organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl (E)-3-anilino-2-cyano-3-mercaptoacrylate

aNew Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: ffj2003@163169.net

(Received 17 October 2007; accepted 16 November 2007; online 6 December 2007)

In the title compound, C12H12N2O2S, there are S—H⋯N and N—H⋯O hydrogen-bond inter­actions. The N—H⋯O hydrogen bond is bifurcated, with the hydrogen being simultaneously donated to two equivalent O atoms, forming one intra- and one inter­molecular N—H⋯O bond with an R12(4) motif. The motif of the S—H⋯N hydrogen bond is R22(12).

Related literature

For related literature, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Azim et al. (1997[Azim, A., Parmar, V. S. & Errington, W. (1997). Acta Cryst. C53, 1436-1438.]); Gao et al. (2006[Gao, Y., Zou, X. M., Yu, L. M., Xu, H., Liu, B., Zhu, Y. Q., Hu, F. Z. & Yang, H. Z. (2006). J. Chin. Chem. 24, 521-523.]); Timofeeva et al. (2004[Timofeeva, T. V., Kinnibrugh, T., Borbulevych, O. Y., Averkiev, B. B., Nesterov, V. N., Sloan, A. & Antipin, M. Y. (2004). Cryst. Growth Des. 4, 1265-1276.]); Xue et al. (2004[Xue, S. J., Duan, L. P. & Xe, S. Y. (2004). Chin. J. Struct. Chem. 23, 441-444.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O2S

  • Mr = 248.30

  • Monoclinic, C 2/c

  • a = 26.357 (5) Å

  • b = 7.0120 (14) Å

  • c = 16.234 (3) Å

  • β = 121.45 (3)°

  • V = 2559.6 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 295 (2) K

  • 0.2 × 0.15 × 0.11 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 5482 measured reflections

  • 2779 independent reflections

  • 1979 reflections with I > 2σ(I)

  • Rint = 0.019

  • 3 standard reflections every 100 reflections intensity decay: 4.2%

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.104

  • S = 1.03

  • 2779 reflections

  • 164 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.83 (2) 2.05 (2) 2.7210 (19) 137.9 (19)
N2—H2A⋯O1i 0.83 (2) 2.54 (2) 3.1513 (19) 131.3 (18)
S1—H1⋯N1ii 1.20 (2) 2.45 (2) 3.4560 (17) 140.1 (15)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) -x, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL/PC (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Acrylics have been studied for many years because of their special chemical properties. They are widely used as elastics, adhesives, covering material and so on. Recent studies have also shown that the derivative of acrylics provide also herbicidal activity (Gao et al., 2006).

It follows from our previous quantum-mechanical study of these compounds that they have several active centres and can easily form polyligand complexes with metals (Xue et al., 2004).

In order to search for new compounds with higher bioactivity, the title compound was synthesized.

The CN bond length (1.145 (2) Å), C?C (1.405 (2) Å) and C?O (1.2202 (18) Å) are in agreement with those observed before (Timofeeva et al., 2004; Azim et al., 1997). The S—H hydrogen bond length corresponds well to the the value 1.197 (9) Å from 247 observations yielded by the Cambridge Crystallographic Database (Allen, 2002).

The H2A hydrogen is simultaneously donated to two equivalent O atoms, forming one intra- and one intermolecular N—H···O bond with a motif R12(4) (Etter et al., 1990). A motif of the S—H···N hydrogen bond is R22(12).

Related literature top

For related literature, see: Allen (2002); Azim et al. (1997); Gao et al. (2006); Timofeeva et al. (2004); Xue et al. (2004).

Experimental top

The title compound was prepared by the reaction of ethyl 2-cyanoacetate (0.02 mol), KOH (0.03 mol) and N-phenylmethanethioamide (0.02 mol) dissolved in 1,4-dioxane (30 ml) while refluxing about two hours. Yellow single crystals of suitable for X-ray measurements were prisms and they were obtained by recrystallization from ethanol/acetone (1:1 v/v) at room temperature that took about two days. The size of the crystals was about tenths of milimetres in each direction.

Refinement top

All the H atoms were discernible in a difference Fourier map. The C—H distances were constrained to 0.93, 0.97 and 0.96 Å for the aryl, methylene and the methyl H atoms, respectively, while Uiso(H) = 1.2Ueq(C) for the aryls as well as for the methylenes and 1.5Ueq(C) for the methyls. The positional parameters as well as the Uiso of the H atoms involved in the S—H···N and N—H···O hydrogen bonds were refined freely.

Structure description top

Acrylics have been studied for many years because of their special chemical properties. They are widely used as elastics, adhesives, covering material and so on. Recent studies have also shown that the derivative of acrylics provide also herbicidal activity (Gao et al., 2006).

It follows from our previous quantum-mechanical study of these compounds that they have several active centres and can easily form polyligand complexes with metals (Xue et al., 2004).

In order to search for new compounds with higher bioactivity, the title compound was synthesized.

The CN bond length (1.145 (2) Å), C?C (1.405 (2) Å) and C?O (1.2202 (18) Å) are in agreement with those observed before (Timofeeva et al., 2004; Azim et al., 1997). The S—H hydrogen bond length corresponds well to the the value 1.197 (9) Å from 247 observations yielded by the Cambridge Crystallographic Database (Allen, 2002).

The H2A hydrogen is simultaneously donated to two equivalent O atoms, forming one intra- and one intermolecular N—H···O bond with a motif R12(4) (Etter et al., 1990). A motif of the S—H···N hydrogen bond is R22(12).

For related literature, see: Allen (2002); Azim et al. (1997); Gao et al. (2006); Timofeeva et al. (2004); Xue et al. (2004).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL/PC (Sheldrick, 1997b); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-labelling scheme of the title structure with the displacement ellipsoids drawn at the 30% probability level.
Ethyl (E)-3-anilino-2-cyano-3-mercaptoacrylate top
Crystal data top
C12H12N2O2SF(000) = 1040
Mr = 248.30Dx = 1.289 Mg m3
Monoclinic, C2/cMelting point: 221.3 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 26.357 (5) ÅCell parameters from 25 reflections
b = 7.0120 (14) Åθ = 1.8–27.0°
c = 16.234 (3) ŵ = 0.24 mm1
β = 121.45 (3)°T = 295 K
V = 2559.6 (9) Å3Prism, yellow
Z = 80.2 × 0.15 × 0.11 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.019
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 1.8°
Graphite monochromatorh = 3332
ω scank = 80
5482 measured reflectionsl = 2020
2779 independent reflections3 standard reflections every 100 reflections
1979 reflections with I > 2σ(I) intensity decay: 4.2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.5262P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2779 reflectionsΔρmax = 0.21 e Å3
164 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
37 constraintsExtinction coefficient: 0.0029 (5)
Primary atom site location: structure-invariant direct methods
Crystal data top
C12H12N2O2SV = 2559.6 (9) Å3
Mr = 248.30Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.357 (5) ŵ = 0.24 mm1
b = 7.0120 (14) ÅT = 295 K
c = 16.234 (3) Å0.2 × 0.15 × 0.11 mm
β = 121.45 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.019
5482 measured reflections3 standard reflections every 100 reflections
2779 independent reflections intensity decay: 4.2%
1979 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.21 e Å3
2779 reflectionsΔρmin = 0.22 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.036112 (18)0.79399 (8)0.39148 (4)0.05947 (18)
O10.23012 (5)0.56216 (18)0.53519 (9)0.0582 (3)
O20.20130 (5)0.32520 (16)0.59661 (8)0.0494 (3)
N10.06376 (7)0.3767 (2)0.54908 (13)0.0659 (4)
N20.14258 (6)0.8090 (2)0.41610 (10)0.0462 (3)
H2A0.1777 (10)0.773 (3)0.4423 (16)0.069 (6)*
C10.25743 (12)0.0566 (4)0.6871 (2)0.0964 (8)
H1A0.29550.00500.71700.145*
H1B0.22740.02850.64140.145*
H1C0.24860.09030.73570.145*
C20.25859 (8)0.2327 (3)0.63637 (15)0.0616 (5)
H2B0.29010.31720.68130.074*
H2C0.26570.19990.58510.074*
C30.19241 (7)0.4885 (2)0.54693 (11)0.0421 (4)
C40.13246 (6)0.5611 (2)0.50890 (10)0.0412 (3)
C50.09459 (7)0.4589 (2)0.53170 (12)0.0461 (4)
C60.10985 (6)0.7154 (2)0.44426 (11)0.0398 (3)
C70.11984 (6)0.9531 (2)0.34181 (11)0.0420 (4)
C80.11445 (7)0.9104 (3)0.25486 (12)0.0528 (4)
H8A0.12590.79140.24490.063*
C90.09161 (9)1.0473 (3)0.18194 (14)0.0660 (5)
H9A0.08811.02010.12310.079*
C100.07420 (9)1.2232 (3)0.19681 (16)0.0705 (6)
H10A0.05841.31330.14750.085*
C110.08016 (9)1.2657 (3)0.28392 (17)0.0679 (5)
H11A0.06851.38460.29350.081*
C120.10358 (8)1.1319 (3)0.35789 (13)0.0550 (4)
H12A0.10831.16140.41740.066*
H10.0213 (9)0.687 (3)0.4325 (16)0.085 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0395 (2)0.0700 (3)0.0704 (3)0.0091 (2)0.0297 (2)0.0194 (2)
O10.0449 (6)0.0577 (7)0.0779 (8)0.0069 (6)0.0361 (6)0.0216 (6)
O20.0457 (6)0.0456 (6)0.0564 (7)0.0061 (5)0.0262 (5)0.0135 (5)
N10.0641 (9)0.0628 (10)0.0857 (11)0.0043 (8)0.0495 (9)0.0187 (9)
N20.0372 (7)0.0493 (8)0.0532 (8)0.0046 (6)0.0245 (6)0.0133 (6)
C10.0896 (16)0.0770 (16)0.118 (2)0.0293 (14)0.0511 (15)0.0501 (15)
C20.0547 (10)0.0575 (11)0.0718 (12)0.0167 (9)0.0325 (9)0.0176 (9)
C30.0435 (8)0.0415 (8)0.0420 (8)0.0002 (7)0.0227 (7)0.0022 (7)
C40.0409 (8)0.0415 (8)0.0449 (8)0.0004 (7)0.0249 (7)0.0019 (7)
C50.0466 (8)0.0453 (9)0.0522 (9)0.0046 (7)0.0298 (7)0.0065 (7)
C60.0366 (7)0.0426 (8)0.0413 (8)0.0005 (6)0.0211 (6)0.0012 (7)
C70.0346 (7)0.0426 (9)0.0468 (8)0.0018 (6)0.0198 (7)0.0051 (7)
C80.0529 (9)0.0502 (10)0.0566 (10)0.0034 (8)0.0294 (8)0.0005 (8)
C90.0662 (11)0.0787 (14)0.0475 (10)0.0107 (11)0.0257 (9)0.0072 (10)
C100.0604 (11)0.0656 (13)0.0694 (13)0.0022 (10)0.0227 (10)0.0297 (11)
C110.0689 (12)0.0444 (10)0.0863 (15)0.0096 (9)0.0376 (11)0.0140 (10)
C120.0603 (10)0.0471 (10)0.0601 (11)0.0011 (8)0.0332 (9)0.0001 (8)
Geometric parameters (Å, º) top
S1—C61.7544 (16)C3—C41.456 (2)
S1—H11.20 (2)C4—C61.405 (2)
O1—C31.2202 (18)C4—C51.426 (2)
O2—C31.3485 (18)C7—C81.376 (2)
O2—C21.449 (2)C7—C121.393 (2)
N1—C51.145 (2)C8—C91.394 (3)
N2—C61.3400 (19)C8—H8A0.9300
N2—C71.442 (2)C9—C101.381 (3)
N2—H2A0.83 (2)C9—H9A0.9300
C1—C21.493 (3)C10—C111.372 (3)
C1—H1A0.9600C10—H10A0.9300
C1—H1B0.9600C11—C121.389 (3)
C1—H1C0.9600C11—H11A0.9300
C2—H2B0.9700C12—H12A0.9300
C2—H2C0.9700
C6—S1—H197.5 (10)N1—C5—C4179.3 (2)
C3—O2—C2117.53 (12)N2—C6—C4122.31 (13)
C6—N2—C7124.61 (13)N2—C6—S1115.19 (12)
C6—N2—H2A114.7 (14)C4—C6—S1122.47 (11)
C7—N2—H2A120.6 (15)C8—C7—C12120.72 (15)
C2—C1—H1A109.5C8—C7—N2118.75 (15)
C2—C1—H1B109.5C12—C7—N2120.53 (15)
H1A—C1—H1B109.5C7—C8—C9119.29 (18)
C2—C1—H1C109.5C7—C8—H8A120.4
H1A—C1—H1C109.5C9—C8—H8A120.4
H1B—C1—H1C109.5C10—C9—C8120.18 (19)
O2—C2—C1107.41 (16)C10—C9—H9A119.9
O2—C2—H2B110.2C8—C9—H9A119.9
C1—C2—H2B110.2C11—C10—C9120.30 (18)
O2—C2—H2C110.2C11—C10—H10A119.9
C1—C2—H2C110.2C9—C10—H10A119.9
H2B—C2—H2C108.5C10—C11—C12120.33 (19)
O1—C3—O2123.45 (14)C10—C11—H11A119.8
O1—C3—C4125.29 (14)C12—C11—H11A119.8
O2—C3—C4111.25 (13)C11—C12—C7119.16 (18)
C6—C4—C5119.96 (13)C11—C12—H12A120.4
C6—C4—C3122.00 (13)C7—C12—H12A120.4
C5—C4—C3117.76 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.83 (2)2.05 (2)2.7210 (19)137.9 (19)
N2—H2A···O1i0.83 (2)2.54 (2)3.1513 (19)131.3 (18)
S1—H1···N1ii1.20 (2)2.45 (2)3.4560 (17)140.1 (15)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H12N2O2S
Mr248.30
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)26.357 (5), 7.0120 (14), 16.234 (3)
β (°) 121.45 (3)
V3)2559.6 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.2 × 0.15 × 0.11
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5482, 2779, 1979
Rint0.019
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.104, 1.03
No. of reflections2779
No. of parameters164
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997a), SHELXTL/PC (Sheldrick, 1997b), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.83 (2)2.05 (2)2.7210 (19)137.9 (19)
N2—H2A···O1i0.83 (2)2.54 (2)3.1513 (19)131.3 (18)
S1—H1···N1ii1.20 (2)2.45 (2)3.4560 (17)140.1 (15)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2005B04).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAzim, A., Parmar, V. S. & Errington, W. (1997). Acta Cryst. C53, 1436–1438.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGao, Y., Zou, X. M., Yu, L. M., Xu, H., Liu, B., Zhu, Y. Q., Hu, F. Z. & Yang, H. Z. (2006). J. Chin. Chem. 24, 521–523.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTimofeeva, T. V., Kinnibrugh, T., Borbulevych, O. Y., Averkiev, B. B., Nesterov, V. N., Sloan, A. & Antipin, M. Y. (2004). Cryst. Growth Des. 4, 1265–1276.  Web of Science CSD CrossRef CAS Google Scholar
First citationXue, S. J., Duan, L. P. & Xe, S. Y. (2004). Chin. J. Struct. Chem. 23, 441–444.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds