inorganic compounds
Dicaesium tetrachloridodioxidoplutonate(VI)
aC-ADI, MS J565, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA, and bMPA-MC, MS J514, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA
*Correspondence e-mail: mpw@lanl.gov
The anion of the title complex, Cs2[PuCl4O2], adopts a pseudo-octahedral geometry (2/m crystallographic site symmetry) with two plutonyl oxide ligands in axial sites and four chloride ligands occupying the equatorial plane. Charge balance is maintained by two caesium cations per tetrachloridodioxidoplutonate(VI) anion. Principal bond lengths include Pu—O = 1.752 (3) Å and Pu—Cl = 2.6648 (8) Å.
Related literature
For related literature, see: Hall et al. (1966); Watkin et al. (1991); Wilkerson et al. (2004); Wilkerson et al. (2007); Bean et al. (2004, 2005); Grenthe et al. (2006); Grigoriev et al. (2004); Runde et al. (2003); Sessler et al. (2002).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2003); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536807066354/fi2048sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807066354/fi2048Isup2.hkl
Caesium chloride (0.021 g, 0.12 mmol; Aldrich, 99.999%) was dissolved in 2M HCl (0.5 ml; Aldrich, ACS reagent, 37%), and this solution was added to a stock solution of 0.063 M Pu(VI)O22+ in 2M HCl (1 ml, 0.063 mmol; Fisher, Certified ACS Plus) (Sessler et al., 2002). The vial containing the solution was covered loosely with parafilm and allowed to stand for 2 weeks at room temperature. Following evaporation of the solvent, dark golden-brown blocks formed. A dark golden-brown block of 0.22 x 0.18 x 0.12 mm was cut from a larger crystal, and then thinly coated with epoxy and placed in a capillary. The capillary was coated with a thin film of acrylic dissolved in ethyl acetate. (Note: this triple containment was necessitated by the health hazards of transuranic materials.)
The title compound, (1), is isostructural with the uranium analogue Cs2U(VI)O2Cl4 and the neptunium analogue Cs2Np(VI)O2Cl4, which crystallize in the σ to those reported for the limited number of plutonyl structures published (range 178.0 (4)–179.4 (2)) (Bean et al., 2004; Bean et al., 2005; Grigoriev et al., 2004; Runde et al., 2003). This value is within the range reported for the majority of actinyl compounds (Grenthe et al., 2006). The Pu—O(oxo) distances are 1.752 (3) Å. Although there are no reported six coordinate plutonyl structures with which to compare, this value is within range of Pu—O(oxo) bond lengths reported for seven coordinate plutonyl structures (1.727 (4)–1.771 (11) Å) (Bean et al., 2004; Bean et al., 2005; Grigoriev et al., 2004; Runde et al., 2003). The chloride ligands lie in the equatorial plane of the plutonyl ion, and the Pu—Cl bond distances are 2.6648 (8) Å. Although there are no plutonyl chloride structures reported, these values are longer than Np—Cl bond lengths reported for six-coordinate Cs2NpO2Cl4 (2.653 (3) Å) (Wilkerson et al., 2004).
C2/m (Hall et al., 1966; Watkin et al., 1991; Wilkerson et al., 2007). The Pu atom sits on a site of 2/m the twofold rotation axis bisects the Cl—U—Cl angle, and the plutonyl axis lies in the mirror plane. The plutonium metal is coordinated in a pseudo-octahedral fashion by two oxo groups and four chloride ligands. The oxo groups of the plutonyl ion lie trans to one another with a bond angle of 180.0 (3). This angle is equivalent within 3For related literature, see: Hall et al. (1966); Watkin et al. (1991); Wilkerson et al. (2004); Wilkerson et al. (2007); Bean et al. (2004, 2005); Grenthe et al. (2006); Grigoriev et al. (2004); Runde et al. (2003); Sessler et al. (2002).
Data collection: APEX2 (Bruker, 2003); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).Fig. 1. Molecular structure (70% probability displacement ellipsoids) of Cs2PuO2Cl4 and the atom-numbering scheme used in Table 1. Symmetry codes as in Table 1. |
Cs2[PuCl4O2] | Z = 2 |
Mr = 678.67 | F(000) = 576 |
Monoclinic, C2/m | Dx = 4.245 Mg m−3 |
Hall symbol: -C 2y | Mo Kα radiation, λ = 0.71073 Å |
a = 11.9489 (7) Å | θ = 3.2–28.7° |
b = 7.7286 (5) Å | µ = 13.92 mm−1 |
c = 5.7855 (4) Å | T = 141 K |
β = 96.439 (1)° | Irregular, golden brown |
V = 530.91 (6) Å3 | 0.22 × 0.18 × 0.12 mm |
Bruker D8 with APEXII CCD diffractometer | 711 independent reflections |
Radiation source: fine-focus sealed tube | 659 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω scans | θmax = 28.7°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | h = −15→15 |
Tmin = 0.150, Tmax = 0.286 | k = −10→10 |
3212 measured reflections | l = −7→7 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.015 | w = 1/[σ2(Fo2) + (0.0151P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.037 | (Δ/σ)max = 0.001 |
S = 1.26 | Δρmax = 0.78 e Å−3 |
711 reflections | Δρmin = −0.64 e Å−3 |
27 parameters | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0050 (2) |
Cs2[PuCl4O2] | V = 530.91 (6) Å3 |
Mr = 678.67 | Z = 2 |
Monoclinic, C2/m | Mo Kα radiation |
a = 11.9489 (7) Å | µ = 13.92 mm−1 |
b = 7.7286 (5) Å | T = 141 K |
c = 5.7855 (4) Å | 0.22 × 0.18 × 0.12 mm |
β = 96.439 (1)° |
Bruker D8 with APEXII CCD diffractometer | 711 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | 659 reflections with I > 2σ(I) |
Tmin = 0.150, Tmax = 0.286 | Rint = 0.025 |
3212 measured reflections |
R[F2 > 2σ(F2)] = 0.015 | 27 parameters |
wR(F2) = 0.037 | 0 restraints |
S = 1.26 | Δρmax = 0.78 e Å−3 |
711 reflections | Δρmin = −0.64 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pu1 | 0.0000 | 0.0000 | 0.0000 | 0.02605 (11) | |
Cs1 | 0.34147 (2) | 0.0000 | 0.69601 (6) | 0.03801 (11) | |
Cl1 | −0.10351 (7) | −0.24889 (10) | 0.21367 (16) | 0.0390 (2) | |
O1 | 0.1124 (3) | 0.0000 | 0.2222 (6) | 0.0395 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pu1 | 0.02849 (15) | 0.02078 (14) | 0.02946 (15) | 0.000 | 0.00583 (9) | 0.000 |
Cs1 | 0.03790 (19) | 0.03608 (19) | 0.0419 (2) | 0.000 | 0.01250 (15) | 0.000 |
Cl1 | 0.0436 (4) | 0.0305 (4) | 0.0454 (5) | −0.0015 (3) | 0.0162 (4) | 0.0058 (3) |
O1 | 0.0381 (19) | 0.0424 (19) | 0.0371 (19) | 0.000 | 0.0002 (16) | 0.000 |
Pu1—O1i | 1.752 (3) | Cs1—Cl1xii | 3.5201 (8) |
Pu1—O1 | 1.752 (3) | Cs1—Cl1viii | 3.5201 (8) |
Pu1—Cl1ii | 2.6648 (8) | Cs1—Cl1xiii | 3.5674 (10) |
Pu1—Cl1 | 2.6648 (8) | Cs1—Cl1xiv | 3.5674 (10) |
Pu1—Cl1iii | 2.6648 (8) | Cs1—O1 | 3.650 (4) |
Pu1—Cl1i | 2.6648 (8) | Cs1—Cl1xv | 3.6710 (9) |
Pu1—Cs1iv | 4.5680 (3) | Cs1—Cl1vi | 3.6710 (9) |
Pu1—Cs1v | 4.5680 (3) | Cs1—Pu1xiii | 4.5680 (3) |
Pu1—Cs1vi | 4.5680 (3) | Cs1—Pu1xvi | 4.5680 (3) |
Pu1—Cs1vii | 4.5680 (3) | Cs1—Pu1xvii | 4.6207 (3) |
Pu1—Cs1viii | 4.6207 (3) | Cl1—Cs1xviii | 3.5209 (9) |
Pu1—Cs1ix | 4.6207 (3) | Cl1—Cs1viii | 3.5201 (8) |
Cs1—Cl1x | 3.5209 (9) | Cl1—Cs1iv | 3.5674 (10) |
Cs1—Cl1xi | 3.5209 (9) | Cl1—Cs1vi | 3.6710 (9) |
O1i—Pu1—O1 | 180.0 (3) | Cl1x—Cs1—Cl1xiii | 158.75 (3) |
O1i—Pu1—Cl1ii | 90.98 (8) | Cl1xi—Cs1—Cl1xiii | 109.41 (2) |
O1—Pu1—Cl1ii | 89.02 (8) | Cl1xii—Cs1—Cl1xiii | 104.390 (15) |
O1i—Pu1—Cl1 | 89.02 (8) | Cl1viii—Cs1—Cl1xiii | 69.76 (2) |
O1—Pu1—Cl1 | 90.98 (8) | Cl1x—Cs1—Cl1xiv | 109.41 (2) |
Cl1ii—Pu1—Cl1 | 87.58 (3) | Cl1xi—Cs1—Cl1xiv | 158.75 (3) |
O1i—Pu1—Cl1iii | 89.02 (8) | Cl1xii—Cs1—Cl1xiv | 69.76 (2) |
O1—Pu1—Cl1iii | 90.98 (8) | Cl1viii—Cs1—Cl1xiv | 104.390 (15) |
Cl1ii—Pu1—Cl1iii | 180.00 (5) | Cl1xiii—Cs1—Cl1xiv | 65.91 (3) |
Cl1—Pu1—Cl1iii | 92.42 (3) | Cl1x—Cs1—O1 | 66.15 (5) |
O1i—Pu1—Cl1i | 90.98 (8) | Cl1xi—Cs1—O1 | 66.15 (5) |
O1—Pu1—Cl1i | 89.02 (8) | Cl1xii—Cs1—O1 | 63.98 (5) |
Cl1ii—Pu1—Cl1i | 92.42 (3) | Cl1viii—Cs1—O1 | 63.98 (5) |
Cl1—Pu1—Cl1i | 180.00 (4) | Cl1xiii—Cs1—O1 | 133.04 (4) |
Cl1iii—Pu1—Cl1i | 87.58 (3) | Cl1xiv—Cs1—O1 | 133.04 (4) |
O1i—Pu1—Cs1iv | 57.778 (4) | Cl1x—Cs1—Cl1xv | 99.912 (18) |
O1—Pu1—Cs1iv | 122.222 (4) | Cl1xi—Cs1—Cl1xv | 65.75 (3) |
Cl1ii—Pu1—Cs1iv | 53.469 (18) | Cl1xii—Cs1—Cl1xv | 163.34 (3) |
Cl1—Pu1—Cs1iv | 51.24 (2) | Cl1viii—Cs1—Cl1xv | 112.348 (8) |
Cl1iii—Pu1—Cs1iv | 126.531 (18) | Cl1xiii—Cs1—Cl1xv | 61.25 (2) |
Cl1i—Pu1—Cs1iv | 128.76 (2) | Cl1xiv—Cs1—Cl1xv | 95.403 (19) |
O1i—Pu1—Cs1v | 122.222 (4) | O1—Cs1—Cl1xv | 131.50 (4) |
O1—Pu1—Cs1v | 57.778 (4) | Cl1x—Cs1—Cl1vi | 65.75 (3) |
Cl1ii—Pu1—Cs1v | 126.531 (18) | Cl1xi—Cs1—Cl1vi | 99.912 (18) |
Cl1—Pu1—Cs1v | 128.76 (2) | Cl1xii—Cs1—Cl1vi | 112.348 (8) |
Cl1iii—Pu1—Cs1v | 53.469 (18) | Cl1viii—Cs1—Cl1vi | 163.34 (3) |
Cl1i—Pu1—Cs1v | 51.24 (2) | Cl1xiii—Cs1—Cl1vi | 95.403 (19) |
Cs1iv—Pu1—Cs1v | 180.000 (8) | Cl1xiv—Cs1—Cl1vi | 61.25 (2) |
O1i—Pu1—Cs1vi | 122.222 (4) | O1—Cs1—Cl1vi | 131.50 (4) |
O1—Pu1—Cs1vi | 57.778 (4) | Cl1xv—Cs1—Cl1vi | 63.83 (3) |
Cl1ii—Pu1—Cs1vi | 51.24 (2) | Cl1x—Cs1—Pu1xiii | 131.698 (14) |
Cl1—Pu1—Cs1vi | 53.469 (18) | Cl1xi—Cs1—Pu1xiii | 74.494 (15) |
Cl1iii—Pu1—Cs1vi | 128.76 (2) | Cl1xii—Cs1—Pu1xiii | 135.406 (14) |
Cl1i—Pu1—Cs1vi | 126.531 (18) | Cl1viii—Cs1—Pu1xiii | 77.734 (14) |
Cs1iv—Pu1—Cs1vi | 64.454 (8) | Cl1xiii—Cs1—Pu1xiii | 35.626 (12) |
Cs1v—Pu1—Cs1vi | 115.546 (8) | Cl1xiv—Cs1—Pu1xiii | 96.174 (16) |
O1i—Pu1—Cs1vii | 57.778 (4) | O1—Cs1—Pu1xiii | 122.194 (5) |
O1—Pu1—Cs1vii | 122.222 (4) | Cl1xv—Cs1—Pu1xiii | 35.683 (12) |
Cl1ii—Pu1—Cs1vii | 128.76 (2) | Cl1vi—Cs1—Pu1xiii | 94.713 (15) |
Cl1—Pu1—Cs1vii | 126.531 (18) | Cl1x—Cs1—Pu1xvi | 74.494 (15) |
Cl1iii—Pu1—Cs1vii | 51.24 (2) | Cl1xi—Cs1—Pu1xvi | 131.698 (14) |
Cl1i—Pu1—Cs1vii | 53.469 (18) | Cl1xii—Cs1—Pu1xvi | 77.734 (14) |
Cs1iv—Pu1—Cs1vii | 115.546 (8) | Cl1viii—Cs1—Pu1xvi | 135.406 (14) |
Cs1v—Pu1—Cs1vii | 64.454 (8) | Cl1xiii—Cs1—Pu1xvi | 96.174 (16) |
Cs1vi—Pu1—Cs1vii | 180.000 (7) | Cl1xiv—Cs1—Pu1xvi | 35.626 (12) |
O1i—Pu1—Cs1viii | 69.04 (11) | O1—Cs1—Pu1xvi | 122.194 (5) |
O1—Pu1—Cs1viii | 110.96 (11) | Cl1xv—Cs1—Pu1xvi | 94.713 (15) |
Cl1ii—Pu1—Cs1viii | 130.706 (17) | Cl1vi—Cs1—Pu1xvi | 35.683 (12) |
Cl1—Pu1—Cs1viii | 49.294 (17) | Pu1xiii—Cs1—Pu1xvi | 115.546 (8) |
Cl1iii—Pu1—Cs1viii | 49.294 (17) | Cl1x—Cs1—Pu1xvii | 123.572 (15) |
Cl1i—Pu1—Cs1viii | 130.706 (17) | Cl1xi—Cs1—Pu1xvii | 123.572 (15) |
Cs1iv—Pu1—Cs1viii | 78.510 (5) | Cl1xii—Cs1—Pu1xvii | 35.021 (13) |
Cs1v—Pu1—Cs1viii | 101.490 (5) | Cl1viii—Cs1—Pu1xvii | 35.021 (13) |
Cs1vi—Pu1—Cs1viii | 101.490 (5) | Cl1xiii—Cs1—Pu1xvii | 76.579 (13) |
Cs1vii—Pu1—Cs1viii | 78.510 (5) | Cl1xiv—Cs1—Pu1xvii | 76.579 (13) |
O1i—Pu1—Cs1ix | 110.96 (11) | O1—Cs1—Pu1xvii | 70.49 (5) |
O1—Pu1—Cs1ix | 69.04 (11) | Cl1xv—Cs1—Pu1xvii | 136.161 (13) |
Cl1ii—Pu1—Cs1ix | 49.294 (17) | Cl1vi—Cs1—Pu1xvii | 136.161 (13) |
Cl1—Pu1—Cs1ix | 130.706 (17) | Pu1xiii—Cs1—Pu1xvii | 101.490 (5) |
Cl1iii—Pu1—Cs1ix | 130.706 (17) | Pu1xvi—Cs1—Pu1xvii | 101.490 (5) |
Cl1i—Pu1—Cs1ix | 49.294 (17) | Pu1—Cl1—Cs1xviii | 154.58 (3) |
Cs1iv—Pu1—Cs1ix | 101.490 (5) | Pu1—Cl1—Cs1viii | 95.68 (2) |
Cs1v—Pu1—Cs1ix | 78.510 (5) | Cs1xviii—Cl1—Cs1viii | 87.583 (18) |
Cs1vi—Pu1—Cs1ix | 78.510 (5) | Pu1—Cl1—Cs1iv | 93.13 (2) |
Cs1vii—Pu1—Cs1ix | 101.490 (5) | Cs1xviii—Cl1—Cs1iv | 109.41 (2) |
Cs1viii—Pu1—Cs1ix | 180.000 (3) | Cs1viii—Cl1—Cs1iv | 110.24 (2) |
Cl1x—Cs1—Cl1xi | 66.90 (3) | Pu1—Cl1—Cs1vi | 90.85 (2) |
Cl1x—Cs1—Cl1xii | 92.417 (18) | Cs1xviii—Cl1—Cs1vi | 80.088 (18) |
Cl1xi—Cs1—Cl1xii | 130.133 (13) | Cs1viii—Cl1—Cs1vi | 163.34 (3) |
Cl1x—Cs1—Cl1viii | 130.133 (13) | Cs1iv—Cl1—Cs1vi | 84.597 (19) |
Cl1xi—Cs1—Cl1viii | 92.417 (18) | Pu1—O1—Cs1 | 178.55 (16) |
Cl1xii—Cs1—Cl1viii | 66.25 (3) |
Symmetry codes: (i) −x, −y, −z; (ii) −x, y, −z; (iii) x, −y, z; (iv) x−1/2, y−1/2, z−1; (v) −x+1/2, −y+1/2, −z+1; (vi) −x+1/2, −y−1/2, −z+1; (vii) x−1/2, y+1/2, z−1; (viii) −x, −y, −z+1; (ix) x, y, z−1; (x) x+1/2, −y−1/2, z; (xi) x+1/2, y+1/2, z; (xii) −x, y, −z+1; (xiii) x+1/2, y+1/2, z+1; (xiv) x+1/2, −y−1/2, z+1; (xv) −x+1/2, y+1/2, −z+1; (xvi) x+1/2, y−1/2, z+1; (xvii) x, y, z+1; (xviii) x−1/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | Cs2[PuCl4O2] |
Mr | 678.67 |
Crystal system, space group | Monoclinic, C2/m |
Temperature (K) | 141 |
a, b, c (Å) | 11.9489 (7), 7.7286 (5), 5.7855 (4) |
β (°) | 96.439 (1) |
V (Å3) | 530.91 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 13.92 |
Crystal size (mm) | 0.22 × 0.18 × 0.12 |
Data collection | |
Diffractometer | Bruker D8 with APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2001) |
Tmin, Tmax | 0.150, 0.286 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3212, 711, 659 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.676 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.015, 0.037, 1.26 |
No. of reflections | 711 |
No. of parameters | 27 |
Δρmax, Δρmin (e Å−3) | 0.78, −0.64 |
Computer programs: APEX2 (Bruker, 2003), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).
Acknowledgements
We thank Mr Phillip Palmer and Mr Sean D. Reilly for technical assistance. This research at Los Alamos National Laboratory was supported by NA-22, Office of Nonproliferation Research and Engineering, US Department of Energy, National Nuclear Security Administration (NNSA), and Office of Basic Energy Sciences, US Department of Energy. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the US Department of Energy, NNSA under contract number DE-AC52-06NA25396.
References
Bean, A. C., Abney, K., Scott, B. L. & Runde, W. (2005). Inorg. Chem. 44, 5209–5211. Web of Science CrossRef PubMed CAS Google Scholar
Bean, A. C., Albrecht-Schmitt, T. E. & Runde, W. (2004). J. Solid State Chem. 177, 1346–1351. Web of Science CrossRef CAS Google Scholar
Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SAINT-Plus. Version 7.06. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). APEX2. Version 1.08. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Grenthe, I., Drozdzynski, J., Fujino, T., Buck, E. C., Albrecht-Schmitt, T. E. & Wolf, S. F. (2006). The Chemistry of the Actinide and Transactinide Elements, Vol. 1, ch. 5, edited by L. R. Morrs, N. M. Edelstein, J. Fuger & J. J. Katz, 3rd ed., p. 578. Dordrecht: Springer. Google Scholar
Grigoriev, M. S., Antipin, M. Yu., Krot, N. N. & Bessonov, A. A. (2004). Radiochim. Acta, 92, 405–409. Web of Science CSD CrossRef CAS Google Scholar
Hall, D., Rae, A. D. & Waters, T. N. (1966). Acta Cryst. 20, 160–162. CrossRef CAS IUCr Journals Web of Science Google Scholar
Runde, W., Bean, A. C., Albrecht-Schmitt, T. E. & Scott, B. L. (2003). Chem. Commun. pp. 478–479. Web of Science CrossRef Google Scholar
Sessler, J. L., Gorden, A. E. V., Seidel, D., Hannah, S., Lynch, V., Gordon, P. L., Donohoe, R. J., Tait, C. D. & Keogh, D. W. (2002). Inorg. Chim. Acta, 341, 54–70. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany. Google Scholar
Watkin, D. J., Denning, R. G. & Prout, K. (1991). Acta Cryst. C47, 2517–2519. CrossRef CAS Web of Science IUCr Journals Google Scholar
Wilkerson, M. P., Arrington, C. A., Berg, J. M. & Scott, B. L. (2007). J. Alloys Compd. 444–445, 634–639. Web of Science CrossRef CAS Google Scholar
Wilkerson, M. P., Dewey, H. J., Gordon, P. L. & Scott, B. L. (2004). J. Chem. Crystallogr. 34, 807–811. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, (1), is isostructural with the uranium analogue Cs2U(VI)O2Cl4 and the neptunium analogue Cs2Np(VI)O2Cl4, which crystallize in the space group C2/m (Hall et al., 1966; Watkin et al., 1991; Wilkerson et al., 2007). The Pu atom sits on a site of 2/m crystallographic symmetry; the twofold rotation axis bisects the Cl—U—Cl angle, and the plutonyl axis lies in the mirror plane. The plutonium metal is coordinated in a pseudo-octahedral fashion by two oxo groups and four chloride ligands. The oxo groups of the plutonyl ion lie trans to one another with a bond angle of 180.0 (3). This angle is equivalent within 3 σ to those reported for the limited number of plutonyl structures published (range 178.0 (4)–179.4 (2)) (Bean et al., 2004; Bean et al., 2005; Grigoriev et al., 2004; Runde et al., 2003). This value is within the range reported for the majority of actinyl compounds (Grenthe et al., 2006). The Pu—O(oxo) distances are 1.752 (3) Å. Although there are no reported six coordinate plutonyl structures with which to compare, this value is within range of Pu—O(oxo) bond lengths reported for seven coordinate plutonyl structures (1.727 (4)–1.771 (11) Å) (Bean et al., 2004; Bean et al., 2005; Grigoriev et al., 2004; Runde et al., 2003). The chloride ligands lie in the equatorial plane of the plutonyl ion, and the Pu—Cl bond distances are 2.6648 (8) Å. Although there are no plutonyl chloride structures reported, these values are longer than Np—Cl bond lengths reported for six-coordinate Cs2NpO2Cl4 (2.653 (3) Å) (Wilkerson et al., 2004).