metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[bis­­(sulfamethoxazolium) [[tri­chloridocadmate(II)]-μ-chlorido] monohydrate]

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India, and bIMEM–CNR, Parco Area delle Scienze 37a, I-43010 Fontanini, Parma, Italy
*Correspondence e-mail: tommtrichy@yahoo.co.in

(Received 26 October 2007; accepted 16 December 2007; online 21 December 2007)

In the title compound, {(C10H12N3O3S)2[CdCl4]·H2O}n, the CdII atom is five-coordinate with a distorted trigonal–bipyramidal geometry formed by chloride ions. The Cd atom and two of the Cl atoms lie on a mirror plane. The cation is protonated on the amino group N atom; it is not coordinated to cadmium, but is hydrogen bonded to the chlorido ligands. Each water mol­ecule bridges two chlorido ligands, generating ring motifs along the –Cd—Cl—Cd– chains. The isoxazole unit and the amide groups are linked through a pair of N—H⋯N hydrogen bonds. The crystal structure is stabilized by N—H⋯O, O—H⋯Cl, C—H⋯N, N—H⋯Cl and C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Abramenko & Sergienko (2002[Abramenko, V. L. & Sergienko, V. S. (2002). Russ. J. Inorg. Chem. 47, 905-914.]); Bettinetti et al. (1982[Bettinetti, G. P., Giordano, F., La Manna, A., Giuseppetti, G. & Tadini, C. (1982). Cryst. Struct. Commun. 11, 821-828.]); Dai et al. (2002[Dai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Wu, S.-M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sun, Q.-Q. (2002). Inorg. Chem. 41, 1391-1396.]); Fawcett et al. (1978[Fawcett, T. G., Ou, C. C., Potenza, J. A. & Schugar, H. J. (1978). J. Am. Chem. Soc. 100, 2058-2062.]); Haridas et al. (1984[Haridas, M., Tiwari, R. K. & Singh, T. P. (1984). Acta Cryst. C40, 658-660.]); Kagi & Vallee (1960[Kagi, J. H. R. & Vallee, B. L. J. (1960). J. Biol. Chem. 235, 3460-3460.]); Kálmán et al. (1981[Kálmán, A., Czugler, M. & Argay, Gy. (1981). Acta Cryst. B37, 868-877.]); Kendi et al. (2000[Kendi, E., Özbey, S., Bozdağ, O. & Ertan, R. (2000). Acta Cryst. C56, 457-458.]); Schaffers & Keszler (1993[Schaffers, K. I. & Keszler, D. A. (1993). Acta Cryst. C49, 1156-1158.]); Singh et al. (1984[Singh, T. P., Patel, U. & Haridas, M. (1984). Acta Cryst. C40, 2088-2091.]); Subashini et al. (2007[Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, o4312-o4313.]); Subha Nandhini et al. (2002[Subha Nandhini, M., Krishnakumar, R. V., Sivakumar, K. & Natarajan, S. (2002). Acta Cryst. E58, m307-m309.]); Takasuka & Nakai (2001[Takasuka, M. & Nakai, H. (2001). Vib. Spectrosc. 25, 197-204.]); Tao et al. (2003[Tao, J., Yin, X., Jiang, Y.-B., Yang, L.-F., Huang, R.-B. & Zheng, L.-S. (2003). Eur. J. Inorg. Chem. pp. 2678-2682.]); Yukawa et al. (1982[Yukawa, Y., Inomata, Y., Takeuchi, T., Shimoi, M. & Ouchi, A. (1982). Bull. Chem. Soc. Jpn, 55, 3135-3137.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H12N3O3S)2[CdCl4]·H2O

  • Mr = 780.82

  • Orthorhombic, P n m a

  • a = 15.088 (2) Å

  • b = 35.028 (3) Å

  • c = 5.562 (3) Å

  • V = 2939.5 (17) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 11.07 mm−1

  • T = 293 K

  • 0.19 × 0.16 × 0.14 mm

Data collection
  • Siemens AED single-crystal diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.227, Tmax = 0.306 (expected range = 0.157–0.212)

  • 2834 measured reflections

  • 2834 independent reflections

  • 2470 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.05

  • 2834 reflections

  • 203 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—Cl2 2.4828 (17)
Cd1—Cl3 2.469 (2)
Cd1—Cl1i 2.902 (2)
Cd1—Cl2ii 2.4828 (17)
Cd1—Cl1 2.6688 (19)
Cl1—Cd1—Cl2ii 92.51 (3)
Cl2—Cd1—Cl3 113.69 (3)
Cl1i—Cd1—Cl2 84.90 (3)
Cl2—Cd1—Cl2ii 131.63 (4)
Cl1—Cd1—Cl2 92.51 (3)
Cl1—Cd1—Cl3 95.12 (5)
Cl1—Cd1—Cl1i 173.60 (5)
Cl1i—Cd1—Cl2ii 84.90 (3)
Cl1i—Cd1—Cl3 91.27 (5)
Cl2ii—Cd1—Cl3 113.69 (3)
Cd1—Cl1—Cd1iii 173.60 (7)
Symmetry codes: (i) x, y, z+1; (ii) [x, -y+{\script{1\over 2}}, z]; (iii) [x, -y+{\script{1\over 2}}, z-1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯Cl3i 0.96 2.11 3.035 (5) 161
O1W—H2W⋯Cl3 0.95 2.11 3.036 (5) 164
N4—H4A⋯Cl2iv 0.94 (5) 2.26 (5) 3.184 (4) 171 (4)
N4—H4B⋯O1Wv 0.91 (5) 1.86 (5) 2.758 (4) 169 (4)
N4—H4B⋯O1Wiii 0.91 (5) 1.86 (5) 2.758 (4) 169 (4)
N4—H4C⋯Cl2vi 0.85 (4) 2.49 (4) 3.196 (4) 141 (4)
N4—H4C⋯O1vi 0.85 (4) 2.33 (5) 2.871 (4) 122 (4)
N7—H7⋯N8vii 0.86 2.58 3.188 (5) 129
C2—H2⋯O2 0.93 2.55 2.911 (4) 103
C9—H9⋯O2 0.93 2.50 2.991 (4) 113
C9—H9⋯N8i 0.93 2.58 3.354 (5) 141
Symmetry codes: (i) x, y, z+1; (iii) [x, -y+{\script{1\over 2}}, z-1]; (iv) [x-{\script{1\over 2}}, y, -z+{\script{5\over 2}}]; (v) x, y, z-1; (vi) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (vii) -x+1, -y, -z+1.

Data collection: local program (Belletti et al., 1993[Belletti, D., Cantoni, A. & Pasquinelli, G. (1993). Gestione on Line di Diffractometro a Cristallo Singolo Siemens AED con Personal Computer. Internal Report 1-93. Centro di Studio per la Strutturistica Diffrattometrica del CNR Parma, Italy.]); cell refinement: local program; data reduction: local program; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Polynuclear d10– metal complexes have been found to exhibit intriguing structural and photoluminescent properties (Dai et al., 2002; Tao et al., 2003). Chloride-bridged cadmium(II) polymeric complexes are of considerable interest, because they may act as photoactive materials. Cadmium is found to occur naturally in at least one protein, metallothionein (Kagi & Vallee, 1960). Sulfonamides constitute an important class of antimicrobial agents. The drug, 4-[5-methylisoxazol-3-yl)aminosulfonyl] aniline [Sulfamethoxazole (SMZ)] prevents the formation of dihydrofolic acid, a compound that bacteria must be able to make in order to survive. The two polymorphs of SMZ (Bettinetti et al., 1982) have already been reported in literature. Recently, the crystal structure of sulfamethoxazole hydrochloride (Subashini et al., 2007) has been reported from our laboratory. X-ray analysis reveals that (I) possesses a polynuclear structure with the Cd atom and two of the Cl atoms on a special positions(m). The Cd atom has trigonal bipyramidal coordination geometry formed by five chloride anions. The Cd1—Cl1, Cd1—Cl2, Cd1—Cl3, and Cd—Cli bond lengths are 2.669 (2), 2.4828 (17), 2.469 (2) and 2.902 (2)Å respectively. The mean Cd—Cl distance, 2.630 (2) Å, is in agreement with the corresponding distances reported in the structures of complexes of CdCl2 with 4-hydroxy-L-proline [2.620 (2) Å] (Yukawa et al., 1982), β-alanine [2.619 (5) Å] (Subha Nandhini et al., 2002) and L– alanine [2.61 (1) Å] (Schaffers & Keszler, 1993). The Cd—Cl distances reported for tetrameric cadmium(II) complex (Fawcett et al., 1978), viz. 2.946 (6) and 2.946 (5) Å, are longer compared to those in the present structure.

The atoms around the sulfonamide S atom in (I) are arranged in a slightly distorted tetrahedral configuration. The largest deviation is in the angle O1—S1—O2 [121.22 (17)°], but it confirms to the non-tetrahedral nature commonly observed in sulfonamides (Haridas et al., 1984; Kendi et al., 2000; Takasuka & Nakai, 2001). The S1—C1 distance of 1.760 (3)Å (I) is a normal single-bond value and matches well with those observed in other sulfonamides (Singh et al., 1984; Abramenko & Sergienko, 2002). In the present structure the dihedral angle between the isoxazole and amino phenyl plane is found to be 88.31 (18)°, whereas in neutral SMZ structures the dihedral angles are 73.1 (5)° for Form 1 and 79.6 (6)° for Form 2 (Bettinetti et al., 1982) respectively. The two torsion angles τ1 (C—C—S—N) and τ2 (C—S—N—C) defining the conformation of the sulfonamide group are reported to lie in the range 70–120° and 60–90°, respectively (Kálmán et al., 1981). The torsion angles τ1 is -81.9 (3)° (C6—C1—S1—N7) and τ2 is -73.6 (3)° (C1—S1—N7—C8). In neutral forms, the torsion angles τ1 are -76.5 (9)° (Form 1) and -78.5 (5)° (Form 2). The torsion angles τ2 are -56.1 (4)° in form 1 and -61.5 (8)° in form 2. In sulfamethoxazole hydrochloride the torsion angles are (τ1) 73.2 (3)° and (τ2) -71.2 (3)° (Subashini et al., 2007). The cation is protonated on the amine nitrogen (N4) atom. The drug is not coordinated to cadmium and the amino group (N4) of the drug is hydrogen bonded to the chloride ions. 4-ammonio group acts as a bridge between the sulfonamide oxygen atom and water molecules. Four smz cations and two water molecules are connected through N—H···O hydrogen bonds forming a 24 membered ring with graph-set R46(24) (Fig. 2). The isoxazole moiety and the amide groups are paired through a pair of N—H···N hydrogen bonds. A C—H···N hydrogen bond is observed between isoxazole carbon (C9) and nitrogen (N8). The water O1W atom does not participate in coordination with cadmium. Each water molecule bridges two chloride ions generating ring motifs along the –Cd—Cl—Cd- chains as shown in Fig 3.

Related literature top

For related literature, see: Abramenko & Sergienko (2002); Bettinetti et al. (1982); Dai et al. (2002); Fawcett et al. (1978); Haridas et al. (1984); Kagi & Vallee (1960); Kálmán et al. (1981); Kendi et al. (2000); Schaffers & Keszler (1993); Singh et al. (1984); Subashini et al. (2007); Subha Nandhini et al. (2002); Takasuka & Nakai (2001); Tao et al. (2003); Yukawa et al. (1982).

Experimental top

Hot ethanol solution of sulfamethoxazole (Qualigens, 63 mg) and an aqueous solution of cadmium chloride (CdCl2.2H2O, 98%) (SISCO CHEM, 54 mg) were mixed in a 1:1 stoichiometric ratio. On slow evaporation light brown prismatic crystals of the title complex were formed.

Refinement top

The hydrogen atoms of the aromatic groups were positioned geometrically and refined using a riding model, with C—H=0.93–0.96Å and Uiso(H)= 1.5Ueq(C) for methyl hydrogen atoms and 1.2 Ueq(C) for all other hydrogen atoms. The hydrogen atoms of the water molecule and ammonio group (N4) were located in a difference Fourier maps and were refined, subject to bond length restraints of 0.96 Å(O—H), 1.5Å (H..H) and 0.86Å for ammonio N—H(H4C). The highest peak in the final difference map was found at a distance of 1.04Å from Cd1 and the deepest hole was -0.64Å from Cl1.

Structure description top

Polynuclear d10– metal complexes have been found to exhibit intriguing structural and photoluminescent properties (Dai et al., 2002; Tao et al., 2003). Chloride-bridged cadmium(II) polymeric complexes are of considerable interest, because they may act as photoactive materials. Cadmium is found to occur naturally in at least one protein, metallothionein (Kagi & Vallee, 1960). Sulfonamides constitute an important class of antimicrobial agents. The drug, 4-[5-methylisoxazol-3-yl)aminosulfonyl] aniline [Sulfamethoxazole (SMZ)] prevents the formation of dihydrofolic acid, a compound that bacteria must be able to make in order to survive. The two polymorphs of SMZ (Bettinetti et al., 1982) have already been reported in literature. Recently, the crystal structure of sulfamethoxazole hydrochloride (Subashini et al., 2007) has been reported from our laboratory. X-ray analysis reveals that (I) possesses a polynuclear structure with the Cd atom and two of the Cl atoms on a special positions(m). The Cd atom has trigonal bipyramidal coordination geometry formed by five chloride anions. The Cd1—Cl1, Cd1—Cl2, Cd1—Cl3, and Cd—Cli bond lengths are 2.669 (2), 2.4828 (17), 2.469 (2) and 2.902 (2)Å respectively. The mean Cd—Cl distance, 2.630 (2) Å, is in agreement with the corresponding distances reported in the structures of complexes of CdCl2 with 4-hydroxy-L-proline [2.620 (2) Å] (Yukawa et al., 1982), β-alanine [2.619 (5) Å] (Subha Nandhini et al., 2002) and L– alanine [2.61 (1) Å] (Schaffers & Keszler, 1993). The Cd—Cl distances reported for tetrameric cadmium(II) complex (Fawcett et al., 1978), viz. 2.946 (6) and 2.946 (5) Å, are longer compared to those in the present structure.

The atoms around the sulfonamide S atom in (I) are arranged in a slightly distorted tetrahedral configuration. The largest deviation is in the angle O1—S1—O2 [121.22 (17)°], but it confirms to the non-tetrahedral nature commonly observed in sulfonamides (Haridas et al., 1984; Kendi et al., 2000; Takasuka & Nakai, 2001). The S1—C1 distance of 1.760 (3)Å (I) is a normal single-bond value and matches well with those observed in other sulfonamides (Singh et al., 1984; Abramenko & Sergienko, 2002). In the present structure the dihedral angle between the isoxazole and amino phenyl plane is found to be 88.31 (18)°, whereas in neutral SMZ structures the dihedral angles are 73.1 (5)° for Form 1 and 79.6 (6)° for Form 2 (Bettinetti et al., 1982) respectively. The two torsion angles τ1 (C—C—S—N) and τ2 (C—S—N—C) defining the conformation of the sulfonamide group are reported to lie in the range 70–120° and 60–90°, respectively (Kálmán et al., 1981). The torsion angles τ1 is -81.9 (3)° (C6—C1—S1—N7) and τ2 is -73.6 (3)° (C1—S1—N7—C8). In neutral forms, the torsion angles τ1 are -76.5 (9)° (Form 1) and -78.5 (5)° (Form 2). The torsion angles τ2 are -56.1 (4)° in form 1 and -61.5 (8)° in form 2. In sulfamethoxazole hydrochloride the torsion angles are (τ1) 73.2 (3)° and (τ2) -71.2 (3)° (Subashini et al., 2007). The cation is protonated on the amine nitrogen (N4) atom. The drug is not coordinated to cadmium and the amino group (N4) of the drug is hydrogen bonded to the chloride ions. 4-ammonio group acts as a bridge between the sulfonamide oxygen atom and water molecules. Four smz cations and two water molecules are connected through N—H···O hydrogen bonds forming a 24 membered ring with graph-set R46(24) (Fig. 2). The isoxazole moiety and the amide groups are paired through a pair of N—H···N hydrogen bonds. A C—H···N hydrogen bond is observed between isoxazole carbon (C9) and nitrogen (N8). The water O1W atom does not participate in coordination with cadmium. Each water molecule bridges two chloride ions generating ring motifs along the –Cd—Cl—Cd- chains as shown in Fig 3.

For related literature, see: Abramenko & Sergienko (2002); Bettinetti et al. (1982); Dai et al. (2002); Fawcett et al. (1978); Haridas et al. (1984); Kagi & Vallee (1960); Kálmán et al. (1981); Kendi et al. (2000); Schaffers & Keszler (1993); Singh et al. (1984); Subashini et al. (2007); Subha Nandhini et al. (2002); Takasuka & Nakai (2001); Tao et al. (2003); Yukawa et al. (1982).

Computing details top

Data collection: Local program (Belletti et al., 1993); cell refinement: Local program (Belletti et al., 1993); data reduction: Local program (Belletti et al., 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the asymmetric unit of (I) showing 30% probability displacement ellipsoids. Symmetry codes: (i)x,y,z + 1; (ii)x,-y + 1/2,z.
[Figure 2] Fig. 2. Packing view of compound (I). Symmetry codes: (iii)x,-y + 1/2,z - 1; (vi) x - 1/2,y,-z + 3/2.
[Figure 3] Fig. 3. Water molecules bridging chloride ions generating ring motifs along –Cd—Cl—Cd chains. Symmetry codes: (i) x,y,z + 1.
catena-Poly[bis(sulfamethoxazolium) [[trichloridocadmium(II)]-µ-chlorido] monohydrate] top
Crystal data top
(C10H12N3O3S)2[CdCl4]·H2OF(000) = 1568
Mr = 780.82Dx = 1.764 Mg m3
Orthorhombic, PnmaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2nCell parameters from 45 reflections
a = 15.088 (2) Åθ = 5.1–70.1°
b = 35.028 (3) ŵ = 11.07 mm1
c = 5.562 (3) ÅT = 293 K
V = 2939.5 (17) Å3Prism-like, light-brown
Z = 40.19 × 0.16 × 0.14 mm
Data collection top
Siemens AED single-crystal
diffractometer
2834 independent reflections
Radiation source: fine- focus sealed tube2470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω–2θ scansθmax = 70.1°, θmin = 5.1°
Absorption correction: ψ scan
(North et al., 1968)
h = 218
Tmin = 0.227, Tmax = 0.306k = 242
2834 measured reflectionsl = 66
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0706P)2 + 2.0804P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2834 reflectionsΔρmax = 1.04 e Å3
203 parametersΔρmin = 0.64 e Å3
4 restraintsExtinction correction: SHELXL, FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00108 (10)
Crystal data top
(C10H12N3O3S)2[CdCl4]·H2OV = 2939.5 (17) Å3
Mr = 780.82Z = 4
Orthorhombic, PnmaCu Kα radiation
a = 15.088 (2) ŵ = 11.07 mm1
b = 35.028 (3) ÅT = 293 K
c = 5.562 (3) Å0.19 × 0.16 × 0.14 mm
Data collection top
Siemens AED single-crystal
diffractometer
2834 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
2470 reflections with I > 2σ(I)
Tmin = 0.227, Tmax = 0.306Rint = 0.000
2834 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0414 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.04 e Å3
2834 reflectionsΔρmin = 0.64 e Å3
203 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2> σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47494 (5)0.09076 (2)0.89098 (17)0.0348 (3)
O10.54498 (17)0.11258 (8)0.7896 (6)0.0526 (9)
O20.47844 (16)0.07794 (8)1.1338 (5)0.0433 (8)
O30.34703 (17)0.03052 (8)0.6783 (5)0.0465 (8)
N40.1435 (2)0.18175 (9)0.7834 (6)0.0367 (9)
N70.46903 (19)0.05310 (9)0.7171 (5)0.0383 (9)
N80.39733 (19)0.00044 (9)0.5779 (6)0.0450 (10)
C10.3753 (2)0.11622 (9)0.8542 (6)0.0311 (8)
C20.3077 (2)0.11213 (9)1.0198 (6)0.0376 (9)
C30.2303 (2)0.13307 (10)0.9951 (6)0.0380 (10)
C40.2224 (2)0.15783 (9)0.8048 (6)0.0322 (9)
C50.2887 (2)0.16153 (10)0.6346 (7)0.0400 (10)
C60.3658 (2)0.14054 (10)0.6588 (6)0.0403 (10)
C80.4174 (2)0.02120 (9)0.7613 (6)0.0315 (8)
C90.3822 (2)0.00750 (9)0.9784 (6)0.0348 (9)
C100.3395 (2)0.02479 (9)0.9160 (6)0.0345 (9)
C110.2894 (3)0.05362 (11)1.0534 (8)0.0500 (11)
Cd10.47373 (2)0.250001.18772 (7)0.0430 (1)
Cl10.48401 (11)0.250000.7087 (2)0.0541 (5)
Cl20.54023 (7)0.18534 (3)1.21780 (16)0.0511 (3)
Cl30.31017 (11)0.250001.2016 (3)0.0795 (7)
O1W0.2295 (3)0.250001.7017 (8)0.0513 (14)
H20.314200.095301.147900.0450*
H30.184400.130401.105600.0460*
H4A0.119 (3)0.1815 (15)0.938 (10)0.073 (15)*
H4B0.165 (3)0.2055 (13)0.753 (7)0.046 (11)*
H4C0.118 (3)0.1707 (14)0.666 (7)0.076 (17)*
H50.281500.178000.505000.0480*
H60.410800.142700.545400.0480*
H70.500500.053200.588200.0460*
H90.387200.018301.130600.0420*
H11A0.229500.054600.995800.0750*
H11B0.289500.046901.220700.0750*
H11C0.316700.078201.033100.0750*
H1W0.267500.250001.839400.13 (4)*
H2W0.265300.250001.560400.08 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0272 (4)0.0305 (4)0.0468 (5)0.0038 (3)0.0006 (3)0.0050 (3)
O10.0300 (12)0.0449 (15)0.083 (2)0.0033 (11)0.0069 (12)0.0036 (14)
O20.0447 (13)0.0426 (14)0.0427 (13)0.0104 (11)0.0108 (11)0.0063 (11)
O30.0442 (14)0.0511 (15)0.0441 (14)0.0099 (12)0.0004 (11)0.0139 (11)
N40.0343 (15)0.0302 (15)0.0456 (18)0.0058 (12)0.0034 (13)0.0003 (13)
N70.0427 (16)0.0326 (15)0.0395 (15)0.0050 (11)0.0113 (12)0.0059 (12)
N80.0426 (15)0.0549 (19)0.0374 (16)0.0080 (14)0.0044 (13)0.0087 (14)
C10.0283 (14)0.0255 (14)0.0394 (16)0.0020 (12)0.0004 (12)0.0023 (12)
C20.0384 (16)0.0345 (16)0.0400 (17)0.0067 (14)0.0072 (14)0.0087 (14)
C30.0338 (16)0.0388 (17)0.0415 (17)0.0041 (13)0.0080 (14)0.0067 (14)
C40.0295 (15)0.0242 (15)0.0428 (17)0.0005 (11)0.0017 (13)0.0026 (12)
C50.0436 (18)0.0335 (16)0.0429 (17)0.0035 (14)0.0070 (15)0.0110 (15)
C60.0387 (17)0.0375 (18)0.0447 (19)0.0020 (14)0.0112 (15)0.0072 (15)
C80.0287 (14)0.0343 (15)0.0314 (15)0.0091 (12)0.0009 (12)0.0036 (13)
C90.0388 (16)0.0329 (16)0.0328 (16)0.0068 (13)0.0004 (13)0.0014 (13)
C100.0292 (14)0.0356 (16)0.0388 (17)0.0064 (12)0.0008 (13)0.0018 (14)
C110.0441 (19)0.045 (2)0.061 (2)0.0010 (16)0.0025 (18)0.0030 (18)
Cd10.0368 (2)0.0306 (2)0.0615 (3)0.00000.0019 (2)0.0000
Cl10.0672 (9)0.0529 (8)0.0422 (7)0.00000.0054 (6)0.0000
Cl20.0724 (6)0.0427 (5)0.0383 (5)0.0192 (4)0.0009 (4)0.0018 (4)
Cl30.0402 (7)0.1403 (19)0.0581 (9)0.00000.0057 (6)0.0000
O1W0.052 (2)0.037 (2)0.065 (3)0.00000.000 (2)0.0000
Geometric parameters (Å, º) top
Cd1—Cl22.4828 (17)N7—H70.8599
Cd1—Cl32.469 (2)C1—C61.388 (5)
Cd1—Cl1i2.902 (2)C1—C21.382 (5)
Cd1—Cl2ii2.4828 (17)C2—C31.386 (4)
Cd1—Cl12.6688 (19)C3—C41.374 (5)
S1—C11.760 (3)C4—C51.383 (5)
S1—O11.421 (3)C5—C61.383 (5)
S1—O21.424 (3)C8—C91.404 (5)
S1—N71.638 (3)C9—C101.347 (4)
O3—N81.413 (4)C10—C111.475 (5)
O3—C101.342 (4)C2—H20.9299
O1W—H1W0.9567C3—H30.9306
O1W—H2W0.9536C5—H50.9296
N4—C41.461 (4)C6—H60.9298
N7—C81.384 (4)C9—H90.9303
N8—C81.306 (5)C11—H11A0.9595
N4—H4A0.94 (5)C11—H11B0.9598
N4—H4B0.91 (5)C11—H11C0.9611
N4—H4C0.85 (4)
Cd1···H1Wiii3.6654N8···H7xi2.5778
Cd1···H2W3.7665C3···O1xii3.293 (5)
Cd1···H4Aiv3.86 (5)C4···O1xii3.155 (4)
Cd1···H4Av3.86 (5)C4···O1Wvi3.281 (4)
Cd1···H1Wvi3.6654C4···O1Wiii3.281 (4)
Cd1···H2Wii3.7665C5···O1Wvi3.247 (4)
Cl1···Cd1iii2.902 (2)C5···O1Wiii3.247 (4)
Cl1···N4vii3.392 (4)C8···C11xv3.516 (6)
Cl1···N4viii3.392 (4)C8···N8xi3.450 (5)
Cl1···Cl2iii3.648 (2)C8···C9x3.500 (5)
Cl2···N4vii3.196 (4)C9···O22.991 (4)
Cl2···N4v3.184 (4)C9···N8i3.354 (5)
Cl3···O1Wiii3.035 (5)C9···C8x3.500 (5)
Cl3···O1Wvi3.035 (5)C10···O2x3.330 (4)
Cl3···O1Wii3.036 (5)C11···C8xvi3.516 (6)
Cl3···O1W3.036 (5)C11···N8xvi3.397 (6)
Cl2···H3v3.0659C11···O1x3.357 (5)
Cl2···H4Cvii2.49 (4)C8···H11Axv2.9089
Cl2···H4Av2.26 (5)H1W···H4Bi2.2477
Cl2···H6i3.0601H1W···Cd1i3.6654
Cl3···H1Wiii2.1149H1W···H4Bix2.2477
Cl3···H2W2.1074H1W···Cl3i2.1149
Cl3···H5i3.0652H1W···Cl3i2.1149
Cl3···H5ix3.0652H1W···Cd1i3.6654
Cl3···H2Wii2.1074H2···O22.5528
Cl3···H1Wvi2.1149H2···H11Axvi2.4923
S1···H93.1577H2W···Cd13.7665
O1···C11x3.357 (5)H2W···Cl32.1074
O1···C3vii3.293 (5)H2W···H4Bix2.4223
O1···N4vii2.871 (4)H2W···H5ix2.5525
O1···C4vii3.155 (4)H2W···Cl32.1074
O1W···N4i2.758 (4)H2W···H4Bi2.4223
O1W···C4i3.281 (4)H2W···H5i2.5525
O1W···Cl3i3.035 (5)H2W···Cd13.7665
O1W···Cl33.036 (5)H3···H4A2.2464
O1W···C5ix3.247 (4)H3···Cl2xiv3.0659
O1W···C5i3.247 (4)H4A···H32.2464
O1W···Cl3i3.035 (5)H4A···Cd1xiv3.86 (5)
O1W···N4ix2.758 (4)H4A···Cl2xiv2.26 (5)
O1W···Cl33.036 (5)H4A···Cd1xvii3.86 (5)
O1W···C4ix3.281 (4)H4B···H52.4332
O2···C92.991 (4)H4B···O1Wvi1.86 (5)
O2···C10x3.330 (4)H4B···O1Wiii1.86 (5)
O1···H4Cvii2.33 (5)H4B···H1Wiii2.2477
O1···H11Cx2.6035H4B···H2Wiii2.4223
O1···H62.6564H4B···H1Wvi2.2477
O1W···H5ix2.8589H4B···H2Wvi2.4223
O1W···H5i2.8589H4C···Cl2xii2.49 (4)
O1W···H4Bix1.86 (5)H4C···O1xii2.33 (5)
O1W···H4Bi1.86 (5)H5···H2Wiii2.5525
O2···H7i2.6925H5···Cl3iii3.0652
O2···H22.5528H5···O1Wiii2.8589
O2···H92.5019H5···Cl3vi3.0652
O3···H11Biii2.7496H5···O1Wvi2.8589
O3···H7xi2.8496H5···H4B2.4332
N4···Cl1xii3.392 (4)H5···H2Wvi2.5525
N4···Cl2xii3.196 (4)H6···O12.6564
N4···Cl1xiii3.392 (4)H6···Cl2iii3.0601
N4···O1xii2.871 (4)H7···O3xi2.8496
N4···O1Wvi2.758 (4)H7···N8xi2.5778
N4···Cl2xiv3.184 (4)H7···O2iii2.6925
N4···O1Wiii2.758 (4)H9···O22.5019
N7···N8xi3.188 (5)H9···N8i2.5776
N8···C8xi3.450 (5)H9···S13.1577
N8···C9iii3.354 (5)H11A···N8xvi2.7545
N8···N7xi3.188 (5)H11A···C8xvi2.9089
N8···C11xv3.397 (6)H11A···H2xv2.4923
N8···N8xi3.217 (4)H11B···O3i2.7496
N8···H11Axv2.7545H11C···O1x2.6035
N8···H9iii2.5776
Cl1—Cd1—Cl2ii92.51 (3)S1—C1—C2120.0 (2)
Cl2—Cd1—Cl3113.69 (3)C1—C2—C3120.1 (3)
Cl1i—Cd1—Cl284.90 (3)C2—C3—C4118.9 (3)
Cl2—Cd1—Cl2ii131.63 (4)N4—C4—C3119.7 (3)
Cl1—Cd1—Cl292.51 (3)C3—C4—C5121.6 (3)
Cl1—Cd1—Cl395.12 (5)N4—C4—C5118.7 (3)
Cl1—Cd1—Cl1i173.60 (5)C4—C5—C6119.5 (3)
Cl1i—Cd1—Cl2ii84.90 (3)C1—C6—C5119.3 (3)
Cl1i—Cd1—Cl391.27 (5)N7—C8—C9129.9 (3)
Cl2ii—Cd1—Cl3113.69 (3)N8—C8—C9112.7 (3)
Cd1—Cl1—Cd1vi173.60 (7)N7—C8—N8117.4 (3)
O1—S1—N7103.85 (17)C8—C9—C10104.3 (3)
O1—S1—C1108.46 (16)C9—C10—C11133.4 (3)
O2—S1—N7107.94 (16)O3—C10—C11116.8 (3)
O1—S1—O2121.22 (17)O3—C10—C9109.8 (3)
O2—S1—C1107.56 (16)C1—C2—H2119.91
N7—S1—C1107.03 (15)C3—C2—H2120.02
N8—O3—C10108.9 (3)C2—C3—H3120.56
H1W—O1W—H2W108.68C4—C3—H3120.52
S1—N7—C8125.2 (2)C6—C5—H5120.25
O3—N8—C8104.4 (3)C4—C5—H5120.28
H4A—N4—H4C121 (4)C1—C6—H6120.37
C4—N4—H4A104 (3)C5—C6—H6120.33
H4B—N4—H4C116 (4)C8—C9—H9127.81
H4A—N4—H4B109 (4)C10—C9—H9127.93
C4—N4—H4B104 (3)H11B—C11—H11C109.45
C4—N4—H4C100 (3)H11A—C11—H11B109.51
C8—N7—H7117.52H11A—C11—H11C109.42
S1—N7—H7117.31C10—C11—H11A109.53
S1—C1—C6119.3 (2)C10—C11—H11B109.49
C2—C1—C6120.6 (3)C10—C11—H11C109.44
O1—S1—N7—C8171.7 (3)O3—N8—C8—C90.8 (4)
O2—S1—N7—C841.8 (3)S1—C1—C6—C5177.8 (3)
C1—S1—N7—C873.7 (3)S1—C1—C2—C3178.0 (3)
O1—S1—C1—C2150.0 (3)C6—C1—C2—C31.5 (5)
O1—S1—C1—C629.6 (3)C2—C1—C6—C51.7 (5)
O2—S1—C1—C217.2 (3)C1—C2—C3—C40.2 (5)
O2—S1—C1—C6162.3 (3)C2—C3—C4—N4176.5 (3)
N7—S1—C1—C298.6 (3)C2—C3—C4—C51.8 (5)
N7—S1—C1—C681.9 (3)C3—C4—C5—C61.6 (5)
N8—O3—C10—C11179.5 (3)N4—C4—C5—C6176.7 (3)
C10—O3—N8—C80.5 (3)C4—C5—C6—C10.2 (5)
N8—O3—C10—C90.0 (4)N8—C8—C9—C100.8 (4)
S1—N7—C8—N8158.6 (3)N7—C8—C9—C10178.6 (3)
S1—N7—C8—C922.0 (5)C8—C9—C10—O30.5 (4)
O3—N8—C8—N7178.7 (3)C8—C9—C10—C11178.9 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z; (iii) x, y, z1; (iv) x+1/2, y+1/2, z+5/2; (v) x+1/2, y, z+5/2; (vi) x, y+1/2, z1; (vii) x+1/2, y, z+3/2; (viii) x+1/2, y+1/2, z+3/2; (ix) x, y+1/2, z+1; (x) x+1, y, z+2; (xi) x+1, y, z+1; (xii) x1/2, y, z+3/2; (xiii) x1/2, y+1/2, z+3/2; (xiv) x1/2, y, z+5/2; (xv) x+1/2, y, z1/2; (xvi) x+1/2, y, z+1/2; (xvii) x1/2, y+1/2, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···Cl3i0.962.113.035 (5)161
O1W—H2W···Cl30.952.113.036 (5)164
N4—H4A···Cl2xiv0.94 (5)2.26 (5)3.184 (4)171 (4)
N4—H4B···O1Wiii0.91 (5)1.86 (5)2.758 (4)169 (4)
N4—H4B···O1Wvi0.91 (5)1.86 (5)2.758 (4)169 (4)
N4—H4C···Cl2xii0.85 (4)2.49 (4)3.196 (4)141 (4)
N4—H4C···O1xii0.85 (4)2.33 (5)2.871 (4)122 (4)
N7—H7···N8xi0.862.583.188 (5)129
C2—H2···O20.932.552.911 (4)103
C9—H9···O20.932.502.991 (4)113
C9—H9···N8i0.932.583.354 (5)141
Symmetry codes: (i) x, y, z+1; (iii) x, y, z1; (vi) x, y+1/2, z1; (xi) x+1, y, z+1; (xii) x1/2, y, z+3/2; (xiv) x1/2, y, z+5/2.

Experimental details

Crystal data
Chemical formula(C10H12N3O3S)2[CdCl4]·H2O
Mr780.82
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)15.088 (2), 35.028 (3), 5.562 (3)
V3)2939.5 (17)
Z4
Radiation typeCu Kα
µ (mm1)11.07
Crystal size (mm)0.19 × 0.16 × 0.14
Data collection
DiffractometerSiemens AED single-crystal
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.227, 0.306
No. of measured, independent and
observed [I > 2σ(I)] reflections
2834, 2834, 2470
Rint0.000
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.05
No. of reflections2834
No. of parameters203
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.04, 0.64

Computer programs: Local program (Belletti et al., 1993), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Cd1—Cl22.4828 (17)S1—O21.424 (3)
Cd1—Cl32.469 (2)S1—N71.638 (3)
Cd1—Cl1i2.902 (2)O3—N81.413 (4)
Cd1—Cl2ii2.4828 (17)O3—C101.342 (4)
Cd1—Cl12.6688 (19)N4—C41.461 (4)
S1—C11.760 (3)N7—C81.384 (4)
S1—O11.421 (3)N8—C81.306 (5)
Cl1—Cd1—Cl2ii92.51 (3)O2—S1—C1107.56 (16)
Cl2—Cd1—Cl3113.69 (3)N7—S1—C1107.03 (15)
Cl1i—Cd1—Cl284.90 (3)N8—O3—C10108.9 (3)
Cl2—Cd1—Cl2ii131.63 (4)S1—N7—C8125.2 (2)
Cl1—Cd1—Cl292.51 (3)O3—N8—C8104.4 (3)
Cl1—Cd1—Cl395.12 (5)S1—C1—C6119.3 (2)
Cl1—Cd1—Cl1i173.60 (5)S1—C1—C2120.0 (2)
Cl1i—Cd1—Cl2ii84.90 (3)N4—C4—C3119.7 (3)
Cl1i—Cd1—Cl391.27 (5)N4—C4—C5118.7 (3)
Cl2ii—Cd1—Cl3113.69 (3)N7—C8—C9129.9 (3)
Cd1—Cl1—Cd1iii173.60 (7)N8—C8—C9112.7 (3)
O1—S1—N7103.85 (17)N7—C8—N8117.4 (3)
O1—S1—C1108.46 (16)O3—C10—C11116.8 (3)
O2—S1—N7107.94 (16)O3—C10—C9109.8 (3)
O1—S1—O2121.22 (17)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z; (iii) x, y+1/2, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···Cl3i0.96002.11003.035 (5)161.00
O1W—H2W···Cl30.95002.11003.036 (5)164.00
N4—H4A···Cl2iv0.94 (5)2.26 (5)3.184 (4)171 (4)
N4—H4B···O1Wv0.91 (5)1.86 (5)2.758 (4)169 (4)
N4—H4B···O1Wiii0.91 (5)1.86 (5)2.758 (4)169 (4)
N4—H4C···Cl2vi0.85 (4)2.49 (4)3.196 (4)141 (4)
N4—H4C···O1vi0.85 (4)2.33 (5)2.871 (4)122 (4)
N7—H7···N8vii0.86002.58003.188 (5)129.00
C2—H2···O20.93002.55002.911 (4)103.00
C9—H9···O20.93002.50002.991 (4)113.00
C9—H9···N8i0.93002.58003.354 (5)141.00
Symmetry codes: (i) x, y, z+1; (iii) x, y+1/2, z1; (iv) x1/2, y, z+5/2; (v) x, y, z1; (vi) x1/2, y, z+3/2; (vii) x+1, y, z+1.
 

Acknowledgements

AS thanks Bharathidasan University, Tiruchirappalli, Tamil Nadu, India, for the award of a Research Studentship (Ref. CCCD/ PhD-2/15504/2004).

References

First citationAbramenko, V. L. & Sergienko, V. S. (2002). Russ. J. Inorg. Chem. 47, 905–914.  CAS Google Scholar
First citationBelletti, D., Cantoni, A. & Pasquinelli, G. (1993). Gestione on Line di Diffractometro a Cristallo Singolo Siemens AED con Personal Computer. Internal Report 1-93. Centro di Studio per la Strutturistica Diffrattometrica del CNR Parma, Italy.  Google Scholar
First citationBettinetti, G. P., Giordano, F., La Manna, A., Giuseppetti, G. & Tadini, C. (1982). Cryst. Struct. Commun. 11, 821–828.  CAS Google Scholar
First citationDai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Wu, S.-M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sun, Q.-Q. (2002). Inorg. Chem. 41, 1391–1396.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFawcett, T. G., Ou, C. C., Potenza, J. A. & Schugar, H. J. (1978). J. Am. Chem. Soc. 100, 2058–2062.  CSD CrossRef CAS Web of Science Google Scholar
First citationHaridas, M., Tiwari, R. K. & Singh, T. P. (1984). Acta Cryst. C40, 658–660.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKagi, J. H. R. & Vallee, B. L. J. (1960). J. Biol. Chem. 235, 3460–3460.  PubMed CAS Web of Science Google Scholar
First citationKálmán, A., Czugler, M. & Argay, Gy. (1981). Acta Cryst. B37, 868–877.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKendi, E., Özbey, S., Bozdağ, O. & Ertan, R. (2000). Acta Cryst. C56, 457–458.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSchaffers, K. I. & Keszler, D. A. (1993). Acta Cryst. C49, 1156–1158.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSingh, T. P., Patel, U. & Haridas, M. (1984). Acta Cryst. C40, 2088–2091.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, o4312–o4313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSubha Nandhini, M., Krishnakumar, R. V., Sivakumar, K. & Natarajan, S. (2002). Acta Cryst. E58, m307–m309.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTakasuka, M. & Nakai, H. (2001). Vib. Spectrosc. 25, 197–204.  Web of Science CSD CrossRef CAS Google Scholar
First citationTao, J., Yin, X., Jiang, Y.-B., Yang, L.-F., Huang, R.-B. & Zheng, L.-S. (2003). Eur. J. Inorg. Chem. pp. 2678–2682.  Web of Science CSD CrossRef Google Scholar
First citationYukawa, Y., Inomata, Y., Takeuchi, T., Shimoi, M. & Ouchi, A. (1982). Bull. Chem. Soc. Jpn, 55, 3135–3137.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds