organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzoyl-N′,N′′-di­phenyl­guanidinium chloride

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Faculty of Engineering, Gifu University Yanagido, Gifu 501-1193, Japan
*Correspondence e-mail: aminbadshah@yahoo.com

(Received 29 October 2007; accepted 2 December 2007; online 21 December 2007)

In the title compound, C20H18N3O+·Cl, the orientation of the aromatic rings around the planar CN3+ unit produces steric hindrance. As a consequence of this particular orientation of the guanidinium cation, hydrogen bonding is restricted to N—H⋯Cl and intra­molecular N—H⋯O hydrogen bonds within the discrete unit. The guanidinium and carbonyl groups are coplanar as a result of the six-membered ring formed by the N—H⋯O intra­molecular hydrogen bond. The dihedral angles between the guanidinium plane and the two phenyl rings are 62.31 (8) and 64.24 (8)°.

Related literature

For related structures, see: Said et al. (2006[Said, F. F., Bazinet, P., Ong, T.-G., Yap, G. P. A. & Richeson, D. S. (2006). Cryst. Growth Des. 6, 258-266.]); Cunha et al. (2005[Cunha, S., Rodrigues, M. T., da Silva, C. C., Napolitano, H. B., Vencato, I. & Lariucci, C. (2005). Tetrahedron, 61, 10536-10540.]). For related literature, see: Aldhaheri (1998[Aldhaheri, S. M. (1998). Talanta, 46, 1613-1618.]); Cunha et al. (2002[Cunha, S., De Lima, B. R. & De Souza, A. R. (2002). Tetrahedron Lett. 43, 49-52.]); Köhn et al. (2004[Köhn, U., Günther, W., Görls, H. & Anders, E. (2004). Tetrahedron Asymmetry, 15, 1419-1426.]); Moroni et al. (2001[Moroni, M., Koksch, B., Osipov, S. N., Crucianelli, M., Frigerio, M., Bravo, P. & Burger, K. (2001). J. Org. Chem. 66, 130-133.]); Taniguchi et al. (1993[Taniguchi, K., Shigenaga, S., Ogahara, T., Fujitsu, T. & Matsuo, M. (1993). Chem. Pharm. Bull. 41, 301-309.]); Yoshiizumi et al. (1998[Yoshiizumi, K., Seko, N., Nishimura, N., Ikeda, S., Yoshino, K., Kondo, H. & Tanizawa, K. (1998). Bioorg. Med. Chem. Lett. 8, 3397-3402.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N3O+·Cl

  • Mr = 351.82

  • Triclinic, [P \overline 1]

  • a = 8.586 (4) Å

  • b = 10.254 (5) Å

  • c = 10.966 (6) Å

  • α = 70.193 (10)°

  • β = 88.612 (19)°

  • γ = 84.524 (18)°

  • V = 904.2 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 (2) K

  • 0.50 × 0.40 × 0.25 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: integration (Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.653, Tmax = 0.803

  • 7197 measured reflections

  • 4050 independent reflections

  • 3534 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.133

  • S = 1.13

  • 4050 reflections

  • 238 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.86 (2) 2.32 (3) 3.143 (2) 159 (2)
N2—H2⋯Cl1 0.86 (2) 2.27 (2) 3.0977 (18) 162 (2)
N3—H3⋯O1 0.84 (3) 1.91 (3) 2.628 (2) 143 (2)

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001[Molecular Structure Corporation & Rigaku (2001). Crystal Clear. Version 1.3. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004[Molecular Structure Corporation & Rigaku (2004). TEXSAN. Version 2.0. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and TEXSAN.

Supporting information


Comment top

Guanidines are used in medicine as analgesic, antihypertensive, antibacterial, cancerostatic and cytotoxic agents (Taniguchi et al., 1993; Yoshiizumi et al., 1998; Moroni et al., 2001). They have potential applications in the fields of analytical and synthetic organic chemistry (Aldhaheri,1998; Köhn et al., 2004). The title compound (I), Fig. 1, is a typical N,N',N"-trisubstituted guanidinium halide salt with normal geometric parameters (Said et al., 2006). The C(1)—O(1) bond shows the expected full double bond character while the short values for the C(1)—N(1), C(2)—N(1), C(2)—N(2), and C(2)—N(3) bond lengths indicate partial double bond character (Table 1). The dihedral angles between the guanidinium plane (C(2)/N(1)/N(2)/N(3)) and the two phenyl ring planes formed by C(15)—C(20) & C(9)—C(14) are 62.31 (8)° & 64.24 (8)° respectively, and that between the guanidinium plane and the aroyl group is 20.17 (10)°. The guanidinium and carbonyl groups are almost coplanar, as reflected by the torsion angles O(1)—C(1)—N(1)—C(2) = -7.5 (3)°, N(2)—C(2)— N(1)—C(1) = -174.26 (17))°, N(3)—C(2)—N(1)—C(1) = 7.2 (3)° and C(3)— C(1)—N(1)—C(2) = 175.92 (16)° (Table 1), this is associated with the intramolecular N—H···O hydrogen bond (Table 2), forming the six-membered ring commonly observed in this class of compounds (Cunha et al., 2005).

Related literature top

For related structures, see: Said et al. (2006); Cunha et al. (2005). For related literature, see: Aldhaheri (1998); Cunha et al. (2002); Köhn et al. (2004); Moroni et al. (2001); Taniguchi et al. (1993); Yoshiizumi et al. (1998).

Experimental top

The guanidine was synthesized by a previously reported method (Cunha et al., 2002), from N-benzoyl-N'-phenylthiourea and aniline. 0.315 g (1 mmol) of synthesized guanidine was added to a mixture of 20 ml e thanol and 1 ml of 37% v/v HCl with constant stirring at 323 K for 30 min. The reaction mixture was concentrated by evaporating 50% of the solvent under reduced pressure, and block like X-ray quality crystals were obtained by slow evaporation at room temperature.

Refinement top

Hydrogen atoms bonded to C were included in calculated positions and refined as riding on their parent C atom with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms bonded to N were freely refined.

Structure description top

Guanidines are used in medicine as analgesic, antihypertensive, antibacterial, cancerostatic and cytotoxic agents (Taniguchi et al., 1993; Yoshiizumi et al., 1998; Moroni et al., 2001). They have potential applications in the fields of analytical and synthetic organic chemistry (Aldhaheri,1998; Köhn et al., 2004). The title compound (I), Fig. 1, is a typical N,N',N"-trisubstituted guanidinium halide salt with normal geometric parameters (Said et al., 2006). The C(1)—O(1) bond shows the expected full double bond character while the short values for the C(1)—N(1), C(2)—N(1), C(2)—N(2), and C(2)—N(3) bond lengths indicate partial double bond character (Table 1). The dihedral angles between the guanidinium plane (C(2)/N(1)/N(2)/N(3)) and the two phenyl ring planes formed by C(15)—C(20) & C(9)—C(14) are 62.31 (8)° & 64.24 (8)° respectively, and that between the guanidinium plane and the aroyl group is 20.17 (10)°. The guanidinium and carbonyl groups are almost coplanar, as reflected by the torsion angles O(1)—C(1)—N(1)—C(2) = -7.5 (3)°, N(2)—C(2)— N(1)—C(1) = -174.26 (17))°, N(3)—C(2)—N(1)—C(1) = 7.2 (3)° and C(3)— C(1)—N(1)—C(2) = 175.92 (16)° (Table 1), this is associated with the intramolecular N—H···O hydrogen bond (Table 2), forming the six-membered ring commonly observed in this class of compounds (Cunha et al., 2005).

For related structures, see: Said et al. (2006); Cunha et al. (2005). For related literature, see: Aldhaheri (1998); Cunha et al. (2002); Köhn et al. (2004); Moroni et al. (2001); Taniguchi et al. (1993); Yoshiizumi et al. (1998).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and TEXSAN.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown by dashed lines.
N-Benzoyl-N',N''-diphenylguanidinium chloride top
Crystal data top
C20H18N3O+·ClZ = 2
Mr = 351.82F(000) = 368
Triclinic, P1Dx = 1.292 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 8.586 (4) ÅCell parameters from 2693 reflections
b = 10.254 (5) Åθ = 3.2–27.5°
c = 10.966 (6) ŵ = 0.22 mm1
α = 70.193 (10)°T = 296 K
β = 88.612 (19)°Block, colourless
γ = 84.524 (18)°0.50 × 0.40 × 0.25 mm
V = 904.2 (8) Å3
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
4050 independent reflections
Radiation source: fine-focus sealed tube3534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 14.62 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 811
Absorption correction: integration
(Higashi, 1999)
k = 138
Tmin = 0.653, Tmax = 0.803l = 1414
7197 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.2415P]
where P = (Fo2 + 2Fc2)/3
4050 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C20H18N3O+·Clγ = 84.524 (18)°
Mr = 351.82V = 904.2 (8) Å3
Triclinic, P1Z = 2
a = 8.586 (4) ÅMo Kα radiation
b = 10.254 (5) ŵ = 0.22 mm1
c = 10.966 (6) ÅT = 296 K
α = 70.193 (10)°0.50 × 0.40 × 0.25 mm
β = 88.612 (19)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
4050 independent reflections
Absorption correction: integration
(Higashi, 1999)
3534 reflections with I > 2σ(I)
Tmin = 0.653, Tmax = 0.803Rint = 0.026
7197 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.20 e Å3
4050 reflectionsΔρmin = 0.32 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.46455 (19)0.16051 (18)0.64865 (17)0.0414 (4)
O10.56362 (16)0.06102 (15)0.68532 (14)0.0638 (4)
C20.57534 (18)0.26054 (17)0.43234 (16)0.0373 (3)
N10.46189 (16)0.25511 (16)0.52470 (14)0.0393 (3)
H10.396 (3)0.328 (3)0.505 (2)0.061 (6)*
C30.33471 (18)0.18014 (18)0.73498 (16)0.0395 (4)
C40.1942 (2)0.2597 (2)0.69126 (18)0.0467 (4)
H40.17990.31140.60380.056*
C50.0754 (2)0.2616 (2)0.7787 (2)0.0584 (5)
H50.01940.31370.74930.070*
C60.0966 (3)0.1873 (3)0.9083 (2)0.0649 (6)
H60.01640.18950.96630.078*
C70.2365 (3)0.1096 (3)0.9525 (2)0.0705 (7)
H70.25160.06061.04040.085*
C80.3544 (2)0.1046 (2)0.86592 (19)0.0581 (5)
H80.44770.05010.89560.070*
N20.55540 (18)0.36772 (16)0.32355 (14)0.0440 (4)
H20.487 (3)0.434 (3)0.327 (2)0.058 (6)*
C90.62383 (19)0.37844 (19)0.20058 (16)0.0409 (4)
C100.6906 (3)0.4978 (2)0.1331 (2)0.0624 (6)
H100.69490.56790.16850.075*
C110.7517 (4)0.5130 (3)0.0115 (2)0.0777 (7)
H110.79840.59340.03440.093*
C120.7439 (3)0.4111 (3)0.0417 (2)0.0725 (7)
H120.78470.42210.12350.087*
C130.6759 (3)0.2927 (3)0.0261 (2)0.0696 (6)
H130.67080.22330.01010.084*
C140.6142 (2)0.2750 (2)0.1486 (2)0.0557 (5)
H140.56750.19470.19430.067*
N30.69145 (16)0.16005 (16)0.45603 (16)0.0432 (3)
H30.683 (3)0.100 (3)0.530 (2)0.065 (7)*
C150.84141 (18)0.17037 (17)0.39319 (15)0.0362 (3)
C160.9279 (2)0.27925 (19)0.38423 (18)0.0447 (4)
H160.88810.35020.41430.054*
C171.0751 (2)0.2818 (2)0.3298 (2)0.0543 (5)
H171.13410.35570.32210.065*
C181.1351 (2)0.1753 (2)0.28699 (19)0.0545 (5)
H181.23420.17760.25060.065*
C191.0488 (2)0.0662 (2)0.2980 (2)0.0538 (5)
H191.08960.00570.26950.065*
C200.9007 (2)0.0627 (2)0.35154 (19)0.0472 (4)
H200.84180.01120.35930.057*
Cl10.28841 (5)0.55341 (5)0.39536 (5)0.05030 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0359 (8)0.0424 (9)0.0417 (9)0.0028 (7)0.0055 (7)0.0107 (7)
O10.0547 (8)0.0564 (8)0.0563 (8)0.0208 (6)0.0188 (6)0.0039 (7)
C20.0352 (8)0.0393 (8)0.0386 (8)0.0002 (6)0.0047 (6)0.0161 (7)
N10.0340 (7)0.0416 (8)0.0395 (7)0.0050 (6)0.0055 (5)0.0125 (6)
C30.0341 (8)0.0440 (9)0.0396 (9)0.0005 (6)0.0047 (6)0.0144 (7)
C40.0396 (9)0.0544 (11)0.0423 (9)0.0060 (7)0.0012 (7)0.0144 (8)
C50.0384 (9)0.0706 (14)0.0621 (13)0.0097 (9)0.0065 (8)0.0213 (11)
C60.0529 (11)0.0769 (15)0.0576 (12)0.0057 (10)0.0225 (10)0.0179 (11)
C70.0669 (13)0.0857 (17)0.0422 (11)0.0154 (12)0.0141 (9)0.0065 (11)
C80.0480 (10)0.0712 (13)0.0422 (10)0.0151 (9)0.0035 (8)0.0078 (9)
N20.0470 (8)0.0434 (8)0.0373 (8)0.0104 (6)0.0062 (6)0.0124 (6)
C90.0390 (8)0.0474 (9)0.0326 (8)0.0079 (7)0.0002 (6)0.0119 (7)
C100.0884 (16)0.0496 (11)0.0458 (11)0.0048 (10)0.0140 (10)0.0131 (9)
C110.1051 (19)0.0655 (15)0.0467 (12)0.0023 (13)0.0217 (12)0.0014 (11)
C120.0776 (15)0.0892 (18)0.0357 (10)0.0264 (13)0.0086 (10)0.0114 (11)
C130.0798 (15)0.0849 (17)0.0535 (13)0.0119 (13)0.0008 (11)0.0407 (13)
C140.0594 (12)0.0614 (12)0.0509 (11)0.0040 (9)0.0045 (9)0.0257 (10)
N30.0373 (7)0.0417 (8)0.0443 (8)0.0049 (6)0.0100 (6)0.0092 (7)
C150.0327 (7)0.0409 (8)0.0334 (8)0.0041 (6)0.0033 (6)0.0128 (6)
C160.0467 (9)0.0414 (9)0.0474 (10)0.0012 (7)0.0027 (7)0.0184 (8)
C170.0442 (10)0.0547 (11)0.0598 (12)0.0093 (8)0.0040 (8)0.0129 (9)
C180.0374 (9)0.0683 (13)0.0482 (11)0.0048 (8)0.0098 (8)0.0103 (9)
C190.0481 (10)0.0619 (12)0.0534 (11)0.0141 (9)0.0065 (8)0.0275 (10)
C200.0436 (9)0.0475 (10)0.0559 (11)0.0013 (7)0.0023 (8)0.0262 (9)
Cl10.0488 (3)0.0513 (3)0.0533 (3)0.01300 (19)0.00668 (19)0.0253 (2)
Geometric parameters (Å, º) top
C1—O11.224 (2)C10—C111.385 (3)
C1—N11.376 (2)C10—H100.9300
C1—C31.488 (2)C11—C121.365 (4)
C2—N21.321 (2)C11—H110.9300
C2—N31.326 (2)C12—C131.367 (4)
C2—N11.379 (2)C12—H120.9300
N1—H10.86 (2)C13—C141.392 (3)
C3—C81.387 (3)C13—H130.9300
C3—C41.387 (2)C14—H140.9300
C4—C51.386 (3)N3—C151.441 (2)
C4—H40.9300N3—H30.84 (3)
C5—C61.373 (3)C15—C161.374 (3)
C5—H50.9300C15—C201.381 (2)
C6—C71.377 (3)C16—C171.383 (3)
C6—H60.9300C16—H160.9300
C7—C81.380 (3)C17—C181.381 (3)
C7—H70.9300C17—H170.9300
C8—H80.9300C18—C191.371 (3)
N2—C91.432 (2)C18—H180.9300
N2—H20.86 (2)C19—C201.386 (3)
C9—C101.369 (3)C19—H190.9300
C9—C141.374 (3)C20—H200.9300
O1—C1—N1122.33 (15)C11—C10—H10120.3
O1—C1—C3121.03 (16)C12—C11—C10120.6 (2)
N1—C1—C3116.55 (14)C12—C11—H11119.7
N2—C2—N3125.14 (15)C10—C11—H11119.7
N2—C2—N1115.35 (14)C11—C12—C13119.7 (2)
N3—C2—N1119.49 (15)C11—C12—H12120.2
C1—N1—C2125.74 (14)C13—C12—H12120.2
C1—N1—H1119.5 (15)C12—C13—C14120.7 (2)
C2—N1—H1113.5 (15)C12—C13—H13119.6
C8—C3—C4119.34 (16)C14—C13—H13119.6
C8—C3—C1116.33 (15)C9—C14—C13118.7 (2)
C4—C3—C1124.15 (16)C9—C14—H14120.7
C5—C4—C3119.63 (18)C13—C14—H14120.7
C5—C4—H4120.2C2—N3—C15125.89 (15)
C3—C4—H4120.2C2—N3—H3111.2 (17)
C6—C5—C4120.55 (18)C15—N3—H3119.3 (17)
C6—C5—H5119.7C16—C15—C20121.04 (16)
C4—C5—H5119.7C16—C15—N3120.56 (15)
C5—C6—C7120.06 (18)C20—C15—N3118.21 (16)
C5—C6—H6120.0C15—C16—C17119.03 (17)
C7—C6—H6120.0C15—C16—H16120.5
C6—C7—C8119.8 (2)C17—C16—H16120.5
C6—C7—H7120.1C18—C17—C16120.43 (19)
C8—C7—H7120.1C18—C17—H17119.8
C7—C8—C3120.55 (19)C16—C17—H17119.8
C7—C8—H8119.7C19—C18—C17120.10 (17)
C3—C8—H8119.7C19—C18—H18120.0
C2—N2—C9126.71 (15)C17—C18—H18120.0
C2—N2—H2115.2 (15)C18—C19—C20120.09 (18)
C9—N2—H2117.8 (15)C18—C19—H19120.0
C10—C9—C14120.97 (18)C20—C19—H19120.0
C10—C9—N2118.28 (17)C15—C20—C19119.30 (18)
C14—C9—N2120.63 (17)C15—C20—H20120.3
C9—C10—C11119.3 (2)C19—C20—H20120.3
C9—C10—H10120.3
O1—C1—N1—C27.5 (3)C14—C9—C10—C111.1 (3)
C3—C1—N1—C2175.92 (16)N2—C9—C10—C11177.3 (2)
N2—C2—N1—C1174.26 (17)C9—C10—C11—C120.8 (4)
N3—C2—N1—C17.2 (3)C10—C11—C12—C130.3 (4)
O1—C1—C3—C816.6 (3)C11—C12—C13—C140.1 (4)
N1—C1—C3—C8166.76 (18)C10—C9—C14—C130.9 (3)
O1—C1—C3—C4158.4 (2)N2—C9—C14—C13176.99 (18)
N1—C1—C3—C418.2 (3)C12—C13—C14—C90.4 (3)
C8—C3—C4—C50.5 (3)N2—C2—N3—C1523.2 (3)
C1—C3—C4—C5174.43 (19)N1—C2—N3—C15158.45 (16)
C3—C4—C5—C61.0 (3)C2—N3—C15—C1650.4 (3)
C4—C5—C6—C70.2 (4)C2—N3—C15—C20134.56 (19)
C5—C6—C7—C81.2 (4)C20—C15—C16—C171.5 (3)
C6—C7—C8—C31.7 (4)N3—C15—C16—C17176.39 (17)
C4—C3—C8—C70.9 (3)C15—C16—C17—C181.0 (3)
C1—C3—C8—C7176.2 (2)C16—C17—C18—C190.1 (3)
N3—C2—N2—C918.6 (3)C17—C18—C19—C200.4 (3)
N1—C2—N2—C9159.87 (16)C16—C15—C20—C191.0 (3)
C2—N2—C9—C10133.2 (2)N3—C15—C20—C19176.09 (17)
C2—N2—C9—C1450.6 (3)C18—C19—C20—C150.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.86 (2)2.32 (3)3.143 (2)159 (2)
N2—H2···Cl10.86 (2)2.27 (2)3.0977 (18)162 (2)
N3—H3···O10.84 (3)1.91 (3)2.628 (2)143 (2)

Experimental details

Crystal data
Chemical formulaC20H18N3O+·Cl
Mr351.82
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.586 (4), 10.254 (5), 10.966 (6)
α, β, γ (°)70.193 (10), 88.612 (19), 84.524 (18)
V3)904.2 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.50 × 0.40 × 0.25
Data collection
DiffractometerRigaku/MSC Mercury CCD
Absorption correctionIntegration
(Higashi, 1999)
Tmin, Tmax0.653, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
7197, 4050, 3534
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.133, 1.13
No. of reflections4050
No. of parameters238
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.32

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), CrystalClear, TEXSAN (Molecular Structure Corporation & Rigaku, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97 and TEXSAN.

Selected bond lengths (Å) top
C1—O11.224 (2)C2—N21.321 (2)
C1—N11.376 (2)C2—N31.326 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.86 (2)2.32 (3)3.143 (2)159 (2)
N2—H2···Cl10.86 (2)2.27 (2)3.0977 (18)162 (2)
N3—H3···O10.84 (3)1.91 (3)2.628 (2)143 (2)
 

Acknowledgements

The authors are grateful to the HEC Pakistan for financial support of this research project.

References

First citationAldhaheri, S. M. (1998). Talanta, 46, 1613–1618.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCunha, S., De Lima, B. R. & De Souza, A. R. (2002). Tetrahedron Lett. 43, 49–52.  Web of Science CrossRef CAS Google Scholar
First citationCunha, S., Rodrigues, M. T., da Silva, C. C., Napolitano, H. B., Vencato, I. & Lariucci, C. (2005). Tetrahedron, 61, 10536–10540.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKöhn, U., Günther, W., Görls, H. & Anders, E. (2004). Tetrahedron Asymmetry, 15, 1419–1426.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2001). Crystal Clear. Version 1.3. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2004). TEXSAN. Version 2.0. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMoroni, M., Koksch, B., Osipov, S. N., Crucianelli, M., Frigerio, M., Bravo, P. & Burger, K. (2001). J. Org. Chem. 66, 130–133.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaid, F. F., Bazinet, P., Ong, T.-G., Yap, G. P. A. & Richeson, D. S. (2006). Cryst. Growth Des. 6, 258–266.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTaniguchi, K., Shigenaga, S., Ogahara, T., Fujitsu, T. & Matsuo, M. (1993). Chem. Pharm. Bull. 41, 301–309.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYoshiizumi, K., Seko, N., Nishimura, N., Ikeda, S., Yoshino, K., Kondo, H. & Tanizawa, K. (1998). Bioorg. Med. Chem. Lett. 8, 3397–3402.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds