metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,6-Dioxo-1,2,3,6-tetra­hydro­pyrim­idine-4-carboxyl­ato(2−)]bis­(pyrazino[2,3-f][1,10]phenanthroline)cobalt(II) dihydrate

aDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China, and bDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: imlijikun@163.com

(Received 18 October 2007; accepted 29 November 2007; online 6 December 2007)

The title complex, [Co(C5H2N2O4)(C14H8N4)2]·2H2O, features a slightly distorted octa­hedral geometry for Co due to the sterical requirements of the orotic acid and pyrazino[2,3-f][1,10]phenanthroline ligands. Inter­molecular hydrogen bonding between the uncoordinated water mol­ecules and the ligand stablizes the structure of the complex.

Related literature

For related literature, see: Darensbourg et al. (1998[Darensbourg, D. J., Larkins, D. L. & Reibenspies, J. H. (1998). Inorg. Chem. 37, 6125-6128.]); Lieberman et al. (1955[Lieberman, I., Komberg, A. & Simms, E. S. (1955). J. Biol. Chem. 215, 403-415.]); Lalioti et al. (1998[Lalioti, N., Raptopoulou, C. P., Terzis, A., Panagiotopoulos, A., Perlepes, S. P. & Manessi-Zoupa, E. (1998). J. Chem. Soc. Dalton Trans. pp. 1335-1340.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C5H2N2O4)(C14H8N4)2]·2H2O

  • Mr = 713.54

  • Monoclinic, P 21 /c

  • a = 15.9468 (7) Å

  • b = 13.3765 (6) Å

  • c = 15.5661 (7) Å

  • β = 117.5610 (10)°

  • V = 2943.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 293 (2) K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.903, Tmax = 0.938

  • 32977 measured reflections

  • 5185 independent reflections

  • 4601 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.105

  • S = 1.00

  • 5185 reflections

  • 451 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O1 2.0622 (13)
Co1—N3 2.1223 (15)
Co1—N7 2.1280 (15)
Co1—N1 2.1299 (14)
Co1—N4 2.1542 (15)
Co1—N8 2.1827 (15)
O1—Co1—N3 96.18 (5)
O1—Co1—N7 96.39 (5)
N3—Co1—N7 165.47 (5)
O1—Co1—N1 78.09 (5)
N3—Co1—N1 99.75 (5)
N7—Co1—N1 89.95 (6)
O1—Co1—N4 80.99 (5)
N3—Co1—N4 77.45 (5)
N7—Co1—N4 97.38 (6)
N1—Co1—N4 158.47 (5)
O1—Co1—N8 169.75 (6)
N3—Co1—N8 90.07 (5)
N7—Co1—N8 76.48 (5)
N1—Co1—N8 108.90 (6)
N4—Co1—N8 92.51 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H33⋯O4i 0.85 2.22 3.007 (3) 155
O5—H34⋯O6ii 0.85 2.16 2.903 (3) 146
O6—H35⋯O4iii 0.85 2.02 2.822 (2) 156
O6—H36⋯O3i 0.85 2.16 2.990 (2) 166
N2—H2⋯O3iv 0.83 2.03 2.850 (2) 169
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) -x, -y, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Orotic acid is an important pyrimidine derivative as the effective precursor in the biosythesis of the pyrimidine base of nucleic acids in living organisms and plays a unique role in bioinorganic and pharmaceutical chemistry (Lieberman et al., 1955). Aside from the biological interest, orotic acid is also interesting in coordination chemistry (Lalioti et al., 1998). In this contribution, the title compound (I) was synthesized and its crystal structure determined (Fig. 1 and Table 1). The central Co is coordinated by five nitrogen atoms (four from pyrazino[2,3-f][1,10]phenanthroline ligand and one from orotic acid ligand) and one carboxylate oxygen from the orotic acid ligand,yielding a slightly distorted octahedral coordination geometry. The geometric parameters are in good agreement with those found in literature (Darensbourg et al., 1998). The intermolecular hydrogen bonding between the uncoordinated water molecules and the ligand stablizes the structure of the complex (Fig. 2).

Related literature top

For related literature, see: Darensbourg et al. (1998); Lieberman et al. (1955); Lalioti et al. (1998)

Experimental top

The orotic acid (Lancaster, 98%) and solvents were commercially available, and they were used without further purification. The orotic acid (0.035 g, 0.2 mmol) CoCl2 6H2O (0.047 g, 0.2 mmol) and pyrazino[2,3-f][1,10]phenanthroline were added to 40 ml EtOH-water(1:2 V:V) and heated to 353 K and stirred for 20 min.A few drops of ammonia were added to adjust the pH value to about 6 and then the resulting mixture was filtered. Orange single crystals were obtained after a few days. Yield, 0.096 g, 75%. m.p. 450–452 K.

Analysis found: C 55.50, H 3.14, N 19.58, O 13.42%; C33H22N10O6Co requires: C 55.55, H 3.11, N 19.63, O 13.45%.

Refinement top

All H atoms were initially located in diffrence Fourier map. The C, O and N bound H atoms were then constrained to an ideal geometry, with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C-aromatic) and with the O—H = 0.8494 - 0.8512 Å, N—H = 0.8321 Å and refined as riding with Uiso(H) = 1.2Ueq(O, N).

Structure description top

Orotic acid is an important pyrimidine derivative as the effective precursor in the biosythesis of the pyrimidine base of nucleic acids in living organisms and plays a unique role in bioinorganic and pharmaceutical chemistry (Lieberman et al., 1955). Aside from the biological interest, orotic acid is also interesting in coordination chemistry (Lalioti et al., 1998). In this contribution, the title compound (I) was synthesized and its crystal structure determined (Fig. 1 and Table 1). The central Co is coordinated by five nitrogen atoms (four from pyrazino[2,3-f][1,10]phenanthroline ligand and one from orotic acid ligand) and one carboxylate oxygen from the orotic acid ligand,yielding a slightly distorted octahedral coordination geometry. The geometric parameters are in good agreement with those found in literature (Darensbourg et al., 1998). The intermolecular hydrogen bonding between the uncoordinated water molecules and the ligand stablizes the structure of the complex (Fig. 2).

For related literature, see: Darensbourg et al. (1998); Lieberman et al. (1955); Lalioti et al. (1998)

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted for clarity.
[Figure 2] Fig. 2. The intermolecular hydrogen bonding in the complex.
[2,6-Dioxo-1,2,3,6-tetrahydropyrimidine-4- carboxylato(2-)](dipyrazino[2,3-f][1,10]phenanthroline)cobalt(II) dihydrate top
Crystal data top
[Co(C5H2N2O4)(C14H8N4)2]·2H2OF(000) = 1460
Mr = 713.54Dx = 1.610 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14858 reflections
a = 15.9468 (7) Åθ = 2.6–28.1°
b = 13.3765 (6) ŵ = 0.65 mm1
c = 15.5661 (7) ÅT = 293 K
β = 117.561 (1)°Block, orange
V = 2943.6 (2) Å30.16 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5185 independent reflections
Radiation source: sealed tube4601 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ & ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.903, Tmax = 0.938k = 1515
32977 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0839P)2 + 0.3838P]
where P = (Fo2 + 2Fc2)/3
5185 reflections(Δ/σ)max = 0.001
451 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Co(C5H2N2O4)(C14H8N4)2]·2H2OV = 2943.6 (2) Å3
Mr = 713.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.9468 (7) ŵ = 0.65 mm1
b = 13.3765 (6) ÅT = 293 K
c = 15.5661 (7) Å0.16 × 0.12 × 0.10 mm
β = 117.561 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5185 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4601 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.938Rint = 0.026
32977 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.00Δρmax = 0.30 e Å3
5185 reflectionsΔρmin = 0.44 e Å3
451 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.302202 (16)0.138211 (16)0.366964 (15)0.02739 (11)
O10.40452 (10)0.12832 (10)0.50951 (9)0.0376 (3)
O20.43227 (10)0.09578 (13)0.66013 (10)0.0538 (4)
O30.10352 (10)0.00194 (13)0.60522 (10)0.0557 (4)
O40.07356 (9)0.08288 (12)0.31027 (9)0.0472 (4)
O50.98177 (15)0.12594 (16)0.76679 (18)0.0891 (7)
H330.95310.07010.75120.107*
H340.93880.16830.75800.107*
O60.90804 (17)0.18193 (17)0.28686 (18)0.1009 (8)
H350.94910.15180.27590.121*
H360.89460.13430.31450.121*
N10.22079 (10)0.09749 (11)0.43806 (10)0.0287 (3)
N20.09212 (11)0.04177 (12)0.45940 (11)0.0354 (4)
H20.03430.03050.43290.042*
N30.28705 (10)0.29594 (11)0.36494 (10)0.0299 (3)
N40.42213 (10)0.18951 (11)0.35070 (10)0.0299 (3)
N50.45316 (12)0.60117 (12)0.37989 (12)0.0406 (4)
N60.60438 (11)0.48810 (13)0.38628 (11)0.0398 (4)
N70.30777 (10)0.01439 (11)0.33132 (10)0.0311 (3)
N80.21162 (11)0.13331 (10)0.21056 (11)0.0303 (3)
N90.17387 (14)0.25488 (13)0.07249 (12)0.0474 (4)
N100.08181 (13)0.09711 (13)0.05752 (12)0.0460 (4)
C10.37945 (13)0.10401 (14)0.57318 (12)0.0337 (4)
C20.27470 (12)0.08264 (12)0.53502 (12)0.0295 (4)
C30.24123 (13)0.04902 (14)0.59542 (13)0.0360 (4)
H3A0.28200.04020.66100.043*
C40.14344 (13)0.02734 (15)0.55768 (13)0.0370 (4)
C50.12786 (13)0.07517 (13)0.39814 (12)0.0317 (4)
C60.21428 (14)0.34805 (14)0.36155 (14)0.0353 (4)
H60.16300.31330.35990.042*
C70.21152 (14)0.45158 (15)0.36044 (14)0.0395 (4)
H70.15840.48510.35560.047*
C80.28830 (14)0.50429 (15)0.36655 (13)0.0363 (4)
H80.28880.57380.36850.044*
C90.36554 (13)0.45180 (13)0.36978 (12)0.0289 (4)
C100.45001 (12)0.50074 (13)0.37630 (12)0.0309 (4)
C110.53149 (17)0.64312 (15)0.38635 (16)0.0468 (5)
H110.53650.71240.38830.056*
C120.60592 (15)0.58649 (16)0.39021 (15)0.0456 (5)
H120.65950.61950.39590.055*
C130.52507 (13)0.44397 (14)0.37875 (12)0.0310 (4)
C140.51799 (13)0.33593 (14)0.37159 (12)0.0305 (4)
C150.58863 (13)0.27483 (16)0.37097 (14)0.0390 (4)
H150.64490.30290.37820.047*
C160.57528 (14)0.17395 (16)0.35985 (15)0.0419 (5)
H160.62220.13270.35970.050*
C170.49038 (14)0.13382 (14)0.34878 (14)0.0351 (4)
H170.48090.06520.33970.042*
C180.43614 (12)0.28890 (13)0.36294 (11)0.0266 (4)
C190.36096 (12)0.34745 (13)0.36641 (12)0.0270 (4)
C200.35704 (15)0.08618 (14)0.39335 (14)0.0406 (5)
H200.39750.06880.45720.049*
C210.35049 (16)0.18542 (15)0.36665 (15)0.0453 (5)
H210.38560.23360.41220.054*
C220.29230 (14)0.21251 (14)0.27315 (14)0.0382 (4)
H220.28710.27920.25460.046*
C230.24054 (13)0.13879 (12)0.20537 (13)0.0320 (4)
C240.18141 (14)0.15951 (14)0.10363 (15)0.0345 (4)
C250.11973 (18)0.26838 (17)0.02203 (16)0.0560 (6)
H250.11200.33300.04660.067*
C260.07401 (19)0.19040 (18)0.08593 (16)0.0558 (6)
H260.03660.20500.15120.067*
C270.13568 (13)0.08080 (14)0.03829 (13)0.0343 (4)
C280.14542 (12)0.02137 (14)0.07340 (12)0.0323 (4)
C290.10276 (14)0.10256 (15)0.01198 (14)0.0393 (4)
H290.06600.09280.05430.047*
C300.11575 (15)0.19611 (16)0.05054 (14)0.0441 (5)
H300.08870.25110.01060.053*
C310.16973 (14)0.20886 (14)0.15002 (13)0.0391 (4)
H310.17690.27310.17540.047*
C320.20028 (12)0.04064 (13)0.17205 (12)0.0276 (4)
C330.25063 (12)0.04016 (13)0.23834 (12)0.0276 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.03091 (17)0.02377 (17)0.02886 (16)0.00288 (9)0.01500 (12)0.00119 (8)
O10.0316 (7)0.0471 (8)0.0316 (7)0.0091 (6)0.0124 (6)0.0019 (5)
O20.0407 (8)0.0803 (12)0.0311 (7)0.0083 (8)0.0088 (6)0.0007 (7)
O30.0465 (9)0.0841 (12)0.0447 (8)0.0048 (8)0.0280 (7)0.0161 (8)
O40.0330 (7)0.0733 (11)0.0317 (7)0.0048 (7)0.0118 (6)0.0063 (7)
O50.0666 (13)0.0695 (13)0.1107 (18)0.0005 (10)0.0236 (12)0.0099 (11)
O60.1180 (18)0.0916 (15)0.145 (2)0.0530 (14)0.1050 (17)0.0658 (15)
N10.0301 (8)0.0286 (7)0.0285 (7)0.0021 (6)0.0143 (6)0.0001 (6)
N20.0299 (8)0.0425 (9)0.0360 (8)0.0033 (7)0.0172 (7)0.0031 (7)
N30.0305 (8)0.0281 (8)0.0338 (8)0.0039 (6)0.0173 (6)0.0042 (6)
N40.0339 (8)0.0277 (8)0.0309 (7)0.0013 (6)0.0173 (6)0.0013 (6)
N50.0516 (10)0.0265 (8)0.0447 (9)0.0061 (7)0.0233 (8)0.0001 (7)
N60.0373 (9)0.0448 (10)0.0393 (9)0.0107 (7)0.0193 (7)0.0002 (7)
N70.0358 (8)0.0259 (7)0.0305 (8)0.0013 (6)0.0145 (6)0.0006 (6)
N80.0349 (9)0.0254 (8)0.0308 (8)0.0022 (6)0.0155 (7)0.0006 (6)
N90.0634 (11)0.0342 (9)0.0505 (10)0.0090 (8)0.0314 (9)0.0114 (8)
N100.0582 (11)0.0467 (10)0.0352 (9)0.0150 (9)0.0233 (8)0.0078 (7)
C10.0361 (10)0.0321 (9)0.0296 (9)0.0044 (8)0.0123 (8)0.0037 (7)
C20.0339 (9)0.0258 (9)0.0289 (8)0.0007 (7)0.0146 (7)0.0022 (7)
C30.0391 (11)0.0397 (10)0.0288 (9)0.0008 (8)0.0155 (8)0.0013 (8)
C40.0420 (11)0.0369 (10)0.0380 (10)0.0006 (8)0.0235 (9)0.0038 (8)
C50.0336 (10)0.0312 (9)0.0328 (9)0.0005 (8)0.0173 (8)0.0013 (7)
C60.0322 (10)0.0357 (10)0.0440 (11)0.0016 (8)0.0226 (9)0.0033 (8)
C70.0389 (11)0.0366 (10)0.0487 (11)0.0072 (8)0.0251 (9)0.0003 (8)
C80.0435 (11)0.0275 (10)0.0411 (11)0.0043 (8)0.0222 (9)0.0002 (7)
C90.0351 (10)0.0264 (9)0.0265 (8)0.0009 (7)0.0154 (7)0.0009 (7)
C100.0387 (10)0.0279 (9)0.0255 (8)0.0049 (7)0.0143 (7)0.0003 (7)
C110.0582 (14)0.0322 (11)0.0499 (12)0.0155 (9)0.0251 (11)0.0023 (8)
C120.0473 (12)0.0467 (13)0.0448 (11)0.0188 (10)0.0228 (9)0.0017 (9)
C130.0345 (10)0.0338 (10)0.0250 (8)0.0063 (7)0.0141 (7)0.0001 (7)
C140.0313 (9)0.0361 (10)0.0266 (8)0.0006 (8)0.0154 (7)0.0048 (7)
C150.0339 (10)0.0451 (12)0.0455 (11)0.0006 (8)0.0246 (9)0.0044 (9)
C160.0404 (11)0.0441 (12)0.0510 (11)0.0115 (9)0.0294 (9)0.0059 (9)
C170.0426 (11)0.0308 (10)0.0372 (10)0.0060 (8)0.0229 (9)0.0009 (7)
C180.0307 (9)0.0268 (9)0.0244 (8)0.0003 (7)0.0144 (7)0.0007 (6)
C190.0306 (9)0.0281 (9)0.0228 (8)0.0005 (7)0.0129 (7)0.0008 (6)
C200.0464 (12)0.0337 (10)0.0348 (10)0.0060 (9)0.0129 (8)0.0030 (8)
C210.0561 (13)0.0311 (10)0.0461 (12)0.0106 (9)0.0214 (10)0.0091 (9)
C220.0466 (11)0.0245 (9)0.0466 (11)0.0021 (8)0.0242 (9)0.0001 (8)
C230.0353 (10)0.0283 (10)0.0387 (10)0.0041 (7)0.0224 (9)0.0034 (7)
C240.0389 (10)0.0335 (10)0.0393 (10)0.0085 (8)0.0250 (8)0.0079 (8)
C250.0813 (17)0.0403 (12)0.0524 (13)0.0186 (12)0.0361 (12)0.0187 (10)
C260.0767 (16)0.0548 (14)0.0397 (11)0.0248 (12)0.0301 (11)0.0182 (10)
C270.0387 (10)0.0370 (10)0.0328 (9)0.0106 (8)0.0212 (8)0.0068 (8)
C280.0325 (10)0.0343 (10)0.0335 (9)0.0047 (7)0.0182 (8)0.0010 (7)
C290.0408 (11)0.0436 (11)0.0301 (9)0.0028 (9)0.0135 (8)0.0015 (8)
C300.0506 (12)0.0379 (11)0.0379 (10)0.0045 (9)0.0155 (9)0.0104 (8)
C310.0507 (12)0.0277 (9)0.0364 (10)0.0000 (8)0.0180 (9)0.0015 (8)
C320.0292 (9)0.0272 (9)0.0296 (8)0.0035 (7)0.0164 (7)0.0015 (7)
C330.0287 (9)0.0271 (9)0.0326 (9)0.0012 (7)0.0188 (7)0.0004 (7)
Geometric parameters (Å, º) top
Co1—O12.0622 (13)C7—C81.378 (3)
Co1—N32.1223 (15)C7—H70.9300
Co1—N72.1280 (15)C8—C91.398 (3)
Co1—N12.1299 (14)C8—H80.9300
Co1—N42.1542 (15)C9—C191.397 (2)
Co1—N82.1827 (15)C9—C101.459 (2)
O1—C11.271 (2)C10—C131.403 (3)
O2—C11.224 (2)C11—C121.386 (3)
O3—C41.242 (2)C11—H110.9300
O4—C51.239 (2)C12—H120.9300
O5—H330.8499C13—C141.450 (3)
O5—H340.8500C14—C151.395 (3)
O6—H350.8512C14—C181.398 (2)
O6—H360.8494C15—C161.365 (3)
N1—C51.349 (2)C15—H150.9300
N1—C21.362 (2)C16—C171.391 (3)
N2—C41.374 (2)C16—H160.9300
N2—C51.392 (2)C17—H170.9300
N2—H20.8321C18—C191.454 (2)
N3—C61.334 (2)C20—C211.380 (3)
N3—C191.356 (2)C20—H200.9300
N4—C171.331 (2)C21—C221.364 (3)
N4—C181.347 (2)C21—H210.9300
N5—C111.330 (3)C22—C231.400 (3)
N5—C101.345 (2)C22—H220.9300
N6—C121.317 (3)C23—C331.398 (2)
N6—C131.351 (2)C23—C241.446 (3)
N7—C201.330 (2)C24—C271.410 (3)
N7—C331.350 (2)C25—C261.392 (3)
N8—C311.332 (2)C25—H250.9300
N8—C321.352 (2)C26—H260.9300
N9—C251.329 (3)C27—C281.453 (3)
N9—C241.350 (2)C28—C321.395 (2)
N10—C261.310 (3)C28—C291.398 (3)
N10—C271.351 (2)C29—C301.362 (3)
C1—C21.519 (3)C29—H290.9300
C2—C31.355 (2)C30—C311.391 (3)
C3—C41.419 (3)C30—H300.9300
C3—H3A0.9300C31—H310.9300
C6—C71.385 (3)C32—C331.453 (2)
C6—H60.9300
O1—Co1—N396.18 (5)N5—C11—C12121.89 (18)
O1—Co1—N796.39 (5)N5—C11—H11119.1
N3—Co1—N7165.47 (5)C12—C11—H11119.1
O1—Co1—N178.09 (5)N6—C12—C11123.17 (19)
N3—Co1—N199.75 (5)N6—C12—H12118.4
N7—Co1—N189.95 (6)C11—C12—H12118.4
O1—Co1—N480.99 (5)N6—C13—C10121.24 (17)
N3—Co1—N477.45 (5)N6—C13—C14118.61 (16)
N7—Co1—N497.38 (6)C10—C13—C14120.15 (15)
N1—Co1—N4158.47 (5)C15—C14—C18117.16 (17)
O1—Co1—N8169.75 (6)C15—C14—C13123.36 (16)
N3—Co1—N890.07 (5)C18—C14—C13119.47 (16)
N7—Co1—N876.48 (5)C16—C15—C14120.07 (18)
N1—Co1—N8108.90 (6)C16—C15—H15120.0
N4—Co1—N892.51 (6)C14—C15—H15120.0
C1—O1—Co1118.54 (12)C15—C16—C17118.88 (18)
H33—O5—H34104.6C15—C16—H16120.6
H35—O6—H3698.3C17—C16—H16120.6
C5—N1—C2118.28 (14)N4—C17—C16122.72 (17)
C5—N1—Co1128.40 (11)N4—C17—H17118.6
C2—N1—Co1112.90 (11)C16—C17—H17118.6
C4—N2—C5125.88 (16)N4—C18—C14122.96 (16)
C4—N2—H2118.6N4—C18—C19116.83 (15)
C5—N2—H2115.5C14—C18—C19120.21 (16)
C6—N3—C19117.94 (15)N3—C19—C9122.54 (16)
C6—N3—Co1127.68 (12)N3—C19—C18116.80 (15)
C19—N3—Co1114.38 (11)C9—C19—C18120.65 (16)
C17—N4—C18118.16 (16)N7—C20—C21122.59 (18)
C17—N4—Co1127.17 (12)N7—C20—H20118.7
C18—N4—Co1113.32 (11)C21—C20—H20118.7
C11—N5—C10116.12 (17)C22—C21—C20119.74 (18)
C12—N6—C13115.93 (18)C22—C21—H21120.1
C20—N7—C33118.21 (15)C20—C21—H21120.1
C20—N7—Co1125.81 (12)C21—C22—C23119.32 (17)
C33—N7—Co1115.82 (11)C21—C22—H22120.3
C31—N8—C32117.49 (15)C23—C22—H22120.3
C31—N8—Co1128.53 (12)C33—C23—C22117.41 (17)
C32—N8—Co1113.94 (11)C33—C23—C24119.27 (16)
C25—N9—C24115.47 (19)C22—C23—C24123.26 (16)
C26—N10—C27116.04 (19)N9—C24—C27121.07 (18)
O2—C1—O1125.55 (18)N9—C24—C23118.61 (18)
O2—C1—C2119.03 (17)C27—C24—C23120.28 (17)
O1—C1—C2115.41 (15)N9—C25—C26123.1 (2)
C3—C2—N1124.61 (16)N9—C25—H25118.4
C3—C2—C1120.41 (16)C26—C25—H25118.4
N1—C2—C1114.96 (15)N10—C26—C25122.4 (2)
C2—C3—C4119.40 (16)N10—C26—H26118.8
C2—C3—H3A120.3C25—C26—H26118.8
C4—C3—H3A120.3N10—C27—C24121.89 (18)
O3—C4—N2120.15 (17)N10—C27—C28118.03 (17)
O3—C4—C3125.87 (18)C24—C27—C28120.08 (16)
N2—C4—C3113.98 (15)C32—C28—C29117.91 (17)
O4—C5—N1123.22 (16)C32—C28—C27119.42 (16)
O4—C5—N2118.98 (16)C29—C28—C27122.67 (16)
N1—C5—N2117.80 (15)C30—C29—C28119.07 (17)
N3—C6—C7123.02 (17)C30—C29—H29120.5
N3—C6—H6118.5C28—C29—H29120.5
C7—C6—H6118.5C29—C30—C31119.54 (18)
C8—C7—C6119.25 (18)C29—C30—H30120.2
C8—C7—H7120.4C31—C30—H30120.2
C6—C7—H7120.4N8—C31—C30122.98 (18)
C7—C8—C9119.05 (18)N8—C31—H31118.5
C7—C8—H8120.5C30—C31—H31118.5
C9—C8—H8120.5N8—C32—C28122.98 (16)
C19—C9—C8118.06 (17)N8—C32—C33116.77 (15)
C19—C9—C10118.78 (16)C28—C32—C33120.22 (16)
C8—C9—C10123.16 (17)N7—C33—C23122.72 (16)
N5—C10—C13121.65 (16)N7—C33—C32116.64 (15)
N5—C10—C9117.83 (16)C23—C33—C32120.63 (16)
C13—C10—C9120.52 (16)
N3—Co1—O1—C199.21 (14)C13—N6—C12—C110.4 (3)
N7—Co1—O1—C188.09 (14)N5—C11—C12—N61.1 (3)
N1—Co1—O1—C10.51 (13)C12—N6—C13—C100.6 (2)
N4—Co1—O1—C1175.42 (14)C12—N6—C13—C14178.44 (16)
N8—Co1—O1—C1133.4 (3)N5—C10—C13—N61.0 (3)
O1—Co1—N1—C5174.59 (16)C9—C10—C13—N6178.97 (15)
N3—Co1—N1—C591.09 (15)N5—C10—C13—C14178.01 (16)
N7—Co1—N1—C578.04 (15)C9—C10—C13—C142.0 (2)
N4—Co1—N1—C5171.59 (15)N6—C13—C14—C150.7 (3)
N8—Co1—N1—C52.37 (16)C10—C13—C14—C15178.29 (16)
O1—Co1—N1—C22.29 (11)N6—C13—C14—C18179.48 (15)
N3—Co1—N1—C296.62 (12)C10—C13—C14—C180.4 (2)
N7—Co1—N1—C294.25 (12)C18—C14—C15—C161.6 (3)
N4—Co1—N1—C216.1 (2)C13—C14—C15—C16177.18 (17)
N8—Co1—N1—C2169.93 (11)C14—C15—C16—C170.3 (3)
O1—Co1—N3—C6108.60 (15)C18—N4—C17—C160.7 (3)
N7—Co1—N3—C6101.6 (2)Co1—N4—C17—C16165.11 (14)
N1—Co1—N3—C629.67 (15)C15—C16—C17—N41.5 (3)
N4—Co1—N3—C6172.09 (15)C17—N4—C18—C141.4 (2)
N8—Co1—N3—C679.53 (15)Co1—N4—C18—C14169.10 (12)
O1—Co1—N3—C1972.07 (12)C17—N4—C18—C19178.96 (14)
N7—Co1—N3—C1977.7 (3)Co1—N4—C18—C1911.25 (18)
N1—Co1—N3—C19150.99 (11)C15—C14—C18—N42.5 (2)
N4—Co1—N3—C197.25 (11)C13—C14—C18—N4176.31 (15)
N8—Co1—N3—C1999.80 (12)C15—C14—C18—C19177.85 (15)
O1—Co1—N4—C1777.88 (15)C13—C14—C18—C193.3 (2)
N3—Co1—N4—C17176.33 (15)C6—N3—C19—C93.5 (2)
N7—Co1—N4—C1717.47 (15)Co1—N3—C19—C9177.07 (12)
N1—Co1—N4—C1791.6 (2)C6—N3—C19—C18175.63 (15)
N8—Co1—N4—C1794.15 (15)Co1—N3—C19—C183.77 (18)
O1—Co1—N4—C1888.50 (12)C8—C9—C19—N33.3 (2)
N3—Co1—N4—C189.96 (11)C10—C9—C19—N3176.82 (15)
N7—Co1—N4—C18176.16 (11)C8—C9—C19—C18175.84 (15)
N1—Co1—N4—C1874.8 (2)C10—C9—C19—C184.1 (2)
N8—Co1—N4—C1899.47 (12)N4—C18—C19—N35.2 (2)
O1—Co1—N7—C207.01 (17)C14—C18—C19—N3175.14 (14)
N3—Co1—N7—C20156.8 (2)N4—C18—C19—C9173.98 (15)
N1—Co1—N7—C2071.00 (16)C14—C18—C19—C95.7 (2)
N4—Co1—N7—C2088.70 (16)C33—N7—C20—C211.2 (3)
N8—Co1—N7—C20179.53 (17)Co1—N7—C20—C21173.85 (15)
O1—Co1—N7—C33177.80 (12)N7—C20—C21—C220.6 (3)
N3—Co1—N7—C3328.0 (3)C20—C21—C22—C230.5 (3)
N1—Co1—N7—C33104.20 (12)C21—C22—C23—C330.9 (3)
N4—Co1—N7—C3396.10 (12)C21—C22—C23—C24176.28 (19)
N8—Co1—N7—C335.28 (12)C25—N9—C24—C271.2 (3)
O1—Co1—N8—C31127.7 (3)C25—N9—C24—C23178.90 (18)
N3—Co1—N8—C310.04 (17)C33—C23—C24—N9178.66 (17)
N7—Co1—N8—C31174.40 (18)C22—C23—C24—N91.5 (3)
N1—Co1—N8—C31100.38 (17)C33—C23—C24—C271.0 (3)
N4—Co1—N8—C3177.41 (17)C22—C23—C24—C27176.18 (18)
O1—Co1—N8—C3250.1 (3)C24—N9—C25—C260.6 (3)
N3—Co1—N8—C32177.92 (12)C27—N10—C26—C251.2 (3)
N7—Co1—N8—C323.48 (12)N9—C25—C26—N100.7 (4)
N1—Co1—N8—C3281.74 (13)C26—N10—C27—C240.5 (3)
N4—Co1—N8—C32100.47 (12)C26—N10—C27—C28179.22 (18)
Co1—O1—C1—O2179.64 (16)N9—C24—C27—N100.7 (3)
Co1—O1—C1—C21.2 (2)C23—C24—C27—N10178.37 (17)
C5—N1—C2—C31.7 (3)N9—C24—C27—C28179.52 (17)
Co1—N1—C2—C3174.80 (15)C23—C24—C27—C281.9 (3)
C5—N1—C2—C1176.70 (15)N10—C27—C28—C32179.74 (16)
Co1—N1—C2—C13.55 (18)C24—C27—C28—C320.0 (3)
O2—C1—C2—C34.0 (3)N10—C27—C28—C291.1 (3)
O1—C1—C2—C3175.16 (17)C24—C27—C28—C29179.19 (18)
O2—C1—C2—N1177.54 (17)C32—C28—C29—C300.4 (3)
O1—C1—C2—N13.3 (2)C27—C28—C29—C30179.66 (18)
N1—C2—C3—C40.3 (3)C28—C29—C30—C311.0 (3)
C1—C2—C3—C4178.53 (17)C32—N8—C31—C300.0 (3)
C5—N2—C4—O3179.30 (19)Co1—N8—C31—C30177.86 (15)
C5—N2—C4—C30.5 (3)C29—C30—C31—N81.3 (3)
C2—C3—C4—O3178.5 (2)C31—N8—C32—C281.6 (3)
C2—C3—C4—N21.3 (3)Co1—N8—C32—C28179.74 (13)
C2—N1—C5—O4177.54 (17)C31—N8—C32—C33176.74 (16)
Co1—N1—C5—O45.6 (3)Co1—N8—C32—C331.39 (19)
C2—N1—C5—N22.3 (2)C29—C28—C32—N81.8 (3)
Co1—N1—C5—N2174.28 (12)C27—C28—C32—N8178.94 (16)
C4—N2—C5—O4178.55 (18)C29—C28—C32—C33176.47 (16)
C4—N2—C5—N11.3 (3)C27—C28—C32—C332.8 (2)
C19—N3—C6—C70.6 (3)C20—N7—C33—C230.8 (3)
Co1—N3—C6—C7179.95 (14)Co1—N7—C33—C23174.80 (13)
N3—C6—C7—C82.4 (3)C20—N7—C33—C32178.09 (16)
C6—C7—C8—C92.5 (3)Co1—N7—C33—C326.33 (19)
C7—C8—C9—C190.1 (2)C22—C23—C33—N70.3 (3)
C7—C8—C9—C10179.97 (16)C24—C23—C33—N7177.03 (16)
C11—N5—C10—C130.3 (3)C22—C23—C33—C32179.12 (16)
C11—N5—C10—C9179.64 (16)C24—C23—C33—C321.8 (3)
C19—C9—C10—N5179.72 (15)N8—C32—C33—N73.2 (2)
C8—C9—C10—N50.4 (2)C28—C32—C33—N7175.18 (15)
C19—C9—C10—C130.3 (2)N8—C32—C33—C23177.88 (15)
C8—C9—C10—C13179.64 (16)C28—C32—C33—C233.7 (2)
C10—N5—C11—C120.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H33···O4i0.852.223.007 (3)155
O5—H34···O6ii0.852.162.903 (3)146
O6—H35···O4iii0.852.022.822 (2)156
O6—H36···O3i0.852.162.990 (2)166
N2—H2···O3iv0.832.032.850 (2)169
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C5H2N2O4)(C14H8N4)2]·2H2O
Mr713.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.9468 (7), 13.3765 (6), 15.5661 (7)
β (°) 117.561 (1)
V3)2943.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.903, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
32977, 5185, 4601
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.105, 1.00
No. of reflections5185
No. of parameters451
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.44

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected geometric parameters (Å, º) top
Co1—O12.0622 (13)Co1—N12.1299 (14)
Co1—N32.1223 (15)Co1—N42.1542 (15)
Co1—N72.1280 (15)Co1—N82.1827 (15)
O1—Co1—N396.18 (5)N7—Co1—N497.38 (6)
O1—Co1—N796.39 (5)N1—Co1—N4158.47 (5)
N3—Co1—N7165.47 (5)O1—Co1—N8169.75 (6)
O1—Co1—N178.09 (5)N3—Co1—N890.07 (5)
N3—Co1—N199.75 (5)N7—Co1—N876.48 (5)
N7—Co1—N189.95 (6)N1—Co1—N8108.90 (6)
O1—Co1—N480.99 (5)N4—Co1—N892.51 (6)
N3—Co1—N477.45 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H33···O4i0.852.223.007 (3)154.8
O5—H34···O6ii0.852.162.903 (3)146.0
O6—H35···O4iii0.852.022.822 (2)156.2
O6—H36···O3i0.852.162.990 (2)165.5
N2—H2···O3iv0.832.032.850 (2)168.9
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x, y, z+1.
 

Acknowledgements

The authors thank the Postgraduate Foundation of Taishan University (No. Y06–2–12) for financial support.

References

First citationDarensbourg, D. J., Larkins, D. L. & Reibenspies, J. H. (1998). Inorg. Chem. 37, 6125–6128.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLalioti, N., Raptopoulou, C. P., Terzis, A., Panagiotopoulos, A., Perlepes, S. P. & Manessi-Zoupa, E. (1998). J. Chem. Soc. Dalton Trans. pp. 1335–1340.  Google Scholar
First citationLieberman, I., Komberg, A. & Simms, E. S. (1955). J. Biol. Chem. 215, 403–415.  PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds