inorganic compounds
Redetermination of dicerium(III) tris(sulfate) tetrahydrate
aHeavy Oil Company, Liaohe Petroleum Filiale, China National Petroleum Corporation (CNPC), Shiyou Street No. 96, Panjin, 124010, People's Republic of China
*Correspondence e-mail: yanxchem@yahoo.com.cn
Ce2(SO4)3(H2O)4 was obtained hydrothermally from an aqueous solution of cerium(III) oxide, trimethylamine and sulfuric acid. The precision of the has been significantly improved compared with the previous result [Dereigne (1972). Bull. Soc. Fr. Mineral. Cristallogr. 95, 269–280]. The coordination about the two Ce atoms is achieved by seven and six bridging O atoms from sulfate anions. Each S atom makes four S—O—Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands.
Related literature
For related literature, see: Doran et al. (2002); Li et al. (1998); Plévert et al. (2001); Shi (1987); Xu, Cheng & You (2006); Xu, Ding et al. (2006); Yuan et al. (2004); Zhang et al. (2004). For the previous see: Dereigne (1972).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536807062368/fi2049sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807062368/fi2049Isup2.hkl
Colorless block-shaped crystals were synthesized hydrothermally from a mixture of CeCl3.6H2O, H2SO4 (98%), H2O and trimethylamine(25%). All the chemicals are purchased from Shanghai Chemical Reagent Factory. In a typical synthesis, CeCl3.6H2O(0.2993 g) was dissolved in a mixture of trimethylamine (25%, 0.7893 g) and of water (1 ml) followed by the addition of H2SO4 (98%) (0.3528 g) with constant stirring. Finally, the mixture was kept in a 25 ml Teflon-lined steel autoclave at 180 °C for 6 days. The autoclave was slowly cooled to room temperature, and then the product was filtered, washed with distilled water, and dried at room temperature. Colorless block-shaped crystals of the title compound were obtained.
The highest peak in the difference map is 1.12 e/Å3, and 1.26 (2) Å from Ce2, while the minimum peak is -2.16 (2) Å from Ce1. 5. The H atoms of water were located from different map, and the O—H distances are restrained to 0.85 (2) Å.
Over the past decades, the design and synthesis of new three–dimensional solid state materials have received great attention, due to their functional applications in catalysis and optical device. As the building elements germanium has been choosen to synthesize new porous materials (Li et al., 1998; Plévert et al., 2001; Xu, Cheng & You, 2006; Xu, Ding et al., 2006). In the last few years, an important advance in three dimensional inorganic materials has been achieved by study of lanthanide sulfates frameworks (Zhang et al.,2004; Yuan et al., 2004; Xu, Ding et al., 2006; Doran et al., 2002). In this work, we synthesized the title compound, Cerium(3+) sulfate tetrahydrate, which features a three–dimensional framework. The structure of title compound had been reported previously (Dereigne et al., 1972), however, the precision of redetermination is much improved.
As isostructure with La2(SO4)3(H2O)4 and Nd2(SO4)3(H2O)4 (Shi, 1987), the framework of title compound is constructed from CeO9 and CeO8 polyhedra and SO4 tetrahedra. As shown in Fig. 1 and 2, the
contains two Ce3+, three SO42– groups and four water molecules, all of which belong to the inorganic framework. The coordination about Ce1 and Ce2, respectively, is achieved by bridging oxygen atoms from sulfate anions. Each S atom makes four S–O–Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands of Ce^3+^.The Ce atom has the typical geometrical parameters, with Ce—O distances of 2.354 (3)– 2.710 (3)Å (Table 1). The O—Ce—O angles are between 59.28 (14) and 139.03 (14)°. These bond distances and bond angles are in agreement with those found in similar rare-earth compounds (Zhang et al.,2004; Yuan et al., 2004). The geometry of the sulfate ions is unexceptional. Fig. 3 shows the three-dimensional arrangement in the
displaying the way the different CeO9 polyhydra are connected by bridging sulfates.For related literature, see: Doran et al. (2002); Li et al. (1998); Plévert et al. (2001); Shi (1987); Xu, Cheng & You (2006); Xu, Ding et al. (2006); Yuan et al. (2004); Zhang et al. (2004). For the previous
see: Dereigne (1972).Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.Fig. 1. The coordination of Ce1 for title compound. Displacement ellipsoids at the 70% probability level. Symmetry codes as in Table 1. | |
Fig. 2. The coordination of Ce2 for title compound. Displacement ellipsoids at the 70% probability level. Symmetry codes as in Table 1. | |
Fig. 3. The crystal packing in the unit cell of Ce(SO4)(OH). |
Ce2(SO4)3(H2O)4 | F(000) = 1200 |
Mr = 640.48 | Dx = 3.343 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2201 reflections |
a = 13.1257 (14) Å | θ = 2.1–25.0° |
b = 7.2520 (8) Å | µ = 7.65 mm−1 |
c = 13.3823 (14) Å | T = 293 K |
β = 92.572 (1)° | Block, colourless |
V = 1272.5 (2) Å3 | 0.13 × 0.12 × 0.10 mm |
Z = 4 |
Bruker APEX2 CCD diffractometer | 2201 independent reflections |
Radiation source: fine-focus sealed tube | 2071 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ω scans | θmax = 25.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −12→15 |
Tmin = 0.437, Tmax = 0.515 | k = −8→8 |
5923 measured reflections | l = −15→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | Only H-atom coordinates refined |
wR(F2) = 0.067 | w = 1/[σ2(Fo2) + (0.0371P)2 + 1.0649P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
2201 reflections | Δρmax = 1.12 e Å−3 |
215 parameters | Δρmin = −2.16 e Å−3 |
16 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0953 (15) |
Ce2(SO4)3(H2O)4 | V = 1272.5 (2) Å3 |
Mr = 640.48 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.1257 (14) Å | µ = 7.65 mm−1 |
b = 7.2520 (8) Å | T = 293 K |
c = 13.3823 (14) Å | 0.13 × 0.12 × 0.10 mm |
β = 92.572 (1)° |
Bruker APEX2 CCD diffractometer | 2201 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2071 reflections with I > 2σ(I) |
Tmin = 0.437, Tmax = 0.515 | Rint = 0.032 |
5923 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 16 restraints |
wR(F2) = 0.067 | Only H-atom coordinates refined |
S = 1.09 | Δρmax = 1.12 e Å−3 |
2201 reflections | Δρmin = −2.16 e Å−3 |
215 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ce1 | 0.413692 (17) | 0.24066 (3) | 0.964316 (18) | 0.00669 (14) | |
Ce2 | −0.073660 (17) | 0.26197 (3) | 0.849355 (18) | 0.00793 (14) | |
S1 | 0.59971 (8) | 0.26189 (10) | 1.13380 (8) | 0.0068 (2) | |
S2 | 0.13846 (6) | 0.38957 (12) | 0.95722 (7) | 0.0088 (2) | |
S3 | 0.34712 (6) | −0.10740 (12) | 1.15208 (7) | 0.0077 (2) | |
O1 | 0.3887 (2) | −0.0086 (4) | 1.2394 (2) | 0.0179 (6) | |
O2 | 0.7082 (2) | 0.2370 (3) | 1.1325 (3) | 0.0164 (7) | |
O3 | 0.54510 (19) | 0.0990 (3) | 1.0873 (2) | 0.0109 (6) | |
O4 | 0.2552 (2) | −0.2061 (4) | 1.1792 (2) | 0.0153 (6) | |
O5 | 0.5660 (2) | 0.2917 (4) | 1.2352 (2) | 0.0152 (6) | |
O6 | 0.15247 (19) | 0.4888 (4) | 1.0522 (2) | 0.0174 (6) | |
O7 | 0.32350 (19) | 0.0207 (4) | 1.0695 (2) | 0.0137 (6) | |
O8 | 0.07908 (19) | 0.4978 (4) | 0.8833 (2) | 0.0134 (6) | |
O9 | 0.0762 (3) | 0.2206 (4) | 0.9727 (3) | 0.0158 (7) | |
O10 | 0.23802 (19) | 0.3357 (4) | 0.9218 (2) | 0.0163 (6) | |
O11 | 0.5637 (2) | 0.4210 (4) | 1.0702 (2) | 0.0121 (6) | |
O12 | 0.4231 (3) | −0.2449 (3) | 1.1215 (3) | 0.0134 (7) | |
O1W | 0.3582 (2) | 0.3879 (4) | 1.1345 (2) | 0.0181 (6) | |
H1WB | 0.2964 (19) | 0.371 (5) | 1.152 (4) | 0.027* | |
H1WA | 0.381 (3) | 0.497 (4) | 1.138 (4) | 0.027* | |
O2W | −0.13163 (19) | 0.1354 (4) | 1.0108 (2) | 0.0155 (6) | |
H2WB | −0.185 (2) | 0.179 (5) | 1.037 (3) | 0.023* | |
H2WA | −0.114 (3) | 0.028 (4) | 1.030 (3) | 0.023* | |
O3W | −0.0481 (2) | −0.0777 (4) | 0.8356 (2) | 0.0218 (6) | |
H3WB | −0.049 (3) | −0.142 (4) | 0.889 (2) | 0.033* | |
H3WA | −0.005 (3) | −0.115 (4) | 0.793 (3) | 0.033* | |
O4W | 0.3708 (3) | 0.2180 (5) | 0.7790 (3) | 0.0245 (8) | |
H4WB | 0.401 (3) | 0.147 (6) | 0.738 (3) | 0.037* | |
H4WA | 0.312 (2) | 0.258 (6) | 0.758 (4) | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ce1 | 0.0052 (2) | 0.00827 (18) | 0.0066 (2) | 0.00028 (6) | −0.00017 (12) | 0.00084 (7) |
Ce2 | 0.0056 (2) | 0.00981 (18) | 0.0083 (2) | 0.00046 (6) | 0.00028 (13) | 0.00215 (7) |
S1 | 0.0057 (5) | 0.0090 (5) | 0.0055 (5) | 0.0001 (3) | −0.0013 (4) | 0.0004 (3) |
S2 | 0.0057 (4) | 0.0099 (4) | 0.0106 (5) | 0.0002 (3) | −0.0002 (3) | −0.0003 (3) |
S3 | 0.0062 (4) | 0.0089 (4) | 0.0082 (5) | −0.0012 (3) | 0.0006 (3) | −0.0009 (3) |
O1 | 0.0210 (14) | 0.0193 (14) | 0.0134 (14) | −0.0032 (12) | −0.0009 (11) | −0.0063 (12) |
O2 | 0.0081 (16) | 0.0242 (17) | 0.0169 (18) | 0.0004 (10) | 0.0000 (13) | −0.0027 (10) |
O3 | 0.0113 (13) | 0.0083 (13) | 0.0129 (14) | −0.0018 (10) | −0.0022 (11) | 0.0008 (11) |
O4 | 0.0084 (14) | 0.0212 (13) | 0.0164 (15) | −0.0026 (12) | 0.0005 (11) | 0.0046 (13) |
O5 | 0.0160 (16) | 0.0219 (13) | 0.0081 (15) | −0.0015 (12) | 0.0039 (12) | −0.0029 (13) |
O6 | 0.0148 (14) | 0.0217 (14) | 0.0153 (14) | 0.0032 (11) | −0.0024 (11) | −0.0048 (12) |
O7 | 0.0107 (13) | 0.0149 (13) | 0.0153 (14) | −0.0019 (11) | −0.0009 (10) | 0.0014 (12) |
O8 | 0.0129 (13) | 0.0119 (13) | 0.0153 (15) | 0.0000 (10) | −0.0011 (10) | 0.0032 (11) |
O9 | 0.0163 (17) | 0.0104 (13) | 0.0205 (18) | −0.0026 (11) | −0.0022 (13) | 0.0036 (12) |
O10 | 0.0089 (13) | 0.0241 (16) | 0.0160 (15) | 0.0029 (12) | −0.0005 (10) | −0.0028 (12) |
O11 | 0.0167 (14) | 0.0088 (13) | 0.0104 (14) | −0.0014 (11) | −0.0024 (11) | 0.0026 (11) |
O12 | 0.0115 (17) | 0.0143 (16) | 0.015 (2) | 0.0013 (9) | 0.0053 (12) | 0.0003 (10) |
O1W | 0.0126 (13) | 0.0131 (14) | 0.0290 (17) | −0.0034 (11) | 0.0055 (12) | −0.0034 (12) |
O2W | 0.0139 (14) | 0.0141 (13) | 0.0190 (15) | 0.0006 (11) | 0.0049 (11) | 0.0029 (12) |
O3W | 0.0349 (17) | 0.0137 (14) | 0.0172 (15) | 0.0030 (12) | 0.0059 (13) | 0.0009 (12) |
O4W | 0.0221 (18) | 0.0371 (17) | 0.0137 (17) | 0.0168 (14) | −0.0068 (14) | −0.0093 (14) |
Ce1—O10 | 2.449 (2) | S1—O2 | 1.437 (3) |
Ce1—O7 | 2.465 (3) | S1—O5 | 1.462 (3) |
Ce1—O12i | 2.476 (4) | S1—O11 | 1.498 (3) |
Ce1—O11ii | 2.517 (3) | S1—O3 | 1.502 (3) |
Ce1—O4W | 2.524 (3) | S2—O8 | 1.460 (3) |
Ce1—O3 | 2.547 (3) | S2—O10 | 1.463 (3) |
Ce1—O3i | 2.621 (3) | S2—O6 | 1.465 (3) |
Ce1—O1W | 2.647 (3) | S2—O9 | 1.493 (3) |
Ce1—O11 | 2.710 (3) | S3—O1 | 1.456 (3) |
Ce1—S1 | 3.2607 (11) | S3—O4 | 1.463 (3) |
Ce2—O1iii | 2.354 (3) | S3—O7 | 1.466 (3) |
Ce2—O4iv | 2.430 (3) | S3—O12 | 1.481 (3) |
Ce2—O5iii | 2.470 (3) | O1—Ce2vi | 2.354 (3) |
Ce2—O6v | 2.489 (3) | O3—Ce1i | 2.621 (3) |
Ce2—O3W | 2.494 (3) | O4—Ce2iv | 2.430 (3) |
Ce2—O2W | 2.497 (3) | O5—Ce2vi | 2.470 (3) |
Ce2—O9 | 2.529 (4) | O6—Ce2v | 2.489 (3) |
Ce2—O8 | 2.659 (3) | O11—Ce1ii | 2.517 (3) |
Ce2—S2 | 3.2143 (9) | O12—Ce1i | 2.476 (4) |
O10—Ce1—O7 | 80.99 (9) | O4iv—Ce2—O9 | 144.23 (11) |
O10—Ce1—O12i | 135.57 (11) | O5iii—Ce2—O9 | 78.93 (11) |
O7—Ce1—O12i | 136.10 (8) | O6v—Ce2—O9 | 94.03 (10) |
O10—Ce1—O11ii | 78.49 (9) | O3W—Ce2—O9 | 80.07 (9) |
O7—Ce1—O11ii | 143.04 (9) | O2W—Ce2—O9 | 69.51 (10) |
O12i—Ce1—O11ii | 77.96 (8) | O1iii—Ce2—O8 | 75.74 (9) |
O10—Ce1—O4W | 67.91 (10) | O4iv—Ce2—O8 | 149.39 (9) |
O7—Ce1—O4W | 115.31 (11) | O5iii—Ce2—O8 | 68.43 (9) |
O12i—Ce1—O4W | 72.81 (13) | O6v—Ce2—O8 | 76.73 (8) |
O11ii—Ce1—O4W | 84.61 (10) | O3W—Ce2—O8 | 123.02 (9) |
O10—Ce1—O3 | 150.11 (9) | O2W—Ce2—O8 | 110.19 (8) |
O7—Ce1—O3 | 72.45 (8) | O9—Ce2—O8 | 53.57 (8) |
O12i—Ce1—O3 | 74.32 (10) | O1iii—Ce2—S2 | 102.43 (7) |
O11ii—Ce1—O3 | 115.47 (8) | O4iv—Ce2—S2 | 160.40 (8) |
O4W—Ce1—O3 | 136.36 (9) | O5iii—Ce2—S2 | 70.81 (7) |
O10—Ce1—O3i | 113.98 (9) | O6v—Ce2—S2 | 85.72 (6) |
O7—Ce1—O3i | 69.68 (8) | O3W—Ce2—S2 | 101.58 (7) |
O12i—Ce1—O3i | 72.32 (8) | O2W—Ce2—S2 | 90.50 (6) |
O11ii—Ce1—O3i | 147.19 (9) | O9—Ce2—S2 | 26.89 (7) |
O4W—Ce1—O3i | 73.70 (9) | O8—Ce2—S2 | 26.70 (6) |
O3—Ce1—O3i | 69.49 (9) | O2—S1—O5 | 111.78 (19) |
O10—Ce1—O1W | 78.08 (9) | O2—S1—O11 | 112.17 (17) |
O7—Ce1—O1W | 67.17 (8) | O5—S1—O11 | 108.23 (17) |
O12i—Ce1—O1W | 132.17 (10) | O2—S1—O3 | 110.58 (15) |
O11ii—Ce1—O1W | 78.67 (9) | O5—S1—O3 | 109.98 (17) |
O4W—Ce1—O1W | 144.47 (9) | O11—S1—O3 | 103.78 (17) |
O3—Ce1—O1W | 79.12 (8) | O2—S1—Ce1 | 134.25 (15) |
O3i—Ce1—O1W | 132.38 (8) | O5—S1—Ce1 | 113.83 (13) |
O10—Ce1—O11 | 129.81 (9) | O11—S1—Ce1 | 55.52 (11) |
O7—Ce1—O11 | 111.72 (8) | O3—S1—Ce1 | 49.18 (10) |
O12i—Ce1—O11 | 67.22 (10) | O8—S2—O10 | 112.44 (16) |
O11ii—Ce1—O11 | 62.40 (10) | O8—S2—O6 | 111.47 (16) |
O4W—Ce1—O11 | 132.05 (10) | O10—S2—O6 | 109.46 (15) |
O3—Ce1—O11 | 53.24 (9) | O8—S2—O9 | 104.86 (17) |
O3i—Ce1—O11 | 115.95 (7) | O10—S2—O9 | 109.15 (18) |
O1W—Ce1—O11 | 65.00 (8) | O6—S2—O9 | 109.32 (19) |
O10—Ce1—S1 | 144.70 (7) | O8—S2—Ce2 | 54.92 (10) |
O7—Ce1—S1 | 89.84 (6) | O10—S2—Ce2 | 123.08 (11) |
O12i—Ce1—S1 | 71.67 (9) | O6—S2—Ce2 | 127.12 (11) |
O11ii—Ce1—S1 | 89.48 (6) | O9—S2—Ce2 | 50.02 (13) |
O4W—Ce1—S1 | 144.45 (8) | O1—S3—O4 | 108.98 (17) |
O3—Ce1—S1 | 26.51 (6) | O1—S3—O7 | 110.62 (16) |
O3i—Ce1—S1 | 94.06 (6) | O4—S3—O7 | 110.38 (16) |
O1W—Ce1—S1 | 66.99 (6) | O1—S3—O12 | 108.69 (18) |
O11—Ce1—S1 | 27.09 (6) | O4—S3—O12 | 108.21 (17) |
O1iii—Ce2—O4iv | 81.47 (10) | O7—S3—O12 | 109.91 (19) |
O1iii—Ce2—O5iii | 82.75 (10) | S3—O1—Ce2vi | 159.40 (18) |
O4iv—Ce2—O5iii | 128.77 (10) | S1—O3—Ce1 | 104.31 (13) |
O1iii—Ce2—O6v | 72.44 (10) | S1—O3—Ce1i | 138.41 (14) |
O4iv—Ce2—O6v | 77.08 (10) | Ce1—O3—Ce1i | 110.51 (9) |
O5iii—Ce2—O6v | 141.23 (10) | S3—O4—Ce2iv | 148.94 (18) |
O1iii—Ce2—O3W | 136.83 (10) | S1—O5—Ce2vi | 144.59 (18) |
O4iv—Ce2—O3W | 87.59 (10) | S2—O6—Ce2v | 140.98 (15) |
O5iii—Ce2—O3W | 72.09 (10) | S3—O7—Ce1 | 138.57 (15) |
O6v—Ce2—O3W | 144.78 (10) | S2—O8—Ce2 | 98.38 (13) |
O1iii—Ce2—O2W | 139.13 (9) | S2—O9—Ce2 | 103.09 (16) |
O4iv—Ce2—O2W | 74.93 (9) | S2—O10—Ce1 | 147.70 (16) |
O5iii—Ce2—O2W | 137.81 (9) | S1—O11—Ce1ii | 144.95 (16) |
O6v—Ce2—O2W | 70.06 (9) | S1—O11—Ce1 | 97.39 (12) |
O3W—Ce2—O2W | 75.42 (9) | Ce1ii—O11—Ce1 | 117.60 (10) |
O1iii—Ce2—O9 | 129.31 (9) | S3—O12—Ce1i | 136.67 (15) |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, −y+1, −z+2; (iii) x−1/2, −y+1/2, z−1/2; (iv) −x, −y, −z+2; (v) −x, −y+1, −z+2; (vi) x+1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | Ce2(SO4)3(H2O)4 |
Mr | 640.48 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 13.1257 (14), 7.2520 (8), 13.3823 (14) |
β (°) | 92.572 (1) |
V (Å3) | 1272.5 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.65 |
Crystal size (mm) | 0.13 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Bruker APEX2 CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.437, 0.515 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5923, 2201, 2071 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.067, 1.09 |
No. of reflections | 2201 |
No. of parameters | 215 |
No. of restraints | 16 |
H-atom treatment | Only H-atom coordinates refined |
Δρmax, Δρmin (e Å−3) | 1.12, −2.16 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.
Ce1—O10 | 2.449 (2) | Ce2—O1iii | 2.354 (3) |
Ce1—O7 | 2.465 (3) | Ce2—O4iv | 2.430 (3) |
Ce1—O12i | 2.476 (4) | Ce2—O5iii | 2.470 (3) |
Ce1—O11ii | 2.517 (3) | Ce2—O6v | 2.489 (3) |
Ce1—O4W | 2.524 (3) | Ce2—O3W | 2.494 (3) |
Ce1—O3 | 2.547 (3) | Ce2—O2W | 2.497 (3) |
Ce1—O3i | 2.621 (3) | Ce2—O9 | 2.529 (4) |
Ce1—O1W | 2.647 (3) | Ce2—O8 | 2.659 (3) |
Ce1—O11 | 2.710 (3) | ||
O10—Ce1—O3 | 150.11 (9) | O3—Ce1—O11 | 53.24 (9) |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, −y+1, −z+2; (iii) x−1/2, −y+1/2, z−1/2; (iv) −x, −y, −z+2; (v) −x, −y+1, −z+2. |
Acknowledgements
The author is grateful to Dr Zhang for help with collecting the diffraction data.
References
Bruker (2005). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dereigne, A. (1972). Bull. Soc. Fr. Mineral. Cristallogr. 95, 269–280. CAS Google Scholar
Doran, M., Norquist, A. & O'Hare, D. (2002). Chem. Commun. pp. 2946–2947. Web of Science CSD CrossRef Google Scholar
Li, H., Eddaoudi, M., Richardson, D. A. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 8567–8568. Web of Science CSD CrossRef CAS Google Scholar
Plévert, J., Gentz, T. M., Laine, A., Li, H., Young, V. G., Yaghi, O. M. & O'Keeffe, M. (2001). J. Am. Chem. Soc. 123, 12706–12707. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Shi, B. (1987). Jiegouhuaxue, 6, 70–72. CAS Google Scholar
Xu, Y., Cheng, L. & You, W. (2006). Inorg. Chem. 45, 7705–7708. Web of Science CSD CrossRef PubMed CAS Google Scholar
Xu, Y., Ding, S.-H., Zhou, G.-P. & Liu, Y.-G. (2006). Acta Cryst. E62, m1749–m1750. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yuan, Y., Song, J. & Mao, J. (2004). Inorg. Chem. Commun. 7, 24–26. Web of Science CSD CrossRef CAS Google Scholar
Zhang, Q., Lu, C., Yang, W., Chen, S. & Yu, Y. (2004). Inorg. Chem. Commun. 7, 889–892. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Over the past decades, the design and synthesis of new three–dimensional solid state materials have received great attention, due to their functional applications in catalysis and optical device. As the building elements germanium has been choosen to synthesize new porous materials (Li et al., 1998; Plévert et al., 2001; Xu, Cheng & You, 2006; Xu, Ding et al., 2006). In the last few years, an important advance in three dimensional inorganic materials has been achieved by study of lanthanide sulfates frameworks (Zhang et al.,2004; Yuan et al., 2004; Xu, Ding et al., 2006; Doran et al., 2002). In this work, we synthesized the title compound, Cerium(3+) sulfate tetrahydrate, which features a three–dimensional framework. The structure of title compound had been reported previously (Dereigne et al., 1972), however, the precision of redetermination is much improved.
As isostructure with La2(SO4)3(H2O)4 and Nd2(SO4)3(H2O)4 (Shi, 1987), the framework of title compound is constructed from CeO9 and CeO8 polyhedra and SO4 tetrahedra. As shown in Fig. 1 and 2, the asymmetric unit contains two Ce3+, three SO42– groups and four water molecules, all of which belong to the inorganic framework. The coordination about Ce1 and Ce2, respectively, is achieved by bridging oxygen atoms from sulfate anions. Each S atom makes four S–O–Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands of Ce^3+^.
The Ce atom has the typical geometrical parameters, with Ce—O distances of 2.354 (3)– 2.710 (3)Å (Table 1). The O—Ce—O angles are between 59.28 (14) and 139.03 (14)°. These bond distances and bond angles are in agreement with those found in similar rare-earth compounds (Zhang et al.,2004; Yuan et al., 2004). The geometry of the sulfate ions is unexceptional. Fig. 3 shows the three-dimensional arrangement in the unit cell, displaying the way the different CeO9 polyhydra are connected by bridging sulfates.