inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dicaesium tetra­chlorido­dioxido­plutonate(VI)

aC-ADI, MS J565, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA, and bMPA-MC, MS J514, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA
*Correspondence e-mail: mpw@lanl.gov

(Received 4 October 2007; accepted 10 December 2007; online 18 December 2007)

The anion of the title complex, Cs2[PuCl4O2], adopts a pseudo-octa­hedral geometry (2/m crystallographic site symmetry) with two plutonyl oxide ligands in axial sites and four chloride ligands occupying the equatorial plane. Charge balance is maintained by two caesium cations per tetra­chlorido­dioxido­plutonate(VI) anion. Principal bond lengths include Pu—O = 1.752 (3) Å and Pu—Cl = 2.6648 (8) Å.

Related literature

For related literature, see: Hall et al. (1966[Hall, D., Rae, A. D. & Waters, T. N. (1966). Acta Cryst. 20, 160-162.]); Watkin et al. (1991[Watkin, D. J., Denning, R. G. & Prout, K. (1991). Acta Cryst. C47, 2517-2519.]); Wilkerson et al. (2004[Wilkerson, M. P., Dewey, H. J., Gordon, P. L. & Scott, B. L. (2004). J. Chem. Crystallogr. 34, 807-811.]); Wilkerson et al. (2007[Wilkerson, M. P., Arrington, C. A., Berg, J. M. & Scott, B. L. (2007). J. Alloys Compd. 444-445, 634-639.]); Bean et al. (2004[Bean, A. C., Albrecht-Schmitt, T. E. & Runde, W. (2004). J. Solid State Chem. 177, 1346-1351.], 2005[Bean, A. C., Abney, K., Scott, B. L. & Runde, W. (2005). Inorg. Chem. 44, 5209-5211.]); Grenthe et al. (2006[Grenthe, I., Drozdzynski, J., Fujino, T., Buck, E. C., Albrecht-Schmitt, T. E. & Wolf, S. F. (2006). The Chemistry of the Actinide and Transactinide Elements, Vol. 1, ch. 5, edited by L. R. Morrs, N. M. Edelstein, J. Fuger & J. J. Katz, 3rd ed., p. 578. Dordrecht: Springer.]); Grigoriev et al. (2004[Grigoriev, M. S., Antipin, M. Yu., Krot, N. N. & Bessonov, A. A. (2004). Radiochim. Acta, 92, 405-409.]); Runde et al. (2003[Runde, W., Bean, A. C., Albrecht-Schmitt, T. E. & Scott, B. L. (2003). Chem. Commun. pp. 478-479.]); Sessler et al. (2002[Sessler, J. L., Gorden, A. E. V., Seidel, D., Hannah, S., Lynch, V., Gordon, P. L., Donohoe, R. J., Tait, C. D. & Keogh, D. W. (2002). Inorg. Chim. Acta, 341, 54-70.]).

[Scheme 1]

Experimental

Crystal data
  • Cs2[PuCl4O2]

  • Mr = 678.67

  • Monoclinic, C 2/m

  • a = 11.9489 (7) Å

  • b = 7.7286 (5) Å

  • c = 5.7855 (4) Å

  • β = 96.439 (1)°

  • V = 530.91 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 13.92 mm−1

  • T = 141 (2) K

  • 0.22 × 0.18 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.150, Tmax = 0.286 (expected range = 0.099–0.188)

  • 3212 measured reflections

  • 711 independent reflections

  • 659 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.037

  • S = 1.26

  • 711 reflections

  • 27 parameters

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Version 1.08. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Version 7.06. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (1), is isostructural with the uranium analogue Cs2U(VI)O2Cl4 and the neptunium analogue Cs2Np(VI)O2Cl4, which crystallize in the space group C2/m (Hall et al., 1966; Watkin et al., 1991; Wilkerson et al., 2007). The Pu atom sits on a site of 2/m crystallographic symmetry; the twofold rotation axis bisects the Cl—U—Cl angle, and the plutonyl axis lies in the mirror plane. The plutonium metal is coordinated in a pseudo-octahedral fashion by two oxo groups and four chloride ligands. The oxo groups of the plutonyl ion lie trans to one another with a bond angle of 180.0 (3). This angle is equivalent within 3 σ to those reported for the limited number of plutonyl structures published (range 178.0 (4)–179.4 (2)) (Bean et al., 2004; Bean et al., 2005; Grigoriev et al., 2004; Runde et al., 2003). This value is within the range reported for the majority of actinyl compounds (Grenthe et al., 2006). The Pu—O(oxo) distances are 1.752 (3) Å. Although there are no reported six coordinate plutonyl structures with which to compare, this value is within range of Pu—O(oxo) bond lengths reported for seven coordinate plutonyl structures (1.727 (4)–1.771 (11) Å) (Bean et al., 2004; Bean et al., 2005; Grigoriev et al., 2004; Runde et al., 2003). The chloride ligands lie in the equatorial plane of the plutonyl ion, and the Pu—Cl bond distances are 2.6648 (8) Å. Although there are no plutonyl chloride structures reported, these values are longer than Np—Cl bond lengths reported for six-coordinate Cs2NpO2Cl4 (2.653 (3) Å) (Wilkerson et al., 2004).

Related literature top

For related literature, see: Hall et al. (1966); Watkin et al. (1991); Wilkerson et al. (2004); Wilkerson et al. (2007); Bean et al. (2004, 2005); Grenthe et al. (2006); Grigoriev et al. (2004); Runde et al. (2003); Sessler et al. (2002).

Experimental top

Caesium chloride (0.021 g, 0.12 mmol; Aldrich, 99.999%) was dissolved in 2M HCl (0.5 ml; Aldrich, ACS reagent, 37%), and this solution was added to a stock solution of 0.063 M Pu(VI)O22+ in 2M HCl (1 ml, 0.063 mmol; Fisher, Certified ACS Plus) (Sessler et al., 2002). The vial containing the solution was covered loosely with parafilm and allowed to stand for 2 weeks at room temperature. Following evaporation of the solvent, dark golden-brown blocks formed. A dark golden-brown block of 0.22 x 0.18 x 0.12 mm was cut from a larger crystal, and then thinly coated with epoxy and placed in a capillary. The capillary was coated with a thin film of acrylic dissolved in ethyl acetate. (Note: this triple containment was necessitated by the health hazards of transuranic materials.)

Structure description top

The title compound, (1), is isostructural with the uranium analogue Cs2U(VI)O2Cl4 and the neptunium analogue Cs2Np(VI)O2Cl4, which crystallize in the space group C2/m (Hall et al., 1966; Watkin et al., 1991; Wilkerson et al., 2007). The Pu atom sits on a site of 2/m crystallographic symmetry; the twofold rotation axis bisects the Cl—U—Cl angle, and the plutonyl axis lies in the mirror plane. The plutonium metal is coordinated in a pseudo-octahedral fashion by two oxo groups and four chloride ligands. The oxo groups of the plutonyl ion lie trans to one another with a bond angle of 180.0 (3). This angle is equivalent within 3 σ to those reported for the limited number of plutonyl structures published (range 178.0 (4)–179.4 (2)) (Bean et al., 2004; Bean et al., 2005; Grigoriev et al., 2004; Runde et al., 2003). This value is within the range reported for the majority of actinyl compounds (Grenthe et al., 2006). The Pu—O(oxo) distances are 1.752 (3) Å. Although there are no reported six coordinate plutonyl structures with which to compare, this value is within range of Pu—O(oxo) bond lengths reported for seven coordinate plutonyl structures (1.727 (4)–1.771 (11) Å) (Bean et al., 2004; Bean et al., 2005; Grigoriev et al., 2004; Runde et al., 2003). The chloride ligands lie in the equatorial plane of the plutonyl ion, and the Pu—Cl bond distances are 2.6648 (8) Å. Although there are no plutonyl chloride structures reported, these values are longer than Np—Cl bond lengths reported for six-coordinate Cs2NpO2Cl4 (2.653 (3) Å) (Wilkerson et al., 2004).

For related literature, see: Hall et al. (1966); Watkin et al. (1991); Wilkerson et al. (2004); Wilkerson et al. (2007); Bean et al. (2004, 2005); Grenthe et al. (2006); Grigoriev et al. (2004); Runde et al. (2003); Sessler et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. Molecular structure (70% probability displacement ellipsoids) of Cs2PuO2Cl4 and the atom-numbering scheme used in Table 1. Symmetry codes as in Table 1.
Dicaesium tetrachloridodioxidoplutonium(VI) top
Crystal data top
Cs2[PuCl4O2]Z = 2
Mr = 678.67F(000) = 576
Monoclinic, C2/mDx = 4.245 Mg m3
Hall symbol: -C 2yMo Kα radiation, λ = 0.71073 Å
a = 11.9489 (7) Åθ = 3.2–28.7°
b = 7.7286 (5) ŵ = 13.92 mm1
c = 5.7855 (4) ÅT = 141 K
β = 96.439 (1)°Irregular, golden brown
V = 530.91 (6) Å30.22 × 0.18 × 0.12 mm
Data collection top
Bruker D8 with APEXII CCD
diffractometer
711 independent reflections
Radiation source: fine-focus sealed tube659 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 28.7°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1515
Tmin = 0.150, Tmax = 0.286k = 1010
3212 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0151P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.037(Δ/σ)max = 0.001
S = 1.26Δρmax = 0.78 e Å3
711 reflectionsΔρmin = 0.64 e Å3
27 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0050 (2)
Crystal data top
Cs2[PuCl4O2]V = 530.91 (6) Å3
Mr = 678.67Z = 2
Monoclinic, C2/mMo Kα radiation
a = 11.9489 (7) ŵ = 13.92 mm1
b = 7.7286 (5) ÅT = 141 K
c = 5.7855 (4) Å0.22 × 0.18 × 0.12 mm
β = 96.439 (1)°
Data collection top
Bruker D8 with APEXII CCD
diffractometer
711 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
659 reflections with I > 2σ(I)
Tmin = 0.150, Tmax = 0.286Rint = 0.025
3212 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01527 parameters
wR(F2) = 0.0370 restraints
S = 1.26Δρmax = 0.78 e Å3
711 reflectionsΔρmin = 0.64 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pu10.00000.00000.00000.02605 (11)
Cs10.34147 (2)0.00000.69601 (6)0.03801 (11)
Cl10.10351 (7)0.24889 (10)0.21367 (16)0.0390 (2)
O10.1124 (3)0.00000.2222 (6)0.0395 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pu10.02849 (15)0.02078 (14)0.02946 (15)0.0000.00583 (9)0.000
Cs10.03790 (19)0.03608 (19)0.0419 (2)0.0000.01250 (15)0.000
Cl10.0436 (4)0.0305 (4)0.0454 (5)0.0015 (3)0.0162 (4)0.0058 (3)
O10.0381 (19)0.0424 (19)0.0371 (19)0.0000.0002 (16)0.000
Geometric parameters (Å, º) top
Pu1—O1i1.752 (3)Cs1—Cl1xii3.5201 (8)
Pu1—O11.752 (3)Cs1—Cl1viii3.5201 (8)
Pu1—Cl1ii2.6648 (8)Cs1—Cl1xiii3.5674 (10)
Pu1—Cl12.6648 (8)Cs1—Cl1xiv3.5674 (10)
Pu1—Cl1iii2.6648 (8)Cs1—O13.650 (4)
Pu1—Cl1i2.6648 (8)Cs1—Cl1xv3.6710 (9)
Pu1—Cs1iv4.5680 (3)Cs1—Cl1vi3.6710 (9)
Pu1—Cs1v4.5680 (3)Cs1—Pu1xiii4.5680 (3)
Pu1—Cs1vi4.5680 (3)Cs1—Pu1xvi4.5680 (3)
Pu1—Cs1vii4.5680 (3)Cs1—Pu1xvii4.6207 (3)
Pu1—Cs1viii4.6207 (3)Cl1—Cs1xviii3.5209 (9)
Pu1—Cs1ix4.6207 (3)Cl1—Cs1viii3.5201 (8)
Cs1—Cl1x3.5209 (9)Cl1—Cs1iv3.5674 (10)
Cs1—Cl1xi3.5209 (9)Cl1—Cs1vi3.6710 (9)
O1i—Pu1—O1180.0 (3)Cl1x—Cs1—Cl1xiii158.75 (3)
O1i—Pu1—Cl1ii90.98 (8)Cl1xi—Cs1—Cl1xiii109.41 (2)
O1—Pu1—Cl1ii89.02 (8)Cl1xii—Cs1—Cl1xiii104.390 (15)
O1i—Pu1—Cl189.02 (8)Cl1viii—Cs1—Cl1xiii69.76 (2)
O1—Pu1—Cl190.98 (8)Cl1x—Cs1—Cl1xiv109.41 (2)
Cl1ii—Pu1—Cl187.58 (3)Cl1xi—Cs1—Cl1xiv158.75 (3)
O1i—Pu1—Cl1iii89.02 (8)Cl1xii—Cs1—Cl1xiv69.76 (2)
O1—Pu1—Cl1iii90.98 (8)Cl1viii—Cs1—Cl1xiv104.390 (15)
Cl1ii—Pu1—Cl1iii180.00 (5)Cl1xiii—Cs1—Cl1xiv65.91 (3)
Cl1—Pu1—Cl1iii92.42 (3)Cl1x—Cs1—O166.15 (5)
O1i—Pu1—Cl1i90.98 (8)Cl1xi—Cs1—O166.15 (5)
O1—Pu1—Cl1i89.02 (8)Cl1xii—Cs1—O163.98 (5)
Cl1ii—Pu1—Cl1i92.42 (3)Cl1viii—Cs1—O163.98 (5)
Cl1—Pu1—Cl1i180.00 (4)Cl1xiii—Cs1—O1133.04 (4)
Cl1iii—Pu1—Cl1i87.58 (3)Cl1xiv—Cs1—O1133.04 (4)
O1i—Pu1—Cs1iv57.778 (4)Cl1x—Cs1—Cl1xv99.912 (18)
O1—Pu1—Cs1iv122.222 (4)Cl1xi—Cs1—Cl1xv65.75 (3)
Cl1ii—Pu1—Cs1iv53.469 (18)Cl1xii—Cs1—Cl1xv163.34 (3)
Cl1—Pu1—Cs1iv51.24 (2)Cl1viii—Cs1—Cl1xv112.348 (8)
Cl1iii—Pu1—Cs1iv126.531 (18)Cl1xiii—Cs1—Cl1xv61.25 (2)
Cl1i—Pu1—Cs1iv128.76 (2)Cl1xiv—Cs1—Cl1xv95.403 (19)
O1i—Pu1—Cs1v122.222 (4)O1—Cs1—Cl1xv131.50 (4)
O1—Pu1—Cs1v57.778 (4)Cl1x—Cs1—Cl1vi65.75 (3)
Cl1ii—Pu1—Cs1v126.531 (18)Cl1xi—Cs1—Cl1vi99.912 (18)
Cl1—Pu1—Cs1v128.76 (2)Cl1xii—Cs1—Cl1vi112.348 (8)
Cl1iii—Pu1—Cs1v53.469 (18)Cl1viii—Cs1—Cl1vi163.34 (3)
Cl1i—Pu1—Cs1v51.24 (2)Cl1xiii—Cs1—Cl1vi95.403 (19)
Cs1iv—Pu1—Cs1v180.000 (8)Cl1xiv—Cs1—Cl1vi61.25 (2)
O1i—Pu1—Cs1vi122.222 (4)O1—Cs1—Cl1vi131.50 (4)
O1—Pu1—Cs1vi57.778 (4)Cl1xv—Cs1—Cl1vi63.83 (3)
Cl1ii—Pu1—Cs1vi51.24 (2)Cl1x—Cs1—Pu1xiii131.698 (14)
Cl1—Pu1—Cs1vi53.469 (18)Cl1xi—Cs1—Pu1xiii74.494 (15)
Cl1iii—Pu1—Cs1vi128.76 (2)Cl1xii—Cs1—Pu1xiii135.406 (14)
Cl1i—Pu1—Cs1vi126.531 (18)Cl1viii—Cs1—Pu1xiii77.734 (14)
Cs1iv—Pu1—Cs1vi64.454 (8)Cl1xiii—Cs1—Pu1xiii35.626 (12)
Cs1v—Pu1—Cs1vi115.546 (8)Cl1xiv—Cs1—Pu1xiii96.174 (16)
O1i—Pu1—Cs1vii57.778 (4)O1—Cs1—Pu1xiii122.194 (5)
O1—Pu1—Cs1vii122.222 (4)Cl1xv—Cs1—Pu1xiii35.683 (12)
Cl1ii—Pu1—Cs1vii128.76 (2)Cl1vi—Cs1—Pu1xiii94.713 (15)
Cl1—Pu1—Cs1vii126.531 (18)Cl1x—Cs1—Pu1xvi74.494 (15)
Cl1iii—Pu1—Cs1vii51.24 (2)Cl1xi—Cs1—Pu1xvi131.698 (14)
Cl1i—Pu1—Cs1vii53.469 (18)Cl1xii—Cs1—Pu1xvi77.734 (14)
Cs1iv—Pu1—Cs1vii115.546 (8)Cl1viii—Cs1—Pu1xvi135.406 (14)
Cs1v—Pu1—Cs1vii64.454 (8)Cl1xiii—Cs1—Pu1xvi96.174 (16)
Cs1vi—Pu1—Cs1vii180.000 (7)Cl1xiv—Cs1—Pu1xvi35.626 (12)
O1i—Pu1—Cs1viii69.04 (11)O1—Cs1—Pu1xvi122.194 (5)
O1—Pu1—Cs1viii110.96 (11)Cl1xv—Cs1—Pu1xvi94.713 (15)
Cl1ii—Pu1—Cs1viii130.706 (17)Cl1vi—Cs1—Pu1xvi35.683 (12)
Cl1—Pu1—Cs1viii49.294 (17)Pu1xiii—Cs1—Pu1xvi115.546 (8)
Cl1iii—Pu1—Cs1viii49.294 (17)Cl1x—Cs1—Pu1xvii123.572 (15)
Cl1i—Pu1—Cs1viii130.706 (17)Cl1xi—Cs1—Pu1xvii123.572 (15)
Cs1iv—Pu1—Cs1viii78.510 (5)Cl1xii—Cs1—Pu1xvii35.021 (13)
Cs1v—Pu1—Cs1viii101.490 (5)Cl1viii—Cs1—Pu1xvii35.021 (13)
Cs1vi—Pu1—Cs1viii101.490 (5)Cl1xiii—Cs1—Pu1xvii76.579 (13)
Cs1vii—Pu1—Cs1viii78.510 (5)Cl1xiv—Cs1—Pu1xvii76.579 (13)
O1i—Pu1—Cs1ix110.96 (11)O1—Cs1—Pu1xvii70.49 (5)
O1—Pu1—Cs1ix69.04 (11)Cl1xv—Cs1—Pu1xvii136.161 (13)
Cl1ii—Pu1—Cs1ix49.294 (17)Cl1vi—Cs1—Pu1xvii136.161 (13)
Cl1—Pu1—Cs1ix130.706 (17)Pu1xiii—Cs1—Pu1xvii101.490 (5)
Cl1iii—Pu1—Cs1ix130.706 (17)Pu1xvi—Cs1—Pu1xvii101.490 (5)
Cl1i—Pu1—Cs1ix49.294 (17)Pu1—Cl1—Cs1xviii154.58 (3)
Cs1iv—Pu1—Cs1ix101.490 (5)Pu1—Cl1—Cs1viii95.68 (2)
Cs1v—Pu1—Cs1ix78.510 (5)Cs1xviii—Cl1—Cs1viii87.583 (18)
Cs1vi—Pu1—Cs1ix78.510 (5)Pu1—Cl1—Cs1iv93.13 (2)
Cs1vii—Pu1—Cs1ix101.490 (5)Cs1xviii—Cl1—Cs1iv109.41 (2)
Cs1viii—Pu1—Cs1ix180.000 (3)Cs1viii—Cl1—Cs1iv110.24 (2)
Cl1x—Cs1—Cl1xi66.90 (3)Pu1—Cl1—Cs1vi90.85 (2)
Cl1x—Cs1—Cl1xii92.417 (18)Cs1xviii—Cl1—Cs1vi80.088 (18)
Cl1xi—Cs1—Cl1xii130.133 (13)Cs1viii—Cl1—Cs1vi163.34 (3)
Cl1x—Cs1—Cl1viii130.133 (13)Cs1iv—Cl1—Cs1vi84.597 (19)
Cl1xi—Cs1—Cl1viii92.417 (18)Pu1—O1—Cs1178.55 (16)
Cl1xii—Cs1—Cl1viii66.25 (3)
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x, y, z; (iv) x1/2, y1/2, z1; (v) x+1/2, y+1/2, z+1; (vi) x+1/2, y1/2, z+1; (vii) x1/2, y+1/2, z1; (viii) x, y, z+1; (ix) x, y, z1; (x) x+1/2, y1/2, z; (xi) x+1/2, y+1/2, z; (xii) x, y, z+1; (xiii) x+1/2, y+1/2, z+1; (xiv) x+1/2, y1/2, z+1; (xv) x+1/2, y+1/2, z+1; (xvi) x+1/2, y1/2, z+1; (xvii) x, y, z+1; (xviii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaCs2[PuCl4O2]
Mr678.67
Crystal system, space groupMonoclinic, C2/m
Temperature (K)141
a, b, c (Å)11.9489 (7), 7.7286 (5), 5.7855 (4)
β (°) 96.439 (1)
V3)530.91 (6)
Z2
Radiation typeMo Kα
µ (mm1)13.92
Crystal size (mm)0.22 × 0.18 × 0.12
Data collection
DiffractometerBruker D8 with APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.150, 0.286
No. of measured, independent and
observed [I > 2σ(I)] reflections
3212, 711, 659
Rint0.025
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.037, 1.26
No. of reflections711
No. of parameters27
Δρmax, Δρmin (e Å3)0.78, 0.64

Computer programs: APEX2 (Bruker, 2003), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

 

Acknowledgements

We thank Mr Phillip Palmer and Mr Sean D. Reilly for technical assistance. This research at Los Alamos National Laboratory was supported by NA-22, Office of Nonproliferation Research and Engineering, US Department of Energy, National Nuclear Security Administration (NNSA), and Office of Basic Energy Sciences, US Department of Energy. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the US Department of Energy, NNSA under contract number DE-AC52-06NA25396.

References

First citationBean, A. C., Abney, K., Scott, B. L. & Runde, W. (2005). Inorg. Chem. 44, 5209–5211.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBean, A. C., Albrecht-Schmitt, T. E. & Runde, W. (2004). J. Solid State Chem. 177, 1346–1351.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Version 7.06. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Version 1.08. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrenthe, I., Drozdzynski, J., Fujino, T., Buck, E. C., Albrecht-Schmitt, T. E. & Wolf, S. F. (2006). The Chemistry of the Actinide and Transactinide Elements, Vol. 1, ch. 5, edited by L. R. Morrs, N. M. Edelstein, J. Fuger & J. J. Katz, 3rd ed., p. 578. Dordrecht: Springer.  Google Scholar
First citationGrigoriev, M. S., Antipin, M. Yu., Krot, N. N. & Bessonov, A. A. (2004). Radiochim. Acta, 92, 405–409.  Web of Science CSD CrossRef CAS Google Scholar
First citationHall, D., Rae, A. D. & Waters, T. N. (1966). Acta Cryst. 20, 160–162.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRunde, W., Bean, A. C., Albrecht-Schmitt, T. E. & Scott, B. L. (2003). Chem. Commun. pp. 478–479.  Web of Science CrossRef Google Scholar
First citationSessler, J. L., Gorden, A. E. V., Seidel, D., Hannah, S., Lynch, V., Gordon, P. L., Donohoe, R. J., Tait, C. D. & Keogh, D. W. (2002). Inorg. Chim. Acta, 341, 54–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationWatkin, D. J., Denning, R. G. & Prout, K. (1991). Acta Cryst. C47, 2517–2519.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWilkerson, M. P., Arrington, C. A., Berg, J. M. & Scott, B. L. (2007). J. Alloys Compd. 444–445, 634–639.  Web of Science CrossRef CAS Google Scholar
First citationWilkerson, M. P., Dewey, H. J., Gordon, P. L. & Scott, B. L. (2004). J. Chem. Crystallogr. 34, 807–811.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds