organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Amino­phen­yl)-1,8-naphthalimide hemihydrate

aNew Materials and Functional Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: ffj2003@163169.net

(Received 25 October 2007; accepted 5 December 2007; online 12 December 2007)

The title compound, C18H12N2O2·0.5H2O, was prepared by the reaction of 1,4-phenyl­enediamine with 1,8-naphthalic anhydride in refluxing dimethyl­formamide. The structure is stabilized by N—H⋯O and O—H⋯O hydrogen bonds. There are ππ stacking inter­actions [centroid-centroid distances of 3.718 (2), 3.510 (2) and 3.546 (2) Å] and C—H⋯π inter­actions between the mol­ecules. The water molecule lies on a twofold rotation axis. Its two H atoms are disordered equally over two positions.

Related literature

For related literature, see: Ofir (2006[Ofir, Y. (2006). J. Mater. Chem. 16, 2142-2143.]); Cederfur et al. (2003[Cederfur, J., Pei, Y. X., Meng, Z. H. & Kempe, M. (2003). J. Comb. Chem. 5, 67-72.]); Lavin & Shimizu (2006[Lavin, J. M. & Shimizu, K. D. (2006). Org. Lett. 8, 2389-2392.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12N2O2·0.5H2O

  • Mr = 297.31

  • Orthorhombic, A b a 2

  • a = 22.926 (5) Å

  • b = 17.930 (4) Å

  • c = 6.836 (1) Å

  • V = 2810 (1) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 (2) K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 5656 measured reflections

  • 1359 independent reflections

  • 1308 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.164

  • S = 1.33

  • 1359 reflections

  • 204 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring C13–C18.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1Wi 0.86 2.19 3.046 (6) 172
N2—H2B⋯O1ii 0.86 2.24 3.099 (5) 178
O1W—H1W1⋯O1iii 0.85 2.30 2.800 (5) 118
O1W—H2W1⋯O1iv 0.85 2.12 2.800 (5) 136
C15—H15ACg1v 0.93 2.96 3.717 140
Symmetry codes: (i) [x, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x, y, z-1; (iv) -x+1, -y, z-1; (v) [-x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL/PC (Sheldrick, 1990[Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently combinatorial and high throughput stategies have emerged as efficient methods to prepare large numbers of potential receptors (Cederfur et al., 2003). Since the naphthyl group has the potential to be a good receptor (Lavin & Shimizu, 2006), we have studied 1,8-naphthalimide derivatives, such as the pure compound (I) described here.

In the title compound (Fig. 1), the bond lengths and angles in the 1,8-naphthalenedicarboximide group and benzene ring are normal (Ofir, 2006), including the two C?O bond lengths (Table 1). The dihedral angle formed by the benzene ring (C13—C18) and naphthalic ring (N1/C1—C12) is 72.5 (2)°.

The crystal packing is realised by N2—H2A···O1w, N2—H2B···O1, O1W—H11W···O1 and C7- H7A···O2 hydrogen bonds (Table 2 and Fig 2). C—H···π interactions exist between C15—H15A and Cg(1)i, the centroid of the benzene ring C13—C18 [symmetry code: (i) –X,1/2-Y,1/2+Z]. There are π-stacking interactions between the naphthylamide groups, with distances between ring centroids of 3.718 (2), 3.510 (2) and 3.546 (2) Å, for Cg(2)···Cg(3)ii, Cg(3)···Cg(2)iii and Cg(2)···Cg(4)ii, respectively [Cg(2) = C2—C6/C11, Cg(3) = C1—C2/N1/C10—C12, Cg(4)=C6—C11; symmetry codes: (ii) 1/2-X,Y,-1/2 + z; (iii) 1/2-X,Y,1/2 + z].

Related literature top

For related literature, see: Ofir (2006); Cederfur et al. (2003); Lavin & Shimizu (2006).

Experimental top

The title compound was obtained by reaction of 1,4-phenylenediamine (0.1 mol) with 1,8-naphthalic anhydride (0.1 mol) in refluxing DMF (50 ml) for 4 h. Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from a DMF solution at room temperature.

Refinement top

The two hydrogen atoms in the water molecule were found to be disordered, each with 50% site occupancies. H atoms were fixed geometrically and allowed to ride on their attached atoms, with N—H=0.86, O—H=0.85, C—H=0.93 Å, and with Uiso=1.2Ueq. In the absence of significant anomalous scattering effects Friedel pairs have been merged.

Structure description top

Recently combinatorial and high throughput stategies have emerged as efficient methods to prepare large numbers of potential receptors (Cederfur et al., 2003). Since the naphthyl group has the potential to be a good receptor (Lavin & Shimizu, 2006), we have studied 1,8-naphthalimide derivatives, such as the pure compound (I) described here.

In the title compound (Fig. 1), the bond lengths and angles in the 1,8-naphthalenedicarboximide group and benzene ring are normal (Ofir, 2006), including the two C?O bond lengths (Table 1). The dihedral angle formed by the benzene ring (C13—C18) and naphthalic ring (N1/C1—C12) is 72.5 (2)°.

The crystal packing is realised by N2—H2A···O1w, N2—H2B···O1, O1W—H11W···O1 and C7- H7A···O2 hydrogen bonds (Table 2 and Fig 2). C—H···π interactions exist between C15—H15A and Cg(1)i, the centroid of the benzene ring C13—C18 [symmetry code: (i) –X,1/2-Y,1/2+Z]. There are π-stacking interactions between the naphthylamide groups, with distances between ring centroids of 3.718 (2), 3.510 (2) and 3.546 (2) Å, for Cg(2)···Cg(3)ii, Cg(3)···Cg(2)iii and Cg(2)···Cg(4)ii, respectively [Cg(2) = C2—C6/C11, Cg(3) = C1—C2/N1/C10—C12, Cg(4)=C6—C11; symmetry codes: (ii) 1/2-X,Y,-1/2 + z; (iii) 1/2-X,Y,1/2 + z].

For related literature, see: Ofir (2006); Cederfur et al. (2003); Lavin & Shimizu (2006).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level. Only one of the disorder positions is shown for the water H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the c axis, showing one layer of molecules connected by N—H···O and O—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted.
N-(4-Aminophenyl)-1,8-naphthalimide hemihydrate top
Crystal data top
C18H12N2O2·0.5H2ODx = 1.406 Mg m3
Mr = 297.31Melting point: 286 K
Orthorhombic, Aba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A2 -2acCell parameters from 512 reflections
a = 22.926 (5) Åθ = 2–22°
b = 17.930 (4) ŵ = 0.10 mm1
c = 6.836 (1) ÅT = 295 K
V = 2810 (1) Å3Block, yellow
Z = 80.40 × 0.40 × 0.20 mm
F(000) = 1240
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.027
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.3°
Graphite monochromatorh = 2723
ω scansk = 2021
5656 measured reflectionsl = 87
1359 independent reflections3 standard reflections every 200 reflections
1308 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.33 w = 1/[σ2(Fo2) + (0.062P)2 + 2.2916P]
where P = (Fo2 + 2Fc2)/3
1359 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C18H12N2O2·0.5H2OV = 2810 (1) Å3
Mr = 297.31Z = 8
Orthorhombic, Aba2Mo Kα radiation
a = 22.926 (5) ŵ = 0.10 mm1
b = 17.930 (4) ÅT = 295 K
c = 6.836 (1) Å0.40 × 0.40 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.027
5656 measured reflections3 standard reflections every 200 reflections
1359 independent reflections intensity decay: none
1308 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0691 restraint
wR(F2) = 0.164H-atom parameters constrained
S = 1.33Δρmax = 0.24 e Å3
1359 reflectionsΔρmin = 0.21 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.42928 (16)0.07821 (19)0.8275 (7)0.0704 (12)
O20.27279 (15)0.22571 (18)0.9326 (8)0.0675 (12)
N10.35109 (17)0.15181 (19)0.8761 (6)0.0447 (10)
N20.4972 (2)0.3999 (3)0.9511 (11)0.095 (2)
H2A0.50020.43140.85660.115*
H2B0.51700.40641.05670.115*
C10.2903 (2)0.1646 (3)0.8953 (8)0.0502 (13)
C20.2527 (2)0.0997 (2)0.8651 (7)0.0481 (12)
C30.1932 (2)0.1090 (3)0.8646 (8)0.0609 (15)
H3A0.17720.15630.88000.073*
C40.1569 (3)0.0475 (4)0.8411 (10)0.080 (2)
H4A0.11670.05430.83940.096*
C50.1787 (3)0.0214 (4)0.8208 (10)0.080 (2)
H5A0.15330.06160.80900.096*
C60.2396 (3)0.0341 (3)0.8168 (9)0.0641 (16)
C70.2649 (4)0.1041 (3)0.7944 (10)0.082 (2)
H7A0.24090.14570.78390.099*
C80.3234 (4)0.1134 (3)0.7875 (11)0.083 (2)
H8A0.33910.16100.77320.100*
C90.3604 (3)0.0517 (3)0.8017 (9)0.0669 (16)
H9A0.40050.05810.79270.080*
C100.3376 (3)0.0183 (3)0.8289 (8)0.0538 (13)
C110.2765 (2)0.0281 (3)0.8369 (8)0.0509 (12)
C120.3765 (2)0.0826 (2)0.8410 (8)0.0512 (13)
C130.3889 (2)0.2158 (3)0.8965 (9)0.0522 (14)
C140.4212 (2)0.2260 (3)1.0623 (10)0.0602 (15)
H14A0.41900.19141.16320.072*
C150.4569 (3)0.2869 (3)1.0813 (11)0.0629 (15)
H15A0.47870.29321.19490.075*
C160.4609 (2)0.3390 (3)0.9330 (10)0.0577 (14)
C170.4289 (2)0.3279 (3)0.7643 (9)0.0565 (14)
H17A0.43190.36190.66190.068*
C180.3928 (2)0.2670 (3)0.7466 (9)0.0544 (14)
H18A0.37100.26030.63320.065*
O1W0.50000.00000.0917 (13)0.089 (2)
H1W10.48300.04210.09660.107*0.50
H2W10.52390.00120.00330.107*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.055 (2)0.063 (2)0.094 (3)0.0129 (17)0.011 (3)0.010 (2)
O20.067 (2)0.0447 (18)0.091 (3)0.0124 (16)0.001 (3)0.000 (2)
N10.053 (2)0.0357 (18)0.046 (2)0.0006 (16)0.004 (2)0.0032 (18)
N20.102 (4)0.079 (3)0.106 (5)0.039 (3)0.022 (4)0.011 (4)
C10.055 (3)0.045 (2)0.050 (3)0.009 (2)0.003 (3)0.005 (2)
C20.055 (3)0.055 (2)0.034 (3)0.004 (2)0.004 (2)0.010 (2)
C30.063 (3)0.078 (4)0.042 (3)0.004 (3)0.004 (3)0.009 (3)
C40.065 (4)0.116 (5)0.060 (4)0.028 (4)0.001 (3)0.021 (4)
C50.097 (5)0.087 (4)0.056 (4)0.044 (4)0.012 (4)0.018 (4)
C60.090 (5)0.059 (3)0.043 (3)0.027 (3)0.005 (3)0.013 (3)
C70.136 (7)0.052 (3)0.058 (4)0.030 (4)0.018 (4)0.013 (3)
C80.142 (7)0.042 (3)0.065 (4)0.002 (4)0.006 (5)0.001 (3)
C90.102 (4)0.047 (3)0.052 (4)0.008 (3)0.001 (3)0.001 (3)
C100.079 (4)0.037 (2)0.045 (3)0.003 (2)0.006 (3)0.011 (2)
C110.072 (3)0.048 (3)0.032 (2)0.007 (2)0.002 (3)0.008 (2)
C120.060 (3)0.043 (3)0.050 (3)0.010 (2)0.001 (3)0.007 (2)
C130.053 (3)0.038 (2)0.066 (4)0.004 (2)0.001 (3)0.004 (3)
C140.063 (3)0.055 (3)0.063 (4)0.002 (3)0.015 (3)0.012 (3)
C150.061 (3)0.058 (3)0.071 (4)0.006 (3)0.016 (3)0.003 (3)
C160.053 (3)0.045 (3)0.075 (4)0.007 (2)0.000 (3)0.007 (3)
C170.067 (3)0.039 (2)0.063 (4)0.003 (2)0.006 (3)0.012 (3)
C180.059 (3)0.044 (3)0.060 (4)0.000 (2)0.007 (3)0.001 (3)
O1W0.098 (5)0.093 (4)0.078 (4)0.028 (4)0.0000.000
Geometric parameters (Å, º) top
O1—C121.217 (6)C7—H7A0.9300
O2—C11.194 (6)C8—C91.397 (9)
N1—C121.391 (6)C8—H8A0.9300
N1—C11.419 (6)C9—C101.372 (7)
N1—C131.445 (6)C9—H9A0.9300
N2—C161.379 (6)C10—C111.413 (7)
N2—H2A0.8600C10—C121.461 (7)
N2—H2B0.8600C13—C141.366 (8)
C1—C21.462 (7)C13—C181.379 (7)
C2—C31.375 (8)C14—C151.371 (7)
C2—C111.408 (7)C14—H14A0.9300
C3—C41.391 (8)C15—C161.381 (8)
C3—H3A0.9300C15—H15A0.9300
C4—C51.340 (9)C16—C171.381 (8)
C4—H4A0.9300C17—C181.375 (7)
C5—C61.416 (9)C17—H17A0.9300
C5—H5A0.9300C18—H18A0.9300
C6—C71.391 (8)O1W—H1W10.8501
C6—C111.406 (6)O1W—H2W10.8501
C7—C81.353 (10)
C12—N1—C1124.8 (4)C10—C9—H9A119.9
C12—N1—C13118.3 (4)C8—C9—H9A119.9
C1—N1—C13116.9 (4)C9—C10—C11119.8 (5)
C16—N2—H2A120.0C9—C10—C12119.8 (5)
C16—N2—H2B120.0C11—C10—C12120.3 (4)
H2A—N2—H2B120.0C6—C11—C2120.3 (5)
O2—C1—N1119.8 (4)C6—C11—C10119.5 (5)
O2—C1—C2124.2 (5)C2—C11—C10120.2 (5)
N1—C1—C2115.9 (4)O1—C12—N1119.2 (4)
C3—C2—C11119.6 (5)O1—C12—C10123.5 (4)
C3—C2—C1119.2 (5)N1—C12—C10117.3 (4)
C11—C2—C1121.1 (5)C14—C13—C18119.5 (5)
C2—C3—C4119.9 (6)C14—C13—N1120.8 (5)
C2—C3—H3A120.1C18—C13—N1119.7 (5)
C4—C3—H3A120.1C13—C14—C15120.6 (6)
C5—C4—C3121.3 (6)C13—C14—H14A119.7
C5—C4—H4A119.4C15—C14—H14A119.7
C3—C4—H4A119.4C14—C15—C16120.5 (6)
C4—C5—C6121.2 (6)C14—C15—H15A119.7
C4—C5—H5A119.4C16—C15—H15A119.7
C6—C5—H5A119.4N2—C16—C17120.6 (6)
C7—C6—C11118.5 (6)N2—C16—C15120.6 (6)
C7—C6—C5123.9 (6)C17—C16—C15118.8 (5)
C11—C6—C5117.6 (5)C18—C17—C16120.4 (5)
C8—C7—C6121.9 (6)C18—C17—H17A119.8
C8—C7—H7A119.1C16—C17—H17A119.8
C6—C7—H7A119.1C17—C18—C13120.2 (5)
C7—C8—C9120.1 (6)C17—C18—H18A119.9
C7—C8—H8A120.0C13—C18—H18A119.9
C9—C8—H8A120.0H1W1—O1W—H2W1107.7
C10—C9—C8120.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1Wi0.862.193.046 (6)172
N2—H2B···O1ii0.862.243.099 (5)178
O1W—H1W1···O1iii0.852.302.800 (5)118
O1W—H2W1···O1iv0.852.122.800 (5)136
C15—H15A···Cg1v0.932.96140
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y, z1; (iv) x+1, y, z1; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H12N2O2·0.5H2O
Mr297.31
Crystal system, space groupOrthorhombic, Aba2
Temperature (K)295
a, b, c (Å)22.926 (5), 17.930 (4), 6.836 (1)
V3)2810 (1)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5656, 1359, 1308
Rint0.027
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.164, 1.33
No. of reflections1359
No. of parameters204
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1990), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
O1—C121.217 (6)O2—C11.194 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1Wi0.862.193.046 (6)171.5
N2—H2B···O1ii0.862.243.099 (5)178.4
O1W—H1W1···O1iii0.852.302.800 (5)117.6
O1W—H2W1···O1iv0.852.122.800 (5)136.4
C15—H15A···Cg1v0.932.96.139.88
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y, z1; (iv) x+1, y, z1; (v) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2005B04).

References

First citationCederfur, J., Pei, Y. X., Meng, Z. H. & Kempe, M. (2003). J. Comb. Chem. 5, 67–72.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLavin, J. M. & Shimizu, K. D. (2006). Org. Lett. 8, 2389–2392.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOfir, Y. (2006). J. Mater. Chem. 16, 2142–2143.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds