inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of dicerium(III) tris­­(sulfate) tetra­hydrate

aHeavy Oil Company, Liaohe Petroleum Filiale, China National Petroleum Corporation (CNPC), Shiyou Street No. 96, Panjin, 124010, People's Republic of China
*Correspondence e-mail: yanxchem@yahoo.com.cn

(Received 14 October 2007; accepted 22 November 2007; online 6 December 2007)

Ce2(SO4)3(H2O)4 was obtained hydro­thermally from an aqueous solution of cerium(III) oxide, trimethyl­amine and sulfuric acid. The precision of the structure determination has been significantly improved compared with the previous result [Dereigne (1972[Dereigne, A. (1972). Bull. Soc. Fr. Mineral. Cristallogr. 95, 269-280.]). Bull. Soc. Fr. Mineral. Cristallogr. 95, 269–280]. The coordination about the two Ce atoms is achieved by seven and six bridging O atoms from sulfate anions. Each S atom makes four S—O—Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands.

Related literature

For related literature, see: Doran et al. (2002[Doran, M., Norquist, A. & O'Hare, D. (2002). Chem. Commun. pp. 2946-2947.]); Li et al. (1998[Li, H., Eddaoudi, M., Richardson, D. A. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 8567-8568.]); Plévert et al. (2001[Plévert, J., Gentz, T. M., Laine, A., Li, H., Young, V. G., Yaghi, O. M. & O'Keeffe, M. (2001). J. Am. Chem. Soc. 123, 12706-12707.]); Shi (1987[Shi, B. (1987). Jiegouhuaxue, 6, 70-72.]); Xu, Cheng & You (2006[Xu, Y., Cheng, L. & You, W. (2006). Inorg. Chem. 45, 7705-7708.]); Xu, Ding et al. (2006[Xu, Y., Ding, S.-H., Zhou, G.-P. & Liu, Y.-G. (2006). Acta Cryst. E62, m1749-m1750.]); Yuan et al. (2004[Yuan, Y., Song, J. & Mao, J. (2004). Inorg. Chem. Commun. 7, 24-26.]); Zhang et al. (2004[Zhang, Q., Lu, C., Yang, W., Chen, S. & Yu, Y. (2004). Inorg. Chem. Commun. 7, 889-892.]). For the previous structure determination, see: Dereigne (1972[Dereigne, A. (1972). Bull. Soc. Fr. Mineral. Cristallogr. 95, 269-280.]).

Experimental

Crystal data
  • Ce2(SO4)3(H2O)4

  • Mr = 640.48

  • Monoclinic, P 21 /n

  • a = 13.1257 (14) Å

  • b = 7.2520 (8) Å

  • c = 13.3823 (14) Å

  • β = 92.5720 (10)°

  • V = 1272.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.65 mm−1

  • T = 293 (2) K

  • 0.13 × 0.12 × 0.10 mm

Data collection
  • Bruker APEX2 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.437, Tmax = 0.515 (expected range = 0.394–0.466)

  • 5923 measured reflections

  • 2201 independent reflections

  • 2071 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.067

  • S = 1.09

  • 2201 reflections

  • 215 parameters

  • 16 restraints

  • Only H-atom coordinates refined

  • Δρmax = 1.12 e Å−3

  • Δρmin = −2.16 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ce1—O10 2.449 (2)
Ce1—O7 2.465 (3)
Ce1—O12i 2.476 (4)
Ce1—O11ii 2.517 (3)
Ce1—O4W 2.524 (3)
Ce1—O3 2.547 (3)
Ce1—O3i 2.621 (3)
Ce1—O1W 2.647 (3)
Ce1—O11 2.710 (3)
Ce2—O1iii 2.354 (3)
Ce2—O4iv 2.430 (3)
Ce2—O5iii 2.470 (3)
Ce2—O6v 2.489 (3)
Ce2—O3W 2.494 (3)
Ce2—O2W 2.497 (3)
Ce2—O9 2.529 (4)
Ce2—O8 2.659 (3)
O10—Ce1—O3 150.11 (9)
O3—Ce1—O11 53.24 (9)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+1, -y+1, -z+2; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x, -y, -z+2; (v) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Over the past decades, the design and synthesis of new three–dimensional solid state materials have received great attention, due to their functional applications in catalysis and optical device. As the building elements germanium has been choosen to synthesize new porous materials (Li et al., 1998; Plévert et al., 2001; Xu, Cheng & You, 2006; Xu, Ding et al., 2006). In the last few years, an important advance in three dimensional inorganic materials has been achieved by study of lanthanide sulfates frameworks (Zhang et al.,2004; Yuan et al., 2004; Xu, Ding et al., 2006; Doran et al., 2002). In this work, we synthesized the title compound, Cerium(3+) sulfate tetrahydrate, which features a three–dimensional framework. The structure of title compound had been reported previously (Dereigne et al., 1972), however, the precision of redetermination is much improved.

As isostructure with La2(SO4)3(H2O)4 and Nd2(SO4)3(H2O)4 (Shi, 1987), the framework of title compound is constructed from CeO9 and CeO8 polyhedra and SO4 tetrahedra. As shown in Fig. 1 and 2, the asymmetric unit contains two Ce3+, three SO42– groups and four water molecules, all of which belong to the inorganic framework. The coordination about Ce1 and Ce2, respectively, is achieved by bridging oxygen atoms from sulfate anions. Each S atom makes four S–O–Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands of Ce^3+^.

The Ce atom has the typical geometrical parameters, with Ce—O distances of 2.354 (3)– 2.710 (3)Å (Table 1). The O—Ce—O angles are between 59.28 (14) and 139.03 (14)°. These bond distances and bond angles are in agreement with those found in similar rare-earth compounds (Zhang et al.,2004; Yuan et al., 2004). The geometry of the sulfate ions is unexceptional. Fig. 3 shows the three-dimensional arrangement in the unit cell, displaying the way the different CeO9 polyhydra are connected by bridging sulfates.

Related literature top

For related literature, see: Doran et al. (2002); Li et al. (1998); Plévert et al. (2001); Shi (1987); Xu, Cheng & You (2006); Xu, Ding et al. (2006); Yuan et al. (2004); Zhang et al. (2004). For the previous structure determination, see: Dereigne (1972).

Experimental top

Colorless block-shaped crystals were synthesized hydrothermally from a mixture of CeCl3.6H2O, H2SO4 (98%), H2O and trimethylamine(25%). All the chemicals are purchased from Shanghai Chemical Reagent Factory. In a typical synthesis, CeCl3.6H2O(0.2993 g) was dissolved in a mixture of trimethylamine (25%, 0.7893 g) and of water (1 ml) followed by the addition of H2SO4 (98%) (0.3528 g) with constant stirring. Finally, the mixture was kept in a 25 ml Teflon-lined steel autoclave at 180 °C for 6 days. The autoclave was slowly cooled to room temperature, and then the product was filtered, washed with distilled water, and dried at room temperature. Colorless block-shaped crystals of the title compound were obtained.

Refinement top

The highest peak in the difference map is 1.12 e/Å3, and 1.26 (2) Å from Ce2, while the minimum peak is -2.16 (2) Å from Ce1. 5. The H atoms of water were located from different map, and the O—H distances are restrained to 0.85 (2) Å.

Structure description top

Over the past decades, the design and synthesis of new three–dimensional solid state materials have received great attention, due to their functional applications in catalysis and optical device. As the building elements germanium has been choosen to synthesize new porous materials (Li et al., 1998; Plévert et al., 2001; Xu, Cheng & You, 2006; Xu, Ding et al., 2006). In the last few years, an important advance in three dimensional inorganic materials has been achieved by study of lanthanide sulfates frameworks (Zhang et al.,2004; Yuan et al., 2004; Xu, Ding et al., 2006; Doran et al., 2002). In this work, we synthesized the title compound, Cerium(3+) sulfate tetrahydrate, which features a three–dimensional framework. The structure of title compound had been reported previously (Dereigne et al., 1972), however, the precision of redetermination is much improved.

As isostructure with La2(SO4)3(H2O)4 and Nd2(SO4)3(H2O)4 (Shi, 1987), the framework of title compound is constructed from CeO9 and CeO8 polyhedra and SO4 tetrahedra. As shown in Fig. 1 and 2, the asymmetric unit contains two Ce3+, three SO42– groups and four water molecules, all of which belong to the inorganic framework. The coordination about Ce1 and Ce2, respectively, is achieved by bridging oxygen atoms from sulfate anions. Each S atom makes four S–O–Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands of Ce^3+^.

The Ce atom has the typical geometrical parameters, with Ce—O distances of 2.354 (3)– 2.710 (3)Å (Table 1). The O—Ce—O angles are between 59.28 (14) and 139.03 (14)°. These bond distances and bond angles are in agreement with those found in similar rare-earth compounds (Zhang et al.,2004; Yuan et al., 2004). The geometry of the sulfate ions is unexceptional. Fig. 3 shows the three-dimensional arrangement in the unit cell, displaying the way the different CeO9 polyhydra are connected by bridging sulfates.

For related literature, see: Doran et al. (2002); Li et al. (1998); Plévert et al. (2001); Shi (1987); Xu, Cheng & You (2006); Xu, Ding et al. (2006); Yuan et al. (2004); Zhang et al. (2004). For the previous structure determination, see: Dereigne (1972).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The coordination of Ce1 for title compound. Displacement ellipsoids at the 70% probability level. Symmetry codes as in Table 1.
[Figure 2] Fig. 2. The coordination of Ce2 for title compound. Displacement ellipsoids at the 70% probability level. Symmetry codes as in Table 1.
[Figure 3] Fig. 3. The crystal packing in the unit cell of Ce(SO4)(OH).
dicerium(III) tris(sulfate) tetrahydrate top
Crystal data top
Ce2(SO4)3(H2O)4F(000) = 1200
Mr = 640.48Dx = 3.343 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2201 reflections
a = 13.1257 (14) Åθ = 2.1–25.0°
b = 7.2520 (8) ŵ = 7.65 mm1
c = 13.3823 (14) ÅT = 293 K
β = 92.572 (1)°Block, colourless
V = 1272.5 (2) Å30.13 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker APEX2 CCD
diffractometer
2201 independent reflections
Radiation source: fine-focus sealed tube2071 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1215
Tmin = 0.437, Tmax = 0.515k = 88
5923 measured reflectionsl = 1512
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027Only H-atom coordinates refined
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0371P)2 + 1.0649P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2201 reflectionsΔρmax = 1.12 e Å3
215 parametersΔρmin = 2.16 e Å3
16 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0953 (15)
Crystal data top
Ce2(SO4)3(H2O)4V = 1272.5 (2) Å3
Mr = 640.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.1257 (14) ŵ = 7.65 mm1
b = 7.2520 (8) ÅT = 293 K
c = 13.3823 (14) Å0.13 × 0.12 × 0.10 mm
β = 92.572 (1)°
Data collection top
Bruker APEX2 CCD
diffractometer
2201 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2071 reflections with I > 2σ(I)
Tmin = 0.437, Tmax = 0.515Rint = 0.032
5923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02716 restraints
wR(F2) = 0.067Only H-atom coordinates refined
S = 1.09Δρmax = 1.12 e Å3
2201 reflectionsΔρmin = 2.16 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.413692 (17)0.24066 (3)0.964316 (18)0.00669 (14)
Ce20.073660 (17)0.26197 (3)0.849355 (18)0.00793 (14)
S10.59971 (8)0.26189 (10)1.13380 (8)0.0068 (2)
S20.13846 (6)0.38957 (12)0.95722 (7)0.0088 (2)
S30.34712 (6)0.10740 (12)1.15208 (7)0.0077 (2)
O10.3887 (2)0.0086 (4)1.2394 (2)0.0179 (6)
O20.7082 (2)0.2370 (3)1.1325 (3)0.0164 (7)
O30.54510 (19)0.0990 (3)1.0873 (2)0.0109 (6)
O40.2552 (2)0.2061 (4)1.1792 (2)0.0153 (6)
O50.5660 (2)0.2917 (4)1.2352 (2)0.0152 (6)
O60.15247 (19)0.4888 (4)1.0522 (2)0.0174 (6)
O70.32350 (19)0.0207 (4)1.0695 (2)0.0137 (6)
O80.07908 (19)0.4978 (4)0.8833 (2)0.0134 (6)
O90.0762 (3)0.2206 (4)0.9727 (3)0.0158 (7)
O100.23802 (19)0.3357 (4)0.9218 (2)0.0163 (6)
O110.5637 (2)0.4210 (4)1.0702 (2)0.0121 (6)
O120.4231 (3)0.2449 (3)1.1215 (3)0.0134 (7)
O1W0.3582 (2)0.3879 (4)1.1345 (2)0.0181 (6)
H1WB0.2964 (19)0.371 (5)1.152 (4)0.027*
H1WA0.381 (3)0.497 (4)1.138 (4)0.027*
O2W0.13163 (19)0.1354 (4)1.0108 (2)0.0155 (6)
H2WB0.185 (2)0.179 (5)1.037 (3)0.023*
H2WA0.114 (3)0.028 (4)1.030 (3)0.023*
O3W0.0481 (2)0.0777 (4)0.8356 (2)0.0218 (6)
H3WB0.049 (3)0.142 (4)0.889 (2)0.033*
H3WA0.005 (3)0.115 (4)0.793 (3)0.033*
O4W0.3708 (3)0.2180 (5)0.7790 (3)0.0245 (8)
H4WB0.401 (3)0.147 (6)0.738 (3)0.037*
H4WA0.312 (2)0.258 (6)0.758 (4)0.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.0052 (2)0.00827 (18)0.0066 (2)0.00028 (6)0.00017 (12)0.00084 (7)
Ce20.0056 (2)0.00981 (18)0.0083 (2)0.00046 (6)0.00028 (13)0.00215 (7)
S10.0057 (5)0.0090 (5)0.0055 (5)0.0001 (3)0.0013 (4)0.0004 (3)
S20.0057 (4)0.0099 (4)0.0106 (5)0.0002 (3)0.0002 (3)0.0003 (3)
S30.0062 (4)0.0089 (4)0.0082 (5)0.0012 (3)0.0006 (3)0.0009 (3)
O10.0210 (14)0.0193 (14)0.0134 (14)0.0032 (12)0.0009 (11)0.0063 (12)
O20.0081 (16)0.0242 (17)0.0169 (18)0.0004 (10)0.0000 (13)0.0027 (10)
O30.0113 (13)0.0083 (13)0.0129 (14)0.0018 (10)0.0022 (11)0.0008 (11)
O40.0084 (14)0.0212 (13)0.0164 (15)0.0026 (12)0.0005 (11)0.0046 (13)
O50.0160 (16)0.0219 (13)0.0081 (15)0.0015 (12)0.0039 (12)0.0029 (13)
O60.0148 (14)0.0217 (14)0.0153 (14)0.0032 (11)0.0024 (11)0.0048 (12)
O70.0107 (13)0.0149 (13)0.0153 (14)0.0019 (11)0.0009 (10)0.0014 (12)
O80.0129 (13)0.0119 (13)0.0153 (15)0.0000 (10)0.0011 (10)0.0032 (11)
O90.0163 (17)0.0104 (13)0.0205 (18)0.0026 (11)0.0022 (13)0.0036 (12)
O100.0089 (13)0.0241 (16)0.0160 (15)0.0029 (12)0.0005 (10)0.0028 (12)
O110.0167 (14)0.0088 (13)0.0104 (14)0.0014 (11)0.0024 (11)0.0026 (11)
O120.0115 (17)0.0143 (16)0.015 (2)0.0013 (9)0.0053 (12)0.0003 (10)
O1W0.0126 (13)0.0131 (14)0.0290 (17)0.0034 (11)0.0055 (12)0.0034 (12)
O2W0.0139 (14)0.0141 (13)0.0190 (15)0.0006 (11)0.0049 (11)0.0029 (12)
O3W0.0349 (17)0.0137 (14)0.0172 (15)0.0030 (12)0.0059 (13)0.0009 (12)
O4W0.0221 (18)0.0371 (17)0.0137 (17)0.0168 (14)0.0068 (14)0.0093 (14)
Geometric parameters (Å, º) top
Ce1—O102.449 (2)S1—O21.437 (3)
Ce1—O72.465 (3)S1—O51.462 (3)
Ce1—O12i2.476 (4)S1—O111.498 (3)
Ce1—O11ii2.517 (3)S1—O31.502 (3)
Ce1—O4W2.524 (3)S2—O81.460 (3)
Ce1—O32.547 (3)S2—O101.463 (3)
Ce1—O3i2.621 (3)S2—O61.465 (3)
Ce1—O1W2.647 (3)S2—O91.493 (3)
Ce1—O112.710 (3)S3—O11.456 (3)
Ce1—S13.2607 (11)S3—O41.463 (3)
Ce2—O1iii2.354 (3)S3—O71.466 (3)
Ce2—O4iv2.430 (3)S3—O121.481 (3)
Ce2—O5iii2.470 (3)O1—Ce2vi2.354 (3)
Ce2—O6v2.489 (3)O3—Ce1i2.621 (3)
Ce2—O3W2.494 (3)O4—Ce2iv2.430 (3)
Ce2—O2W2.497 (3)O5—Ce2vi2.470 (3)
Ce2—O92.529 (4)O6—Ce2v2.489 (3)
Ce2—O82.659 (3)O11—Ce1ii2.517 (3)
Ce2—S23.2143 (9)O12—Ce1i2.476 (4)
O10—Ce1—O780.99 (9)O4iv—Ce2—O9144.23 (11)
O10—Ce1—O12i135.57 (11)O5iii—Ce2—O978.93 (11)
O7—Ce1—O12i136.10 (8)O6v—Ce2—O994.03 (10)
O10—Ce1—O11ii78.49 (9)O3W—Ce2—O980.07 (9)
O7—Ce1—O11ii143.04 (9)O2W—Ce2—O969.51 (10)
O12i—Ce1—O11ii77.96 (8)O1iii—Ce2—O875.74 (9)
O10—Ce1—O4W67.91 (10)O4iv—Ce2—O8149.39 (9)
O7—Ce1—O4W115.31 (11)O5iii—Ce2—O868.43 (9)
O12i—Ce1—O4W72.81 (13)O6v—Ce2—O876.73 (8)
O11ii—Ce1—O4W84.61 (10)O3W—Ce2—O8123.02 (9)
O10—Ce1—O3150.11 (9)O2W—Ce2—O8110.19 (8)
O7—Ce1—O372.45 (8)O9—Ce2—O853.57 (8)
O12i—Ce1—O374.32 (10)O1iii—Ce2—S2102.43 (7)
O11ii—Ce1—O3115.47 (8)O4iv—Ce2—S2160.40 (8)
O4W—Ce1—O3136.36 (9)O5iii—Ce2—S270.81 (7)
O10—Ce1—O3i113.98 (9)O6v—Ce2—S285.72 (6)
O7—Ce1—O3i69.68 (8)O3W—Ce2—S2101.58 (7)
O12i—Ce1—O3i72.32 (8)O2W—Ce2—S290.50 (6)
O11ii—Ce1—O3i147.19 (9)O9—Ce2—S226.89 (7)
O4W—Ce1—O3i73.70 (9)O8—Ce2—S226.70 (6)
O3—Ce1—O3i69.49 (9)O2—S1—O5111.78 (19)
O10—Ce1—O1W78.08 (9)O2—S1—O11112.17 (17)
O7—Ce1—O1W67.17 (8)O5—S1—O11108.23 (17)
O12i—Ce1—O1W132.17 (10)O2—S1—O3110.58 (15)
O11ii—Ce1—O1W78.67 (9)O5—S1—O3109.98 (17)
O4W—Ce1—O1W144.47 (9)O11—S1—O3103.78 (17)
O3—Ce1—O1W79.12 (8)O2—S1—Ce1134.25 (15)
O3i—Ce1—O1W132.38 (8)O5—S1—Ce1113.83 (13)
O10—Ce1—O11129.81 (9)O11—S1—Ce155.52 (11)
O7—Ce1—O11111.72 (8)O3—S1—Ce149.18 (10)
O12i—Ce1—O1167.22 (10)O8—S2—O10112.44 (16)
O11ii—Ce1—O1162.40 (10)O8—S2—O6111.47 (16)
O4W—Ce1—O11132.05 (10)O10—S2—O6109.46 (15)
O3—Ce1—O1153.24 (9)O8—S2—O9104.86 (17)
O3i—Ce1—O11115.95 (7)O10—S2—O9109.15 (18)
O1W—Ce1—O1165.00 (8)O6—S2—O9109.32 (19)
O10—Ce1—S1144.70 (7)O8—S2—Ce254.92 (10)
O7—Ce1—S189.84 (6)O10—S2—Ce2123.08 (11)
O12i—Ce1—S171.67 (9)O6—S2—Ce2127.12 (11)
O11ii—Ce1—S189.48 (6)O9—S2—Ce250.02 (13)
O4W—Ce1—S1144.45 (8)O1—S3—O4108.98 (17)
O3—Ce1—S126.51 (6)O1—S3—O7110.62 (16)
O3i—Ce1—S194.06 (6)O4—S3—O7110.38 (16)
O1W—Ce1—S166.99 (6)O1—S3—O12108.69 (18)
O11—Ce1—S127.09 (6)O4—S3—O12108.21 (17)
O1iii—Ce2—O4iv81.47 (10)O7—S3—O12109.91 (19)
O1iii—Ce2—O5iii82.75 (10)S3—O1—Ce2vi159.40 (18)
O4iv—Ce2—O5iii128.77 (10)S1—O3—Ce1104.31 (13)
O1iii—Ce2—O6v72.44 (10)S1—O3—Ce1i138.41 (14)
O4iv—Ce2—O6v77.08 (10)Ce1—O3—Ce1i110.51 (9)
O5iii—Ce2—O6v141.23 (10)S3—O4—Ce2iv148.94 (18)
O1iii—Ce2—O3W136.83 (10)S1—O5—Ce2vi144.59 (18)
O4iv—Ce2—O3W87.59 (10)S2—O6—Ce2v140.98 (15)
O5iii—Ce2—O3W72.09 (10)S3—O7—Ce1138.57 (15)
O6v—Ce2—O3W144.78 (10)S2—O8—Ce298.38 (13)
O1iii—Ce2—O2W139.13 (9)S2—O9—Ce2103.09 (16)
O4iv—Ce2—O2W74.93 (9)S2—O10—Ce1147.70 (16)
O5iii—Ce2—O2W137.81 (9)S1—O11—Ce1ii144.95 (16)
O6v—Ce2—O2W70.06 (9)S1—O11—Ce197.39 (12)
O3W—Ce2—O2W75.42 (9)Ce1ii—O11—Ce1117.60 (10)
O1iii—Ce2—O9129.31 (9)S3—O12—Ce1i136.67 (15)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+2; (iii) x1/2, y+1/2, z1/2; (iv) x, y, z+2; (v) x, y+1, z+2; (vi) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaCe2(SO4)3(H2O)4
Mr640.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.1257 (14), 7.2520 (8), 13.3823 (14)
β (°) 92.572 (1)
V3)1272.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)7.65
Crystal size (mm)0.13 × 0.12 × 0.10
Data collection
DiffractometerBruker APEX2 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.437, 0.515
No. of measured, independent and
observed [I > 2σ(I)] reflections
5923, 2201, 2071
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.067, 1.09
No. of reflections2201
No. of parameters215
No. of restraints16
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)1.12, 2.16

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Ce1—O102.449 (2)Ce2—O1iii2.354 (3)
Ce1—O72.465 (3)Ce2—O4iv2.430 (3)
Ce1—O12i2.476 (4)Ce2—O5iii2.470 (3)
Ce1—O11ii2.517 (3)Ce2—O6v2.489 (3)
Ce1—O4W2.524 (3)Ce2—O3W2.494 (3)
Ce1—O32.547 (3)Ce2—O2W2.497 (3)
Ce1—O3i2.621 (3)Ce2—O92.529 (4)
Ce1—O1W2.647 (3)Ce2—O82.659 (3)
Ce1—O112.710 (3)
O10—Ce1—O3150.11 (9)O3—Ce1—O1153.24 (9)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+2; (iii) x1/2, y+1/2, z1/2; (iv) x, y, z+2; (v) x, y+1, z+2.
 

Acknowledgements

The author is grateful to Dr Zhang for help with collecting the diffraction data.

References

First citationBruker (2005). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDereigne, A. (1972). Bull. Soc. Fr. Mineral. Cristallogr. 95, 269–280.  CAS Google Scholar
First citationDoran, M., Norquist, A. & O'Hare, D. (2002). Chem. Commun. pp. 2946–2947.  Web of Science CSD CrossRef Google Scholar
First citationLi, H., Eddaoudi, M., Richardson, D. A. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 8567–8568.  Web of Science CSD CrossRef CAS Google Scholar
First citationPlévert, J., Gentz, T. M., Laine, A., Li, H., Young, V. G., Yaghi, O. M. & O'Keeffe, M. (2001). J. Am. Chem. Soc. 123, 12706–12707.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationShi, B. (1987). Jiegouhuaxue, 6, 70–72.  CAS Google Scholar
First citationXu, Y., Cheng, L. & You, W. (2006). Inorg. Chem. 45, 7705–7708.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXu, Y., Ding, S.-H., Zhou, G.-P. & Liu, Y.-G. (2006). Acta Cryst. E62, m1749–m1750.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYuan, Y., Song, J. & Mao, J. (2004). Inorg. Chem. Commun. 7, 24–26.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Q., Lu, C., Yang, W., Chen, S. & Yu, Y. (2004). Inorg. Chem. Commun. 7, 889–892.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds