hydrogen atom and the phenolic oxygen O2 of a neighboring molecule at (x-y + 1/3, x - 1/3, -z + 2/3), generated by a translation along threefold screw axis (Fig. 2). This two-dimensional polymeric chain forms small hexagonal channels oriented along the c axis.The hexagonal channels are further stabilized by strongπ-π interactions between molecules related by inversion with the shortest C···C contacts being between C10 and C20ii (3.368 Å; symmetry operator ii = 1 - x, 1 - y, 1 - z).