metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[[tetra­aqua­cobalt(II)]-μ-bi­pyridine] terephthalate]

aDepartment of Chemistry, Huainan Normal College, 232001 Huainan, Anhui, People's Republic of China
*Correspondence e-mail: xuhyun@yahoo.cn

(Received 17 November 2007; accepted 28 November 2007; online 6 December 2007)

The CoII atom in the title complex, {[Co(C10H8N2)(H2O)4](C8H4O4)}n, is coordinated by two N atoms of two bipyridine ligands and four O atoms of four water mol­ecules in an octahedral geometry. The one-dimensional [Co(C10H8N2)(H2O)4]2+ cation chain is further extended into a supra­molecular network via O–H⋯O hydrogen-bond inter­actions. The Co atom lies on a twofold rotation axis; another twofold rotation axis passes through the carboxylate carbon atoms and the attached ring C atoms.

Related literature

For related literature, see: Banglin et al. (2001[Banglin, C., Eddaoudi, M., Hyde, S. T., O'Keeffe, M. & Yaghi, O. M. (2001). Science, 291, 102-104.]); Ferey (2001[Ferey, G. (2001). Chem. Mater. 13, 3084-3098.]); Hill (1998[Hill, C. L. (1998). Chem. Rev. 98, 1-390.]); Manna et al. (2005[Manna, S. C., Konor, S., Zangrando, E., Okamoto, K. & Chandhuri, N. R. (2005). Eur. J. Inorg. Chem. pp. 4646-4654.]); Pan et al. (2006[Pan, Y.-R., Wang, L.-B., Zhan, P.-Y., Niu, Y.-L. & Zhang, G.-Q. (2006). Acta Cryst. E62, m3034-m3035.]); Wang et al. (2003[Wang, R.-H., Chen, L.-H., Hong, M.-C., Luo, J.-H., Cao, R. & Weng, J.-B. (2003). Chin. J. Struct. Chem. 22, 50-54.]); Wu et al. (2002[Wu, C.-D., Lu, C.-Z., Yu, Y.-Q., Zhuang, H.-H. & Huang, J.-S. (2002). Acta Cryst. C58, m197-m198.]); Halder & Kepert (2005[Halder, G. J. & Kepert, C. J. (2005). Acta Cryst. E61, m113-m114.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H8N2)(H2O)4](C8H4O4)

  • Mr = 451.29

  • Monoclinic, P 2/c

  • a = 6.9516 (16) Å

  • b = 11.309 (3) Å

  • c = 12.047 (3) Å

  • β = 113.439 (11)°

  • V = 868.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 298 (2) K

  • 0.23 × 0.20 × 0.18 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.796, Tmax = 0.835

  • 4541 measured reflections

  • 1709 independent reflections

  • 1467 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.086

  • S = 1.00

  • 1709 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.82 1.92 2.737 (2) 178
O1—H1A⋯O4ii 0.82 1.88 2.705 (2) 178
O2—H2B⋯O4iii 0.82 2.15 2.927 (2) 158
O1—H1B⋯O3iv 0.82 1.91 2.728 (2) 173
Symmetry codes: (i) x+1, y, z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, research on organic-inorganic hybrid materials has attracted much attention owing to the wideness of potential applications in catalysis, materials chemistry and biochemistry (Hill, 1998; Banglin et al., 2001; Ferey, 2001). These compounds and many frameworks may be obtained by the assembly of lower dimensional coordination polymers via noncovalent intermolecular forces such as hydrogen-bonding interactions. However in the formation of supramolecular assembly, an important target is to establish the possible connections between units. Here, we report the crystal structure of the title compound (I). Compound (I) consists of an infinite one-dimensional cationic chain [Co(C10H8N2)(H2O)4] and uncoordinated terephthalate anions (Fig. 1). The Co atom is hexacoordinated by two N atoms of the centrosymmetric bipyridine ligands and four O atoms of water molecules, forming an infinite one-dimensional cationic chain along the b axis. These chains are interconnected by the uncoordinated terephthalate anions through O—H···O hydrogen-bonding interactions(Table 1), thus forming a fishing-net layer structure (Fig. 2). A three-dimensional supramolecular network is obtained through O—H···O hydrogen-bonding interactions of the layers.

Related literature top

For related literature, see: Banglin et al. (2001); Ferey (2001); Hill (1998); Manna et al. (2005); Pan et al. (2006); Wang et al. (2003); Wu et al. (2002); Halder & Kepert (2005).

Experimental top

The title compound was obtained by a diffusion method. In one arm of U-tube was placed Na2(BDC) (42 mg, 0.2 mmol) in water/methanol (1:1; 10 ml) and in the other H12Cl2O14Cu (74 mg, 0.2 mmol) and bipy (31 mg, 0.2 mmol) in water/methanol (1:1; 10 ml). The purple platelike crystals were collected by filtration, washed with distilled water followed by methanol and dried under reduced pressure for 2 h.

Analysis found: C 48.09, H 4.41, N 6.06%; C18H20N2O8Co requires: C 47.91, H 4.47, N 6.21%.

Refinement top

The H-atoms were included in the riding-model approximation with C—H = 0.93 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C-aromatic).

Structure description top

Recently, research on organic-inorganic hybrid materials has attracted much attention owing to the wideness of potential applications in catalysis, materials chemistry and biochemistry (Hill, 1998; Banglin et al., 2001; Ferey, 2001). These compounds and many frameworks may be obtained by the assembly of lower dimensional coordination polymers via noncovalent intermolecular forces such as hydrogen-bonding interactions. However in the formation of supramolecular assembly, an important target is to establish the possible connections between units. Here, we report the crystal structure of the title compound (I). Compound (I) consists of an infinite one-dimensional cationic chain [Co(C10H8N2)(H2O)4] and uncoordinated terephthalate anions (Fig. 1). The Co atom is hexacoordinated by two N atoms of the centrosymmetric bipyridine ligands and four O atoms of water molecules, forming an infinite one-dimensional cationic chain along the b axis. These chains are interconnected by the uncoordinated terephthalate anions through O—H···O hydrogen-bonding interactions(Table 1), thus forming a fishing-net layer structure (Fig. 2). A three-dimensional supramolecular network is obtained through O—H···O hydrogen-bonding interactions of the layers.

For related literature, see: Banglin et al. (2001); Ferey (2001); Hill (1998); Manna et al. (2005); Pan et al. (2006); Wang et al. (2003); Wu et al. (2002); Halder & Kepert (2005).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted for clarity.
[Figure 2] Fig. 2. three-dimensional superamolecular structure of (I). Hydrogen bond interactions was shown.
Poly[[[tetraaquacobalt(II)]-µ-bipyridine] terephthalate] top
Crystal data top
[Co(C10H8N2)(H2O)4](C8H4O4)F(000) = 466
Mr = 451.29Dx = 1.725 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 1738 reflections
a = 6.9516 (16) Åθ = 3.2–26.4°
b = 11.309 (3) ŵ = 1.04 mm1
c = 12.047 (3) ÅT = 298 K
β = 113.439 (11)°Platelike, purple
V = 868.9 (4) Å30.23 × 0.20 × 0.18 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
1709 independent reflections
Radiation source: fine-focus sealed tube1467 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.796, Tmax = 0.835k = 136
4541 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0472P)2]
where P = (Fo2 + 2Fc2)/3
1709 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Co(C10H8N2)(H2O)4](C8H4O4)V = 868.9 (4) Å3
Mr = 451.29Z = 2
Monoclinic, P2/cMo Kα radiation
a = 6.9516 (16) ŵ = 1.04 mm1
b = 11.309 (3) ÅT = 298 K
c = 12.047 (3) Å0.23 × 0.20 × 0.18 mm
β = 113.439 (11)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
1709 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1467 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.835Rint = 0.030
4541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
1709 reflectionsΔρmin = 0.38 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.10367 (3)0.75000.02552 (16)
O10.8160 (2)0.09545 (12)0.84965 (13)0.0328 (4)
H1A0.73830.15040.84860.049*
H1B0.74780.03470.84270.049*
O21.2845 (2)0.11337 (13)0.90757 (14)0.0375 (4)
H2A1.31460.11080.98060.056*
H2B1.38330.14210.89610.056*
O30.3954 (3)0.10827 (13)0.15243 (14)0.0408 (4)
O40.4395 (3)0.72447 (14)0.14960 (13)0.0388 (4)
N11.00000.2930 (2)0.75000.0276 (6)
N21.00000.9178 (2)0.75000.0280 (6)
C10.9666 (3)0.3547 (2)0.64971 (18)0.0290 (5)
H10.94310.31350.57870.035*
C20.9650 (3)0.47594 (19)0.64631 (18)0.0279 (5)
H20.94040.51490.57390.033*
C31.00000.5404 (3)0.75000.0240 (6)
C41.00000.6709 (2)0.75000.0236 (6)
C50.9079 (3)0.73486 (19)0.64383 (18)0.0297 (5)
H50.84400.69590.57020.036*
C60.9115 (4)0.8560 (2)0.64790 (18)0.0312 (5)
H60.84880.89730.57560.037*
C70.50000.1599 (3)0.25000.0296 (7)
C80.50000.2937 (3)0.25000.0266 (7)
C90.4552 (3)0.3556 (2)0.14378 (18)0.0298 (5)
H90.42370.31490.07160.036*
C100.4569 (3)0.4778 (2)0.14440 (18)0.0289 (5)
H100.42860.51860.07250.035*
C110.50000.5404 (3)0.25000.0262 (6)
C120.50000.6732 (3)0.25000.0292 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0308 (3)0.0183 (2)0.0248 (2)0.0000.00822 (18)0.000
O10.0393 (9)0.0230 (8)0.0393 (9)0.0006 (6)0.0191 (7)0.0003 (6)
O20.0336 (9)0.0429 (10)0.0294 (8)0.0055 (7)0.0058 (7)0.0006 (7)
O30.0531 (11)0.0316 (10)0.0323 (9)0.0097 (7)0.0111 (8)0.0022 (7)
O40.0501 (10)0.0294 (9)0.0326 (9)0.0042 (8)0.0118 (7)0.0049 (7)
N10.0295 (13)0.0213 (13)0.0284 (13)0.0000.0076 (11)0.000
N20.0326 (14)0.0216 (13)0.0281 (14)0.0000.0103 (11)0.000
C10.0336 (12)0.0245 (11)0.0269 (11)0.0004 (9)0.0099 (9)0.0036 (9)
C20.0342 (12)0.0244 (11)0.0240 (11)0.0008 (9)0.0106 (9)0.0035 (9)
C30.0176 (13)0.0228 (16)0.0296 (15)0.0000.0072 (12)0.000
C40.0240 (15)0.0201 (15)0.0269 (15)0.0000.0105 (12)0.000
C50.0353 (12)0.0228 (11)0.0266 (11)0.0024 (9)0.0076 (9)0.0032 (9)
C60.0412 (13)0.0244 (11)0.0235 (11)0.0001 (10)0.0081 (9)0.0029 (9)
C70.0341 (17)0.0271 (17)0.0300 (17)0.0000.0155 (14)0.000
C80.0204 (14)0.0268 (16)0.0294 (16)0.0000.0066 (12)0.000
C90.0314 (12)0.0286 (12)0.0254 (11)0.0016 (10)0.0070 (9)0.0036 (9)
C100.0290 (11)0.0313 (12)0.0242 (11)0.0015 (9)0.0083 (9)0.0042 (9)
C110.0191 (14)0.0279 (17)0.0286 (15)0.0000.0064 (12)0.000
C120.0240 (15)0.0274 (17)0.0328 (17)0.0000.0078 (13)0.000
Geometric parameters (Å, º) top
Co1—O12.0754 (15)C2—H20.9300
Co1—O22.1308 (16)C3—C41.475 (4)
Co1—N12.142 (3)C4—C51.385 (2)
O1—H1A0.8199C5—C61.370 (3)
O1—H1B0.8200C5—H50.9300
O2—H2A0.8199C6—H60.9300
O2—H2B0.8199C7—C81.514 (4)
O3—C71.253 (2)C8—C91.381 (3)
O4—C121.253 (2)C9—C101.382 (3)
N1—C11.333 (2)C9—H90.9300
N2—C61.334 (2)C10—C111.381 (3)
C1—C21.372 (3)C10—H100.9300
C1—H10.9300C11—C121.501 (4)
C2—C31.382 (2)
O1i—Co1—O1174.86 (8)C3—C2—H2119.9
O1—Co1—N2ii87.43 (4)C2—C3—C2i116.3 (3)
O1i—Co1—O287.16 (6)C2—C3—C4121.86 (13)
O1—Co1—O293.11 (6)C5i—C4—C5117.0 (3)
N2ii—Co1—O292.95 (4)C5—C4—C3121.50 (13)
O1—Co1—O2i87.16 (6)C6—C5—C4119.6 (2)
O2—Co1—O2i174.10 (8)C6—C5—H5120.2
O1—Co1—N192.57 (4)C4—C5—H5120.2
N2ii—Co1—N1180.000 (1)N2—C6—C5123.5 (2)
O2—Co1—N187.05 (4)N2—C6—H6118.2
Co1—O1—H1A120.7C5—C6—H6118.2
Co1—O1—H1B116.3O3—C7—O3iv124.5 (3)
H1A—O1—H1B106.4O3—C7—C8117.76 (15)
Co1—O2—H2A134.8C9iv—C8—C9119.1 (3)
Co1—O2—H2B114.4C9—C8—C7120.44 (14)
H2A—O2—H2B108.8C8—C9—C10120.2 (2)
C1i—N1—C1116.9 (3)C8—C9—H9119.9
C1—N1—Co1121.54 (13)C10—C9—H9119.9
C6—N2—C6i116.8 (3)C11—C10—C9121.1 (2)
C6—N2—Co1iii121.62 (13)C11—C10—H10119.5
N1—C1—C2123.12 (19)C9—C10—H10119.5
N1—C1—H1118.4C10—C11—C10iv118.3 (3)
C2—C1—H1118.4C10—C11—C12120.85 (14)
C1—C2—C3120.27 (19)O4iv—C12—O4124.9 (3)
C1—C2—H2119.9O4—C12—C11117.55 (14)
O1—Co1—N1—C1134.70 (11)C6i—N2—C6—C50.02 (16)
O2—Co1—N1—C1132.32 (11)Co1iii—N2—C6—C5179.98 (16)
C1i—N1—C1—C20.13 (14)C4—C5—C6—N20.0 (3)
Co1—N1—C1—C2179.87 (14)O3—C7—C8—C923.07 (14)
N1—C1—C2—C30.3 (3)C9iv—C8—C9—C100.48 (13)
C1—C2—C3—C2i0.12 (13)C7—C8—C9—C10179.52 (13)
C1—C2—C3—C4179.88 (13)C8—C9—C10—C111.0 (3)
C2—C3—C4—C518.88 (14)C9—C10—C11—C10iv0.49 (14)
C5i—C4—C5—C60.02 (15)C9—C10—C11—C12179.51 (14)
C3—C4—C5—C6179.98 (15)C10—C11—C12—O46.91 (12)
Symmetry codes: (i) x+2, y, z+3/2; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3v0.821.922.737 (2)178
O1—H1A···O4vi0.821.882.705 (2)178
O2—H2B···O4vii0.822.152.927 (2)158
O1—H1B···O3viii0.821.912.728 (2)173
Symmetry codes: (v) x+1, y, z+1; (vi) x+1, y+1, z+1; (vii) x+2, y+1, z+1; (viii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C10H8N2)(H2O)4](C8H4O4)
Mr451.29
Crystal system, space groupMonoclinic, P2/c
Temperature (K)298
a, b, c (Å)6.9516 (16), 11.309 (3), 12.047 (3)
β (°) 113.439 (11)
V3)868.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.23 × 0.20 × 0.18
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.796, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
4541, 1709, 1467
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.086, 1.00
No. of reflections1709
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.38

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.821.922.737 (2)178
O1—H1A···O4ii0.821.882.705 (2)178
O2—H2B···O4iii0.822.152.927 (2)158
O1—H1B···O3iv0.821.912.728 (2)173
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y, z+1.
 

Acknowledgements

The author thanks the Natural Science Foundation of Anhui Province (No. KJ2007B093) for financial support.

References

First citationBanglin, C., Eddaoudi, M., Hyde, S. T., O'Keeffe, M. & Yaghi, O. M. (2001). Science, 291, 102–104.  Google Scholar
First citationFerey, G. (2001). Chem. Mater. 13, 3084–3098.  Web of Science CrossRef CAS Google Scholar
First citationHalder, G. J. & Kepert, C. J. (2005). Acta Cryst. E61, m113–m114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHill, C. L. (1998). Chem. Rev. 98, 1–390.  Web of Science CrossRef PubMed CAS Google Scholar
First citationManna, S. C., Konor, S., Zangrando, E., Okamoto, K. & Chandhuri, N. R. (2005). Eur. J. Inorg. Chem. pp. 4646–4654.  Web of Science CSD CrossRef Google Scholar
First citationPan, Y.-R., Wang, L.-B., Zhan, P.-Y., Niu, Y.-L. & Zhang, G.-Q. (2006). Acta Cryst. E62, m3034–m3035.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, R.-H., Chen, L.-H., Hong, M.-C., Luo, J.-H., Cao, R. & Weng, J.-B. (2003). Chin. J. Struct. Chem. 22, 50–54.  Google Scholar
First citationWu, C.-D., Lu, C.-Z., Yu, Y.-Q., Zhuang, H.-H. & Huang, J.-S. (2002). Acta Cryst. C58, m197–m198.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds