organic compounds
N-Benzoyl-N′,N′′-diphenylguanidinium chloride
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Faculty of Engineering, Gifu University Yanagido, Gifu 501-1193, Japan
*Correspondence e-mail: aminbadshah@yahoo.com
In the title compound, C20H18N3O+·Cl−, the orientation of the aromatic rings around the planar CN3+ unit produces As a consequence of this particular orientation of the guanidinium cation, hydrogen bonding is restricted to N—H⋯Cl and intramolecular N—H⋯O hydrogen bonds within the discrete unit. The guanidinium and carbonyl groups are coplanar as a result of the six-membered ring formed by the N—H⋯O intramolecular hydrogen bond. The dihedral angles between the guanidinium plane and the two phenyl rings are 62.31 (8) and 64.24 (8)°.
Related literature
For related structures, see: Said et al. (2006); Cunha et al. (2005). For related literature, see: Aldhaheri (1998); Cunha et al. (2002); Köhn et al. (2004); Moroni et al. (2001); Taniguchi et al. (1993); Yoshiizumi et al. (1998).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and TEXSAN.
Supporting information
https://doi.org/10.1107/S1600536807065166/ez2109sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807065166/ez2109Isup2.hkl
The guanidine was synthesized by a previously reported method (Cunha et al., 2002), from N-benzoyl-N'-phenylthiourea and aniline. 0.315 g (1 mmol) of synthesized guanidine was added to a mixture of 20 ml e thanol and 1 ml of 37% v/v HCl with constant stirring at 323 K for 30 min. The reaction mixture was concentrated by evaporating 50% of the solvent under reduced pressure, and block like X-ray quality crystals were obtained by slow evaporation at room temperature.
Hydrogen atoms bonded to C were included in calculated positions and refined as riding on their parent C atom with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms bonded to N were freely refined.
Guanidines are used in medicine as analgesic, antihypertensive, antibacterial, cancerostatic and cytotoxic agents (Taniguchi et al., 1993; Yoshiizumi et al., 1998; Moroni et al., 2001). They have potential applications in the fields of analytical and synthetic organic chemistry (Aldhaheri,1998; Köhn et al., 2004). The title compound (I), Fig. 1, is a typical N,N',N"-trisubstituted guanidinium halide salt with normal geometric parameters (Said et al., 2006). The C(1)—O(1) bond shows the expected full double bond character while the short values for the C(1)—N(1), C(2)—N(1), C(2)—N(2), and C(2)—N(3) bond lengths indicate partial double bond character (Table 1). The dihedral angles between the guanidinium plane (C(2)/N(1)/N(2)/N(3)) and the two phenyl ring planes formed by C(15)—C(20) & C(9)—C(14) are 62.31 (8)° & 64.24 (8)° respectively, and that between the guanidinium plane and the aroyl group is 20.17 (10)°. The guanidinium and carbonyl groups are almost coplanar, as reflected by the torsion angles O(1)—C(1)—N(1)—C(2) = -7.5 (3)°, N(2)—C(2)— N(1)—C(1) = -174.26 (17))°, N(3)—C(2)—N(1)—C(1) = 7.2 (3)° and C(3)— C(1)—N(1)—C(2) = 175.92 (16)° (Table 1), this is associated with the intramolecular N—H···O hydrogen bond (Table 2), forming the six-membered ring commonly observed in this class of compounds (Cunha et al., 2005).
For related structures, see: Said et al. (2006); Cunha et al. (2005). For related literature, see: Aldhaheri (1998); Cunha et al. (2002); Köhn et al. (2004); Moroni et al. (2001); Taniguchi et al. (1993); Yoshiizumi et al. (1998).
Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell
CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and TEXSAN.Fig. 1. Molecular structure of (I) showing atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown by dashed lines. |
C20H18N3O+·Cl− | Z = 2 |
Mr = 351.82 | F(000) = 368 |
Triclinic, P1 | Dx = 1.292 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71070 Å |
a = 8.586 (4) Å | Cell parameters from 2693 reflections |
b = 10.254 (5) Å | θ = 3.2–27.5° |
c = 10.966 (6) Å | µ = 0.22 mm−1 |
α = 70.193 (10)° | T = 296 K |
β = 88.612 (19)° | Block, colourless |
γ = 84.524 (18)° | 0.50 × 0.40 × 0.25 mm |
V = 904.2 (8) Å3 |
Rigaku/MSC Mercury CCD diffractometer | 4050 independent reflections |
Radiation source: fine-focus sealed tube | 3534 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 14.62 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
ω scans | h = −8→11 |
Absorption correction: integration (Higashi, 1999) | k = −13→8 |
Tmin = 0.653, Tmax = 0.803 | l = −14→14 |
7197 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.133 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0563P)2 + 0.2415P] where P = (Fo2 + 2Fc2)/3 |
4050 reflections | (Δ/σ)max < 0.001 |
238 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
C20H18N3O+·Cl− | γ = 84.524 (18)° |
Mr = 351.82 | V = 904.2 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.586 (4) Å | Mo Kα radiation |
b = 10.254 (5) Å | µ = 0.22 mm−1 |
c = 10.966 (6) Å | T = 296 K |
α = 70.193 (10)° | 0.50 × 0.40 × 0.25 mm |
β = 88.612 (19)° |
Rigaku/MSC Mercury CCD diffractometer | 4050 independent reflections |
Absorption correction: integration (Higashi, 1999) | 3534 reflections with I > 2σ(I) |
Tmin = 0.653, Tmax = 0.803 | Rint = 0.026 |
7197 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.133 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | Δρmax = 0.20 e Å−3 |
4050 reflections | Δρmin = −0.32 e Å−3 |
238 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.46455 (19) | 0.16051 (18) | 0.64865 (17) | 0.0414 (4) | |
O1 | 0.56362 (16) | 0.06102 (15) | 0.68532 (14) | 0.0638 (4) | |
C2 | 0.57534 (18) | 0.26054 (17) | 0.43234 (16) | 0.0373 (3) | |
N1 | 0.46189 (16) | 0.25511 (16) | 0.52470 (14) | 0.0393 (3) | |
H1 | 0.396 (3) | 0.328 (3) | 0.505 (2) | 0.061 (6)* | |
C3 | 0.33471 (18) | 0.18014 (18) | 0.73498 (16) | 0.0395 (4) | |
C4 | 0.1942 (2) | 0.2597 (2) | 0.69126 (18) | 0.0467 (4) | |
H4 | 0.1799 | 0.3114 | 0.6038 | 0.056* | |
C5 | 0.0754 (2) | 0.2616 (2) | 0.7787 (2) | 0.0584 (5) | |
H5 | −0.0194 | 0.3137 | 0.7493 | 0.070* | |
C6 | 0.0966 (3) | 0.1873 (3) | 0.9083 (2) | 0.0649 (6) | |
H6 | 0.0164 | 0.1895 | 0.9663 | 0.078* | |
C7 | 0.2365 (3) | 0.1096 (3) | 0.9525 (2) | 0.0705 (7) | |
H7 | 0.2516 | 0.0606 | 1.0404 | 0.085* | |
C8 | 0.3544 (2) | 0.1046 (2) | 0.86592 (19) | 0.0581 (5) | |
H8 | 0.4477 | 0.0501 | 0.8956 | 0.070* | |
N2 | 0.55540 (18) | 0.36772 (16) | 0.32355 (14) | 0.0440 (4) | |
H2 | 0.487 (3) | 0.434 (3) | 0.327 (2) | 0.058 (6)* | |
C9 | 0.62383 (19) | 0.37844 (19) | 0.20058 (16) | 0.0409 (4) | |
C10 | 0.6906 (3) | 0.4978 (2) | 0.1331 (2) | 0.0624 (6) | |
H10 | 0.6949 | 0.5679 | 0.1685 | 0.075* | |
C11 | 0.7517 (4) | 0.5130 (3) | 0.0115 (2) | 0.0777 (7) | |
H11 | 0.7984 | 0.5934 | −0.0344 | 0.093* | |
C12 | 0.7439 (3) | 0.4111 (3) | −0.0417 (2) | 0.0725 (7) | |
H12 | 0.7847 | 0.4221 | −0.1235 | 0.087* | |
C13 | 0.6759 (3) | 0.2927 (3) | 0.0261 (2) | 0.0696 (6) | |
H13 | 0.6708 | 0.2233 | −0.0101 | 0.084* | |
C14 | 0.6142 (2) | 0.2750 (2) | 0.1486 (2) | 0.0557 (5) | |
H14 | 0.5675 | 0.1947 | 0.1943 | 0.067* | |
N3 | 0.69145 (16) | 0.16005 (16) | 0.45603 (16) | 0.0432 (3) | |
H3 | 0.683 (3) | 0.100 (3) | 0.530 (2) | 0.065 (7)* | |
C15 | 0.84141 (18) | 0.17037 (17) | 0.39319 (15) | 0.0362 (3) | |
C16 | 0.9279 (2) | 0.27925 (19) | 0.38423 (18) | 0.0447 (4) | |
H16 | 0.8881 | 0.3502 | 0.4143 | 0.054* | |
C17 | 1.0751 (2) | 0.2818 (2) | 0.3298 (2) | 0.0543 (5) | |
H17 | 1.1341 | 0.3557 | 0.3221 | 0.065* | |
C18 | 1.1351 (2) | 0.1753 (2) | 0.28699 (19) | 0.0545 (5) | |
H18 | 1.2342 | 0.1776 | 0.2506 | 0.065* | |
C19 | 1.0488 (2) | 0.0662 (2) | 0.2980 (2) | 0.0538 (5) | |
H19 | 1.0896 | −0.0057 | 0.2695 | 0.065* | |
C20 | 0.9007 (2) | 0.0627 (2) | 0.35154 (19) | 0.0472 (4) | |
H20 | 0.8418 | −0.0112 | 0.3593 | 0.057* | |
Cl1 | 0.28841 (5) | 0.55341 (5) | 0.39536 (5) | 0.05030 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0359 (8) | 0.0424 (9) | 0.0417 (9) | 0.0028 (7) | 0.0055 (7) | −0.0107 (7) |
O1 | 0.0547 (8) | 0.0564 (8) | 0.0563 (8) | 0.0208 (6) | 0.0188 (6) | 0.0039 (7) |
C2 | 0.0352 (8) | 0.0393 (8) | 0.0386 (8) | 0.0002 (6) | 0.0047 (6) | −0.0161 (7) |
N1 | 0.0340 (7) | 0.0416 (8) | 0.0395 (7) | 0.0050 (6) | 0.0055 (5) | −0.0125 (6) |
C3 | 0.0341 (8) | 0.0440 (9) | 0.0396 (9) | 0.0005 (6) | 0.0047 (6) | −0.0144 (7) |
C4 | 0.0396 (9) | 0.0544 (11) | 0.0423 (9) | 0.0060 (7) | 0.0012 (7) | −0.0144 (8) |
C5 | 0.0384 (9) | 0.0706 (14) | 0.0621 (13) | 0.0097 (9) | 0.0065 (8) | −0.0213 (11) |
C6 | 0.0529 (11) | 0.0769 (15) | 0.0576 (12) | 0.0057 (10) | 0.0225 (10) | −0.0179 (11) |
C7 | 0.0669 (13) | 0.0857 (17) | 0.0422 (11) | 0.0154 (12) | 0.0141 (9) | −0.0065 (11) |
C8 | 0.0480 (10) | 0.0712 (13) | 0.0422 (10) | 0.0151 (9) | 0.0035 (8) | −0.0078 (9) |
N2 | 0.0470 (8) | 0.0434 (8) | 0.0373 (8) | 0.0104 (6) | 0.0062 (6) | −0.0124 (6) |
C9 | 0.0390 (8) | 0.0474 (9) | 0.0326 (8) | 0.0079 (7) | 0.0002 (6) | −0.0119 (7) |
C10 | 0.0884 (16) | 0.0496 (11) | 0.0458 (11) | −0.0048 (10) | 0.0140 (10) | −0.0131 (9) |
C11 | 0.1051 (19) | 0.0655 (15) | 0.0467 (12) | −0.0023 (13) | 0.0217 (12) | −0.0014 (11) |
C12 | 0.0776 (15) | 0.0892 (18) | 0.0357 (10) | 0.0264 (13) | 0.0086 (10) | −0.0114 (11) |
C13 | 0.0798 (15) | 0.0849 (17) | 0.0535 (13) | 0.0119 (13) | −0.0008 (11) | −0.0407 (13) |
C14 | 0.0594 (12) | 0.0614 (12) | 0.0509 (11) | −0.0040 (9) | 0.0045 (9) | −0.0257 (10) |
N3 | 0.0373 (7) | 0.0417 (8) | 0.0443 (8) | 0.0049 (6) | 0.0100 (6) | −0.0092 (7) |
C15 | 0.0327 (7) | 0.0409 (8) | 0.0334 (8) | 0.0041 (6) | 0.0033 (6) | −0.0128 (6) |
C16 | 0.0467 (9) | 0.0414 (9) | 0.0474 (10) | 0.0012 (7) | 0.0027 (7) | −0.0184 (8) |
C17 | 0.0442 (10) | 0.0547 (11) | 0.0598 (12) | −0.0093 (8) | 0.0040 (8) | −0.0129 (9) |
C18 | 0.0374 (9) | 0.0683 (13) | 0.0482 (11) | 0.0048 (8) | 0.0098 (8) | −0.0103 (9) |
C19 | 0.0481 (10) | 0.0619 (12) | 0.0534 (11) | 0.0141 (9) | 0.0065 (8) | −0.0275 (10) |
C20 | 0.0436 (9) | 0.0475 (10) | 0.0559 (11) | 0.0013 (7) | 0.0023 (8) | −0.0262 (9) |
Cl1 | 0.0488 (3) | 0.0513 (3) | 0.0533 (3) | 0.01300 (19) | −0.00668 (19) | −0.0253 (2) |
C1—O1 | 1.224 (2) | C10—C11 | 1.385 (3) |
C1—N1 | 1.376 (2) | C10—H10 | 0.9300 |
C1—C3 | 1.488 (2) | C11—C12 | 1.365 (4) |
C2—N2 | 1.321 (2) | C11—H11 | 0.9300 |
C2—N3 | 1.326 (2) | C12—C13 | 1.367 (4) |
C2—N1 | 1.379 (2) | C12—H12 | 0.9300 |
N1—H1 | 0.86 (2) | C13—C14 | 1.392 (3) |
C3—C8 | 1.387 (3) | C13—H13 | 0.9300 |
C3—C4 | 1.387 (2) | C14—H14 | 0.9300 |
C4—C5 | 1.386 (3) | N3—C15 | 1.441 (2) |
C4—H4 | 0.9300 | N3—H3 | 0.84 (3) |
C5—C6 | 1.373 (3) | C15—C16 | 1.374 (3) |
C5—H5 | 0.9300 | C15—C20 | 1.381 (2) |
C6—C7 | 1.377 (3) | C16—C17 | 1.383 (3) |
C6—H6 | 0.9300 | C16—H16 | 0.9300 |
C7—C8 | 1.380 (3) | C17—C18 | 1.381 (3) |
C7—H7 | 0.9300 | C17—H17 | 0.9300 |
C8—H8 | 0.9300 | C18—C19 | 1.371 (3) |
N2—C9 | 1.432 (2) | C18—H18 | 0.9300 |
N2—H2 | 0.86 (2) | C19—C20 | 1.386 (3) |
C9—C10 | 1.369 (3) | C19—H19 | 0.9300 |
C9—C14 | 1.374 (3) | C20—H20 | 0.9300 |
O1—C1—N1 | 122.33 (15) | C11—C10—H10 | 120.3 |
O1—C1—C3 | 121.03 (16) | C12—C11—C10 | 120.6 (2) |
N1—C1—C3 | 116.55 (14) | C12—C11—H11 | 119.7 |
N2—C2—N3 | 125.14 (15) | C10—C11—H11 | 119.7 |
N2—C2—N1 | 115.35 (14) | C11—C12—C13 | 119.7 (2) |
N3—C2—N1 | 119.49 (15) | C11—C12—H12 | 120.2 |
C1—N1—C2 | 125.74 (14) | C13—C12—H12 | 120.2 |
C1—N1—H1 | 119.5 (15) | C12—C13—C14 | 120.7 (2) |
C2—N1—H1 | 113.5 (15) | C12—C13—H13 | 119.6 |
C8—C3—C4 | 119.34 (16) | C14—C13—H13 | 119.6 |
C8—C3—C1 | 116.33 (15) | C9—C14—C13 | 118.7 (2) |
C4—C3—C1 | 124.15 (16) | C9—C14—H14 | 120.7 |
C5—C4—C3 | 119.63 (18) | C13—C14—H14 | 120.7 |
C5—C4—H4 | 120.2 | C2—N3—C15 | 125.89 (15) |
C3—C4—H4 | 120.2 | C2—N3—H3 | 111.2 (17) |
C6—C5—C4 | 120.55 (18) | C15—N3—H3 | 119.3 (17) |
C6—C5—H5 | 119.7 | C16—C15—C20 | 121.04 (16) |
C4—C5—H5 | 119.7 | C16—C15—N3 | 120.56 (15) |
C5—C6—C7 | 120.06 (18) | C20—C15—N3 | 118.21 (16) |
C5—C6—H6 | 120.0 | C15—C16—C17 | 119.03 (17) |
C7—C6—H6 | 120.0 | C15—C16—H16 | 120.5 |
C6—C7—C8 | 119.8 (2) | C17—C16—H16 | 120.5 |
C6—C7—H7 | 120.1 | C18—C17—C16 | 120.43 (19) |
C8—C7—H7 | 120.1 | C18—C17—H17 | 119.8 |
C7—C8—C3 | 120.55 (19) | C16—C17—H17 | 119.8 |
C7—C8—H8 | 119.7 | C19—C18—C17 | 120.10 (17) |
C3—C8—H8 | 119.7 | C19—C18—H18 | 120.0 |
C2—N2—C9 | 126.71 (15) | C17—C18—H18 | 120.0 |
C2—N2—H2 | 115.2 (15) | C18—C19—C20 | 120.09 (18) |
C9—N2—H2 | 117.8 (15) | C18—C19—H19 | 120.0 |
C10—C9—C14 | 120.97 (18) | C20—C19—H19 | 120.0 |
C10—C9—N2 | 118.28 (17) | C15—C20—C19 | 119.30 (18) |
C14—C9—N2 | 120.63 (17) | C15—C20—H20 | 120.3 |
C9—C10—C11 | 119.3 (2) | C19—C20—H20 | 120.3 |
C9—C10—H10 | 120.3 | ||
O1—C1—N1—C2 | −7.5 (3) | C14—C9—C10—C11 | −1.1 (3) |
C3—C1—N1—C2 | 175.92 (16) | N2—C9—C10—C11 | −177.3 (2) |
N2—C2—N1—C1 | −174.26 (17) | C9—C10—C11—C12 | 0.8 (4) |
N3—C2—N1—C1 | 7.2 (3) | C10—C11—C12—C13 | −0.3 (4) |
O1—C1—C3—C8 | 16.6 (3) | C11—C12—C13—C14 | 0.1 (4) |
N1—C1—C3—C8 | −166.76 (18) | C10—C9—C14—C13 | 0.9 (3) |
O1—C1—C3—C4 | −158.4 (2) | N2—C9—C14—C13 | 176.99 (18) |
N1—C1—C3—C4 | 18.2 (3) | C12—C13—C14—C9 | −0.4 (3) |
C8—C3—C4—C5 | −0.5 (3) | N2—C2—N3—C15 | 23.2 (3) |
C1—C3—C4—C5 | 174.43 (19) | N1—C2—N3—C15 | −158.45 (16) |
C3—C4—C5—C6 | 1.0 (3) | C2—N3—C15—C16 | 50.4 (3) |
C4—C5—C6—C7 | −0.2 (4) | C2—N3—C15—C20 | −134.56 (19) |
C5—C6—C7—C8 | −1.2 (4) | C20—C15—C16—C17 | 1.5 (3) |
C6—C7—C8—C3 | 1.7 (4) | N3—C15—C16—C17 | 176.39 (17) |
C4—C3—C8—C7 | −0.9 (3) | C15—C16—C17—C18 | −1.0 (3) |
C1—C3—C8—C7 | −176.2 (2) | C16—C17—C18—C19 | 0.1 (3) |
N3—C2—N2—C9 | 18.6 (3) | C17—C18—C19—C20 | 0.4 (3) |
N1—C2—N2—C9 | −159.87 (16) | C16—C15—C20—C19 | −1.0 (3) |
C2—N2—C9—C10 | −133.2 (2) | N3—C15—C20—C19 | −176.09 (17) |
C2—N2—C9—C14 | 50.6 (3) | C18—C19—C20—C15 | 0.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1 | 0.86 (2) | 2.32 (3) | 3.143 (2) | 159 (2) |
N2—H2···Cl1 | 0.86 (2) | 2.27 (2) | 3.0977 (18) | 162 (2) |
N3—H3···O1 | 0.84 (3) | 1.91 (3) | 2.628 (2) | 143 (2) |
Experimental details
Crystal data | |
Chemical formula | C20H18N3O+·Cl− |
Mr | 351.82 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 8.586 (4), 10.254 (5), 10.966 (6) |
α, β, γ (°) | 70.193 (10), 88.612 (19), 84.524 (18) |
V (Å3) | 904.2 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.22 |
Crystal size (mm) | 0.50 × 0.40 × 0.25 |
Data collection | |
Diffractometer | Rigaku/MSC Mercury CCD |
Absorption correction | Integration (Higashi, 1999) |
Tmin, Tmax | 0.653, 0.803 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7197, 4050, 3534 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.133, 1.13 |
No. of reflections | 4050 |
No. of parameters | 238 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.20, −0.32 |
Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), CrystalClear, TEXSAN (Molecular Structure Corporation & Rigaku, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97 and TEXSAN.
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1 | 0.86 (2) | 2.32 (3) | 3.143 (2) | 159 (2) |
N2—H2···Cl1 | 0.86 (2) | 2.27 (2) | 3.0977 (18) | 162 (2) |
N3—H3···O1 | 0.84 (3) | 1.91 (3) | 2.628 (2) | 143 (2) |
Acknowledgements
The authors are grateful to the HEC Pakistan for financial support of this research project.
References
Aldhaheri, S. M. (1998). Talanta, 46, 1613–1618. Web of Science CrossRef PubMed CAS Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cunha, S., De Lima, B. R. & De Souza, A. R. (2002). Tetrahedron Lett. 43, 49–52. Web of Science CrossRef CAS Google Scholar
Cunha, S., Rodrigues, M. T., da Silva, C. C., Napolitano, H. B., Vencato, I. & Lariucci, C. (2005). Tetrahedron, 61, 10536–10540. Web of Science CSD CrossRef CAS Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Köhn, U., Günther, W., Görls, H. & Anders, E. (2004). Tetrahedron Asymmetry, 15, 1419–1426. Google Scholar
Molecular Structure Corporation & Rigaku (2001). Crystal Clear. Version 1.3. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Molecular Structure Corporation & Rigaku (2004). TEXSAN. Version 2.0. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Moroni, M., Koksch, B., Osipov, S. N., Crucianelli, M., Frigerio, M., Bravo, P. & Burger, K. (2001). J. Org. Chem. 66, 130–133. Web of Science CrossRef PubMed CAS Google Scholar
Said, F. F., Bazinet, P., Ong, T.-G., Yap, G. P. A. & Richeson, D. S. (2006). Cryst. Growth Des. 6, 258–266. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Taniguchi, K., Shigenaga, S., Ogahara, T., Fujitsu, T. & Matsuo, M. (1993). Chem. Pharm. Bull. 41, 301–309. CrossRef CAS PubMed Web of Science Google Scholar
Yoshiizumi, K., Seko, N., Nishimura, N., Ikeda, S., Yoshino, K., Kondo, H. & Tanizawa, K. (1998). Bioorg. Med. Chem. Lett. 8, 3397–3402. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Guanidines are used in medicine as analgesic, antihypertensive, antibacterial, cancerostatic and cytotoxic agents (Taniguchi et al., 1993; Yoshiizumi et al., 1998; Moroni et al., 2001). They have potential applications in the fields of analytical and synthetic organic chemistry (Aldhaheri,1998; Köhn et al., 2004). The title compound (I), Fig. 1, is a typical N,N',N"-trisubstituted guanidinium halide salt with normal geometric parameters (Said et al., 2006). The C(1)—O(1) bond shows the expected full double bond character while the short values for the C(1)—N(1), C(2)—N(1), C(2)—N(2), and C(2)—N(3) bond lengths indicate partial double bond character (Table 1). The dihedral angles between the guanidinium plane (C(2)/N(1)/N(2)/N(3)) and the two phenyl ring planes formed by C(15)—C(20) & C(9)—C(14) are 62.31 (8)° & 64.24 (8)° respectively, and that between the guanidinium plane and the aroyl group is 20.17 (10)°. The guanidinium and carbonyl groups are almost coplanar, as reflected by the torsion angles O(1)—C(1)—N(1)—C(2) = -7.5 (3)°, N(2)—C(2)— N(1)—C(1) = -174.26 (17))°, N(3)—C(2)—N(1)—C(1) = 7.2 (3)° and C(3)— C(1)—N(1)—C(2) = 175.92 (16)° (Table 1), this is associated with the intramolecular N—H···O hydrogen bond (Table 2), forming the six-membered ring commonly observed in this class of compounds (Cunha et al., 2005).