organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iso­propyl 2-[2-(2,6-di­chloro­anilino)phen­yl]acetate

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Faculty of Engineering, Gifu University Yanagido, Gifu 501-1193, Japan
*Correspondence e-mail: aminbadshah@yahoo.com

(Received 29 October 2007; accepted 2 December 2007; online 21 December 2007)

In the title compound, C17H17Cl2NO2, the NH group exhibits an intra­molecular hydrogen bond to the carbonyl O atom and no inter­molecular hydrogen bonding, in contrast with previous studies. The dihedral angle between the two benzene rings is 58.57 (5)°. The ester group is planar, the greatest deviation from planarity being 0.0135 (11) Å for the ether O atom.

Related literature

For related literature, see: Abo-Ghalia et al. (1999[Abo-Ghalia, M. H., Shalaby, A. M., El-Eraqi, W. I. & Awad, H. M. (1999). Amino Acids, 16, 425-440.]); Alvarez-Larena et al. (1992[Alvarez-Larena, A., Piniella, J. F., Carrasco, E., Ginebreda, A., Julia, S. & Germain, G. (1992). J. Crystallogr. Spectrosc. Res. 22, 323-328.]); Corell et al. (1979[Corell, T., Jensen, K. M. & Splawinski, J. (1979). Acta Pharmacol. Toxicol. (Copenh.), 45, 232-239.]); Evens (1979[Evens, R. P. (1979). Am. J. Hosp. Pharm. 36, 622-633.]); Kass (1982[Kass, E. (1982). Voltaren: New Findings. pp. 14-30. Bern: Hans-Huber Verlag.]); Lipka (1978[Lipka, A. (1978). Z. Anorg. Allg. Chem. 440, 224-230.], 1980[Lipka, A. (1980). Z. Anorg. Allg. Chem. 466, 195-202.]); Moser et al. (1990[Moser, P., Sallmann, A. & Wiesenberg, I. (1990). J. Med. Chem. 33, 2358-2368.]); Robinson (1977[Robinson, R. (1977). Clinical Experience with the New Geigy Antirheumatic `Voltaren'. Proceedings of 3rd Congress of the South-East Asia and Pacific Area League Against Rheumatism, Singapore, 1976. Bern: Hans-Huber Verlag.]); Scherrer & Whitehouse (1974[Scherrer, R. A. & Whitehouse, M. (1974). Anti-inflammatory Agents, Vol. 2. New York: Academic Press.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17Cl2NO2

  • Mr = 338.22

  • Monoclinic, P 21 /c

  • a = 17.548 (6) Å

  • b = 9.443 (3) Å

  • c = 9.719 (3) Å

  • β = 93.959 (4)°

  • V = 1606.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 123 (2) K

  • 0.45 × 0.25 × 0.15 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: none

  • 12744 measured reflections

  • 3670 independent reflections

  • 3428 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.093

  • S = 1.10

  • 3670 reflections

  • 205 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.90 (2) 2.05 (2) 2.859 (2) 149 (2)

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001[Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004[Molecular Structure Corporation & Rigaku (2004). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and TEXSAN.

Supporting information


Comment top

The anti-phlogistic nonsteroidal anti-inflammatory drug (NSAID) (2-[(2,6-Dichlorophenyl)amino]-phenylacetic acid, common name diclofenac, is a potent cyclo-oxygenase inhibitor. It therapeutically interferes with the arachidonic acid cascade prior to the biosynthesis of the inflammatory prostaglandins. Consequently, the drug has a universal anti-phlogistic potency represented by generalized anti-inflammatory, anti-pyretic, anti-rheumatic and analgesic characteristics (Robinson, 1977; Kass, 1982; Evens, 1979; Scherrer & Whitehouse, 1974). However, several undesired side effects of the drug, particularly its ulcerogenicity, frequently restrict its remedial recommendation and it is contra-indicated for patients with a high risk of gastro-intestinal ulcers (Corell et al., 1979). New non-proteinogenic amino acid conjugates of diclofenac have been synthesized and biologically screened for their anti-inflammatory, analgesic and ulcerogenic activity in rats (Abo-Ghalia et al., 1999). We are interested in the synthesis of more potent, less ulcerogenic drugs that hopefully replace diclofenac, and present here the crystal structure of the title compound (I).

The bond lengths and angles in (I) are normal for this kind of molecule (Lipka, 1978, 1980; Moser et al.; 1990). The bond angles C(6)—N(1)—H(1) and C(7)—N(1)—H(1) are both 113.0 (1)°. The bond length N(1)—C(7) [1.418 (2) Å] is larger than N(1)—C(6) [1.393 (2) Å] suggesting a greater delocalization of the N lone pair toward the chlorinated ring. The bond lengths C(14)—O(1) [1.209 (2) Å] and C(14)—O(2) [1.333 (2) Å] indicate double and partial double bond character, respectively. The dihedral angle between the two benzene rings is 58.57 (5)°. The N(1)—H(1) is involved in intramolecular H-bonding to the carbonylic O(1) (Alvarez-Larena et al.; 1992).

Related literature top

For related literature, see: Abo-Ghalia et al. (1999); Alvarez-Larena et al. (1992); Corell et al. (1979); Evens (1979); Kass (1982); Lipka (1978, 1980); Moser et al. (1990); Robinson (1977); Scherrer & Whitehouse (1974).

Experimental top

Diclofenac sodium (1.0 g, 3.1 mmol) and anhydrous potassium carbonate (1.0 g, 7.2 mmol) were added to dry acetone (30 ml) and the mixture was stirred for 20 min. Neat isopropyl iodide (0.785 ml, 7.83 mmol) in excess was then added and the resulting mixture was heated under reflux for 6 h. The reaction mixture was filtered when hot. The resultant cakes were washed with dry acetone 5 × 2 ml. The combined filtrate and washings were evaporated under reduced pressure to afford compound (I) as an oily material which solidified after 5 d at room temperature (70% yield). Melting point 363–366 K. Block-shaped single crystals were obtained by recrystallization from acetone.

Refinement top

The H atom on the N atom was refined isotropically. Other H atoms were placed in idealized positions and treated as riding atoms with the C—H distance in the range 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Structure description top

The anti-phlogistic nonsteroidal anti-inflammatory drug (NSAID) (2-[(2,6-Dichlorophenyl)amino]-phenylacetic acid, common name diclofenac, is a potent cyclo-oxygenase inhibitor. It therapeutically interferes with the arachidonic acid cascade prior to the biosynthesis of the inflammatory prostaglandins. Consequently, the drug has a universal anti-phlogistic potency represented by generalized anti-inflammatory, anti-pyretic, anti-rheumatic and analgesic characteristics (Robinson, 1977; Kass, 1982; Evens, 1979; Scherrer & Whitehouse, 1974). However, several undesired side effects of the drug, particularly its ulcerogenicity, frequently restrict its remedial recommendation and it is contra-indicated for patients with a high risk of gastro-intestinal ulcers (Corell et al., 1979). New non-proteinogenic amino acid conjugates of diclofenac have been synthesized and biologically screened for their anti-inflammatory, analgesic and ulcerogenic activity in rats (Abo-Ghalia et al., 1999). We are interested in the synthesis of more potent, less ulcerogenic drugs that hopefully replace diclofenac, and present here the crystal structure of the title compound (I).

The bond lengths and angles in (I) are normal for this kind of molecule (Lipka, 1978, 1980; Moser et al.; 1990). The bond angles C(6)—N(1)—H(1) and C(7)—N(1)—H(1) are both 113.0 (1)°. The bond length N(1)—C(7) [1.418 (2) Å] is larger than N(1)—C(6) [1.393 (2) Å] suggesting a greater delocalization of the N lone pair toward the chlorinated ring. The bond lengths C(14)—O(1) [1.209 (2) Å] and C(14)—O(2) [1.333 (2) Å] indicate double and partial double bond character, respectively. The dihedral angle between the two benzene rings is 58.57 (5)°. The N(1)—H(1) is involved in intramolecular H-bonding to the carbonylic O(1) (Alvarez-Larena et al.; 1992).

For related literature, see: Abo-Ghalia et al. (1999); Alvarez-Larena et al. (1992); Corell et al. (1979); Evens (1979); Kass (1982); Lipka (1978, 1980); Moser et al. (1990); Robinson (1977); Scherrer & Whitehouse (1974).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and TEXSAN.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 30% probability level. The intramolecular hydrogen bond is shown by a dashed line.
Isopropyl 2-[2-(2,6-dichloroanilino)phenyl]acetate top
Crystal data top
C17H17Cl2NO2F(000) = 704
Mr = 338.22Dx = 1.398 Mg m3
Monoclinic, P21/cMelting point: 363 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71070 Å
a = 17.548 (6) ÅCell parameters from 4977 reflections
b = 9.443 (3) Åθ = 3.0–27.5°
c = 9.719 (3) ŵ = 0.41 mm1
β = 93.959 (4)°T = 123 K
V = 1606.7 (9) Å3Block, colorless
Z = 40.45 × 0.25 × 0.15 mm
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3428 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
Detector resolution: 14.62 pixels mm-1h = 1622
ω scansk = 1212
12744 measured reflectionsl = 1112
3670 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.7365P]
where P = (Fo2 + 2Fc2)/3
3670 reflections(Δ/σ)max = 0.002
205 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C17H17Cl2NO2V = 1606.7 (9) Å3
Mr = 338.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.548 (6) ŵ = 0.41 mm1
b = 9.443 (3) ÅT = 123 K
c = 9.719 (3) Å0.45 × 0.25 × 0.15 mm
β = 93.959 (4)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3428 reflections with I > 2σ(I)
12744 measured reflectionsRint = 0.061
3670 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.31 e Å3
3670 reflectionsΔρmin = 0.32 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20829 (8)0.00238 (14)0.81278 (14)0.0176 (3)
H10.2551 (14)0.036 (2)0.822 (2)0.041 (6)*
C10.15347 (8)0.07425 (15)0.87884 (15)0.0150 (3)
C20.07450 (9)0.06102 (15)0.84548 (15)0.0152 (3)
C30.02096 (9)0.13894 (16)0.91175 (16)0.0178 (3)
H30.03200.12440.88930.021*
C40.04477 (9)0.23810 (16)1.01071 (16)0.0192 (3)
H40.00830.29031.05770.023*
C50.12211 (9)0.26066 (17)1.04063 (16)0.0188 (3)
H50.13900.33131.10530.023*
C60.17464 (8)0.17985 (16)0.97592 (15)0.0158 (3)
Cl10.04071 (2)0.05250 (4)0.71474 (4)0.01864 (11)
Cl20.27143 (2)0.21169 (4)1.01691 (4)0.02223 (11)
C70.20896 (8)0.15202 (16)0.80276 (15)0.0163 (3)
C80.16317 (9)0.23666 (17)0.88131 (16)0.0185 (3)
H80.13210.19380.94590.022*
C90.16256 (9)0.38265 (17)0.86589 (17)0.0214 (3)
H90.13060.43900.91890.026*
C100.20854 (10)0.44656 (17)0.77316 (17)0.0233 (3)
H100.20790.54650.76160.028*
C110.25537 (9)0.36304 (17)0.69773 (16)0.0214 (3)
H110.28740.40710.63550.026*
C120.25671 (9)0.21573 (16)0.71063 (15)0.0172 (3)
C130.30776 (9)0.12827 (18)0.62396 (16)0.0201 (3)
H13A0.27790.04920.58060.024*
H13B0.32620.18800.54940.024*
C140.37563 (9)0.06929 (17)0.71054 (17)0.0211 (3)
O10.37023 (7)0.01740 (15)0.80056 (15)0.0362 (3)
O20.44207 (6)0.12335 (12)0.67675 (11)0.0209 (2)
C150.51089 (9)0.07400 (18)0.75893 (17)0.0225 (3)
H150.50550.02870.78140.027*
C160.52004 (11)0.1592 (2)0.89044 (19)0.0337 (4)
H16A0.52870.25880.86810.051*
H16B0.56380.12310.94820.051*
H16C0.47360.15090.94040.051*
C170.57594 (10)0.0941 (3)0.6674 (2)0.0390 (5)
H17A0.56590.03960.58220.059*
H17B0.62360.06110.71550.059*
H17C0.58060.19480.64480.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0136 (6)0.0152 (6)0.0242 (7)0.0011 (5)0.0032 (5)0.0029 (5)
C10.0168 (7)0.0137 (7)0.0148 (7)0.0001 (5)0.0019 (5)0.0018 (5)
C20.0168 (7)0.0130 (7)0.0156 (7)0.0017 (5)0.0004 (5)0.0017 (5)
C30.0141 (7)0.0179 (7)0.0213 (7)0.0011 (6)0.0013 (6)0.0042 (6)
C40.0203 (8)0.0180 (7)0.0195 (7)0.0039 (6)0.0039 (6)0.0009 (6)
C50.0234 (8)0.0165 (7)0.0163 (7)0.0000 (6)0.0005 (6)0.0007 (6)
C60.0134 (7)0.0171 (7)0.0165 (7)0.0015 (6)0.0016 (5)0.0023 (6)
Cl10.01741 (19)0.01788 (18)0.02003 (19)0.00138 (13)0.00299 (13)0.00181 (13)
Cl20.01558 (19)0.0220 (2)0.0285 (2)0.00267 (14)0.00263 (14)0.00416 (15)
C70.0132 (7)0.0175 (7)0.0174 (7)0.0012 (6)0.0041 (5)0.0022 (6)
C80.0158 (7)0.0205 (7)0.0189 (7)0.0024 (6)0.0016 (6)0.0004 (6)
C90.0195 (8)0.0204 (7)0.0235 (8)0.0015 (6)0.0052 (6)0.0043 (6)
C100.0270 (9)0.0158 (7)0.0258 (8)0.0025 (6)0.0069 (7)0.0021 (6)
C110.0211 (8)0.0218 (8)0.0207 (8)0.0054 (6)0.0043 (6)0.0053 (6)
C120.0135 (7)0.0219 (8)0.0157 (7)0.0011 (6)0.0034 (5)0.0022 (6)
C130.0151 (7)0.0260 (8)0.0191 (7)0.0005 (6)0.0013 (6)0.0042 (6)
C140.0158 (7)0.0252 (8)0.0224 (8)0.0001 (6)0.0022 (6)0.0021 (6)
O10.0168 (6)0.0452 (8)0.0467 (8)0.0018 (6)0.0022 (5)0.0264 (7)
O20.0131 (5)0.0285 (6)0.0207 (6)0.0007 (4)0.0005 (4)0.0053 (5)
C150.0133 (8)0.0284 (8)0.0252 (8)0.0000 (6)0.0037 (6)0.0064 (7)
C160.0332 (10)0.0355 (10)0.0307 (10)0.0012 (8)0.0100 (8)0.0013 (8)
C170.0145 (8)0.0663 (14)0.0363 (10)0.0045 (9)0.0022 (7)0.0140 (10)
Geometric parameters (Å, º) top
N1—C11.3952 (19)C10—C111.385 (2)
N1—C71.416 (2)C10—H100.9500
N1—H10.90 (2)C11—C121.397 (2)
C1—C61.405 (2)C11—H110.9500
C1—C21.407 (2)C12—C131.516 (2)
C2—C31.387 (2)C13—C141.516 (2)
C2—Cl11.7354 (15)C13—H13A0.9900
C3—C41.386 (2)C13—H13B0.9900
C3—H30.9500C14—O11.207 (2)
C4—C51.385 (2)C14—O21.3344 (19)
C4—H40.9500O2—C151.4766 (19)
C5—C61.381 (2)C15—C171.507 (2)
C5—H50.9500C15—C161.509 (3)
C6—Cl21.7438 (16)C15—H151.0000
C7—C81.397 (2)C16—H16A0.9800
C7—C121.403 (2)C16—H16B0.9800
C8—C91.387 (2)C16—H16C0.9800
C8—H80.9500C17—H17A0.9800
C9—C101.388 (2)C17—H17B0.9800
C9—H90.9500C17—H17C0.9800
C1—N1—C7123.94 (13)C10—C11—H11119.1
C1—N1—H1113.5 (15)C12—C11—H11119.1
C7—N1—H1113.6 (15)C11—C12—C7118.50 (14)
N1—C1—C6121.23 (14)C11—C12—C13119.98 (14)
N1—C1—C2123.19 (14)C7—C12—C13121.51 (14)
C6—C1—C2115.36 (13)C14—C13—C12111.31 (13)
C3—C2—C1122.29 (14)C14—C13—H13A109.4
C3—C2—Cl1117.36 (12)C12—C13—H13A109.4
C1—C2—Cl1120.33 (11)C14—C13—H13B109.4
C4—C3—C2119.96 (14)C12—C13—H13B109.4
C4—C3—H3120.0H13A—C13—H13B108.0
C2—C3—H3120.0O1—C14—O2123.47 (15)
C5—C4—C3119.59 (14)O1—C14—C13123.62 (15)
C5—C4—H4120.2O2—C14—C13112.90 (13)
C3—C4—H4120.2C14—O2—C15116.23 (12)
C6—C5—C4119.65 (14)O2—C15—C17105.38 (14)
C6—C5—H5120.2O2—C15—C16108.97 (14)
C4—C5—H5120.2C17—C15—C16113.10 (16)
C5—C6—C1122.97 (14)O2—C15—H15109.8
C5—C6—Cl2118.09 (12)C17—C15—H15109.8
C1—C6—Cl2118.94 (12)C16—C15—H15109.8
C8—C7—C12119.65 (14)C15—C16—H16A109.5
C8—C7—N1121.69 (14)C15—C16—H16B109.5
C12—C7—N1118.66 (14)H16A—C16—H16B109.5
C9—C8—C7120.67 (15)C15—C16—H16C109.5
C9—C8—H8119.7H16A—C16—H16C109.5
C7—C8—H8119.7H16B—C16—H16C109.5
C8—C9—C10120.12 (15)C15—C17—H17A109.5
C8—C9—H9119.9C15—C17—H17B109.5
C10—C9—H9119.9H17A—C17—H17B109.5
C11—C10—C9119.25 (15)C15—C17—H17C109.5
C11—C10—H10120.4H17A—C17—H17C109.5
C9—C10—H10120.4H17B—C17—H17C109.5
C10—C11—C12121.78 (15)
C7—N1—C1—C6130.59 (16)N1—C7—C8—C9177.48 (14)
C7—N1—C1—C255.1 (2)C7—C8—C9—C100.9 (2)
N1—C1—C2—C3179.53 (14)C8—C9—C10—C110.7 (2)
C6—C1—C2—C34.9 (2)C9—C10—C11—C121.1 (2)
N1—C1—C2—Cl11.1 (2)C10—C11—C12—C70.1 (2)
C6—C1—C2—Cl1173.52 (11)C10—C11—C12—C13178.82 (14)
C1—C2—C3—C42.7 (2)C8—C7—C12—C111.7 (2)
Cl1—C2—C3—C4175.78 (12)N1—C7—C12—C11177.93 (13)
C2—C3—C4—C51.3 (2)C8—C7—C12—C13179.61 (13)
C3—C4—C5—C62.8 (2)N1—C7—C12—C130.8 (2)
C4—C5—C6—C10.3 (2)C11—C12—C13—C14107.44 (16)
C4—C5—C6—Cl2179.91 (12)C7—C12—C13—C1473.86 (18)
N1—C1—C6—C5178.14 (14)C12—C13—C14—O166.2 (2)
C2—C1—C6—C53.4 (2)C12—C13—C14—O2113.82 (15)
N1—C1—C6—Cl21.62 (19)O1—C14—O2—C151.5 (2)
C2—C1—C6—Cl2176.35 (11)C13—C14—O2—C15178.45 (13)
C1—N1—C7—C812.6 (2)C14—O2—C15—C17155.43 (15)
C1—N1—C7—C12166.97 (14)C14—O2—C15—C1682.92 (17)
C12—C7—C8—C92.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.90 (2)2.05 (2)2.859 (2)149 (2)

Experimental details

Crystal data
Chemical formulaC17H17Cl2NO2
Mr338.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)17.548 (6), 9.443 (3), 9.719 (3)
β (°) 93.959 (4)
V3)1606.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.45 × 0.25 × 0.15
Data collection
DiffractometerRigaku/MSC Mercury CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12744, 3670, 3428
Rint0.061
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.093, 1.10
No. of reflections3670
No. of parameters205
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.32

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), CrystalClear, TEXSAN (Molecular Structure Corporation & Rigaku, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97 and TEXSAN.

Selected bond lengths (Å) top
N1—C11.3952 (19)C14—O21.3344 (19)
N1—C71.416 (2)O2—C151.4766 (19)
C14—O11.207 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.90 (2)2.05 (2)2.859 (2)149 (2)
 

Acknowledgements

MKR is grateful to the Higher Education Commission of Pakistan for financial support under the International Support Initiative Program for Pre-doctoral Fellowships at Gifu University, Japan.

References

First citationAbo-Ghalia, M. H., Shalaby, A. M., El-Eraqi, W. I. & Awad, H. M. (1999). Amino Acids, 16, 425–440.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAlvarez-Larena, A., Piniella, J. F., Carrasco, E., Ginebreda, A., Julia, S. & Germain, G. (1992). J. Crystallogr. Spectrosc. Res. 22, 323–328.  CSD CrossRef CAS Google Scholar
First citationCorell, T., Jensen, K. M. & Splawinski, J. (1979). Acta Pharmacol. Toxicol. (Copenh.), 45, 232–239.  CrossRef CAS PubMed Web of Science Google Scholar
First citationEvens, R. P. (1979). Am. J. Hosp. Pharm. 36, 622–633.  CAS PubMed Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKass, E. (1982). Voltaren: New Findings. pp. 14–30. Bern: Hans-Huber Verlag.  Google Scholar
First citationLipka, A. (1978). Z. Anorg. Allg. Chem. 440, 224–230.  CSD CrossRef CAS Web of Science Google Scholar
First citationLipka, A. (1980). Z. Anorg. Allg. Chem. 466, 195–202.  CSD CrossRef CAS Web of Science Google Scholar
First citationMolecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2004). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMoser, P., Sallmann, A. & Wiesenberg, I. (1990). J. Med. Chem. 33, 2358–2368.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationRobinson, R. (1977). Clinical Experience with the New Geigy Antirheumatic `Voltaren'. Proceedings of 3rd Congress of the South-East Asia and Pacific Area League Against Rheumatism, Singapore, 1976. Bern: Hans-Huber Verlag.  Google Scholar
First citationScherrer, R. A. & Whitehouse, M. (1974). Anti-inflammatory Agents, Vol. 2. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds