organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(9H-Fluoren-9-ylidenemeth­yl)thio­phene

aInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and bInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinskeho 9, Bratislava 81237, Slovak Republic
*Correspondence e-mail: lucia.perasinova@stuba.sk

(Received 19 November 2007; accepted 2 December 2007; online 18 December 2007)

The title compound, C18H12S, contains a thio­phene ring which is disordered by rotation of 180° about the linking C—C bond. The site occupancies of the major and minor components of the disordered ring are 0.900 (3) and 0.100 (3), respectively. In one of these disordered components, the mol­ecule is stabilized by an intra­molecular C—H⋯S hydrogen bond. The compound was synthesized in good yield (80%) by a modified phase-transfer-catalysed condensation of fluorene with thio­phene-2-carbaldehyde.

Related literature

For a related structure, see: Fave et al., 2004[Fave, C., Hissler, M., Karpati, T., Rault-Berthelot, J., Deborde, V., Toupet, L., Nyulaszi, L. & Reau, R. (2004). J. Am. Chem. Soc. 126, 6058-6059.]. For related literature, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Lukeš et al. (2003[Lukeš, V., Végh, D., Hrdlovič, P., Štefko, M., Matuszna, K. & Laurinc, V. (2003). Synth. Met. pp. 399-408.]); Mullen & Wegner (1998[Mullen, K. & Wegner, G. (1998). Electronic Materials: The Oligomer Approach. New York: Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12S

  • Mr = 260.34

  • Orthorhombic, F d d 2

  • a = 20.757 (4) Å

  • b = 44.434 (9) Å

  • c = 5.6260 (11) Å

  • V = 5189.0 (18) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 (2) K

  • 0.57 × 0.13 × 0.08 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: analytical (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.938, Tmax = 0.985

  • 11725 measured reflections

  • 3018 independent reflections

  • 1903 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 0.99

  • 3018 reflections

  • 180 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1110 Friedel pairs

  • Flack parameter: −0.07 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯S1A 0.95 2.55 3.311 (4) 139

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Our synthetic efforts have been focused on a set of multi-ring monomer systems based on thiophene and fluorene ring system. In this respect, the relationship between the charge transport properties in OFET devices (Mullen & Wegner, 1998) and molecular properties such as redox reversibility and crystal structure have been investigated. As active layers, we used oligomers based on molecules consisting of alternating thiophene and fluorene moieties.

In the title compound (1) the S1—C15 and S1—C18 bond lengths of 1.725 (3) Å and 1.692 (3) Å are in a quite good agreement with similar thiophene compounds in the Cambridge Structural Database (CSD; Version 5.27, 2006 release; Allen, 2002); for example, 2,2',5,5'-tetrakis(2-Thienyl)-3,4:3',4'- bis(tetramethylene)-1,1'-biphosphole (Fave et. al., 2004; CDS refcode BERCIL). The thiophene ring is disordered by rotation about the inter-ring C—C bond. There is one intramolecular C–H···S hydrogen bond.

Related literature top

For a related structure, see: Fave et al., 2004.

For related literature, see: Allen (2002); Lukeš et al. (2003); Mullen & Wegner (1998).

Experimental top

8.3 g (0.05 mol) of fluorene and 5.6 g (0.05 mol) of thiophene-2-carbaldehyde were dissolved in 70 ml of toluene. Then 70 ml 40% NaOH and 2.9 g (0.009 mol) (n-Bu)4N+Br- were added. The resulting heterogenous mixture was vigorously stirred at room temperature for 12 h. After completion of the reaction (TLC control), the water layer was separated, and the organic layer was washed with 100 ml 10% HCl, 300 ml water, 300 ml of brine and dried over Na2SO4. After evaporation of the solvent under reduced pressure, a dark oil was obtained, which was further dissolved in boiling MeOH, decolorized with Norit, filtered and left to cool to room temperature to obtain 10.4 g (80%) of yellow needles m.p.: 75°C (lit. 73–75°C) (Lukeš et al., 2003). The crude product could be purified by column chromatography using silica gel Merck 60 in toluene as an eluent Rf = 0.71 (toluene).

1H NMR (300 MHz, CDCl3 p.p.m.): δ = 8.11 (d, J=7.79 Hz, 1 H), 7.68 – 7.74 (m, 3 H), 7.60 (s, 1 H), 7.42 – 7.45 (m, 2 H), 7.27 – 7.38 (m, 3 H), 7.12 – 7.23 (m, 2 H).

13C-NMR (75 MHz, CDCl3, p.p.m.) δ = 141.19, 139.48, 139.06, 138.91, 136.51, 136.12, 129.25, 128.72, 128.22, 127.57, 127.32, 126.97, 126.82, 124.34, 120.14, 119.74, 119.58, 118.98.

Refinement top

H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

Our synthetic efforts have been focused on a set of multi-ring monomer systems based on thiophene and fluorene ring system. In this respect, the relationship between the charge transport properties in OFET devices (Mullen & Wegner, 1998) and molecular properties such as redox reversibility and crystal structure have been investigated. As active layers, we used oligomers based on molecules consisting of alternating thiophene and fluorene moieties.

In the title compound (1) the S1—C15 and S1—C18 bond lengths of 1.725 (3) Å and 1.692 (3) Å are in a quite good agreement with similar thiophene compounds in the Cambridge Structural Database (CSD; Version 5.27, 2006 release; Allen, 2002); for example, 2,2',5,5'-tetrakis(2-Thienyl)-3,4:3',4'- bis(tetramethylene)-1,1'-biphosphole (Fave et. al., 2004; CDS refcode BERCIL). The thiophene ring is disordered by rotation about the inter-ring C—C bond. There is one intramolecular C–H···S hydrogen bond.

For a related structure, see: Fave et al., 2004.

For related literature, see: Allen (2002); Lukeš et al. (2003); Mullen & Wegner (1998).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The atomic numbering scheme of 2-(9H-fluoren-9-ylidenemethyl)thiophene. Only the major component of the disordered thiophene ring is shown. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen-bond interactions are indicated by dashed lines.
2-(9H-Fluoren-9-ylidenemethyl)thiophene top
Crystal data top
C18H12SF(000) = 2176
Mr = 260.34Dx = 1.333 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 4617 reflections
a = 20.757 (4) Åθ = 3.7–29.1°
b = 44.434 (9) ŵ = 0.23 mm1
c = 5.6260 (11) ÅT = 100 K
V = 5189.0 (18) Å3Block, yellow
Z = 160.57 × 0.13 × 0.08 mm
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
3018 independent reflections
Radiation source: fine-focus sealed tube1903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Rotation method data acquisition using ω and φ scansθmax = 29.1°, θmin = 3.8°
Absorption correction: analytical
(Clark & Reid, 1995)
h = 2725
Tmin = 0.938, Tmax = 0.985k = 5958
11725 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0485P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
3018 reflectionsΔρmax = 0.15 e Å3
180 parametersΔρmin = 0.17 e Å3
4 restraintsAbsolute structure: Flack (1983), 1110 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (8)
Crystal data top
C18H12SV = 5189.0 (18) Å3
Mr = 260.34Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 20.757 (4) ŵ = 0.23 mm1
b = 44.434 (9) ÅT = 100 K
c = 5.6260 (11) Å0.57 × 0.13 × 0.08 mm
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
3018 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
1903 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.985Rint = 0.029
11725 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.15 e Å3
S = 0.99Δρmin = 0.17 e Å3
3018 reflectionsAbsolute structure: Flack (1983), 1110 Friedel pairs
180 parametersAbsolute structure parameter: 0.07 (8)
4 restraints
Special details top

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2006)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.35040 (9)0.03543 (4)0.1480 (3)0.0504 (5)
C20.40287 (10)0.01668 (4)0.1107 (4)0.0605 (6)
H2A0.42980.01940.02410.073*
C30.41552 (10)0.00616 (5)0.2727 (4)0.0656 (6)
H3A0.45160.01890.24750.079*
C40.37726 (11)0.01069 (5)0.4680 (4)0.0640 (6)
H4A0.38760.02620.57810.077*
C50.32362 (10)0.00724 (4)0.5052 (4)0.0594 (5)
H5A0.29650.00400.63870.071*
C60.31044 (9)0.02985 (4)0.3442 (3)0.0490 (5)
C70.25624 (9)0.05093 (4)0.3394 (3)0.0493 (5)
C80.20399 (10)0.05396 (5)0.4884 (4)0.0607 (5)
H8A0.19940.04130.62370.073*
C90.15827 (11)0.07574 (5)0.4373 (4)0.0670 (6)
H9A0.12190.07800.53800.080*
C100.16522 (10)0.09415 (5)0.2405 (4)0.0658 (6)
H10A0.13340.10900.20790.079*
C110.21746 (10)0.09134 (5)0.0913 (4)0.0608 (5)
H11A0.22210.10430.04190.073*
C120.26339 (9)0.06932 (4)0.1380 (3)0.0490 (5)
C130.32372 (9)0.06148 (4)0.0145 (3)0.0490 (5)
C140.34399 (9)0.07789 (4)0.1761 (3)0.0518 (5)
H14A0.31250.09210.22560.062*
C15A0.40114 (9)0.07913 (4)0.3214 (3)0.0513 (5)0.900 (3)
C18A0.50774 (12)0.07874 (5)0.5125 (5)0.0731 (7)0.900 (3)
H18A0.55130.07590.55920.088*0.900 (3)
C17A0.46607 (12)0.09565 (5)0.6332 (4)0.0670 (6)0.900 (3)
H17A0.47670.10580.77670.080*0.900 (3)
C16A0.4056 (4)0.0970 (4)0.529 (3)0.0747 (14)0.900 (3)
H16A0.37100.10870.59000.090*0.900 (3)
S1A0.47511 (8)0.06280 (3)0.26734 (16)0.0755 (3)0.900 (3)
C15B0.40114 (9)0.07913 (4)0.3214 (3)0.0513 (5)0.100 (3)
C17B0.46607 (12)0.09565 (5)0.6332 (4)0.0670 (6)0.100 (3)
H17B0.47810.10580.77500.080*0.100 (3)
C18B0.50774 (12)0.07874 (5)0.5125 (5)0.0731 (7)0.100 (3)
H18B0.55120.07580.56020.088*0.100 (3)
C16B0.481 (3)0.0659 (10)0.311 (4)0.0755 (3)0.100 (3)
H16B0.50130.05320.19600.091*0.100 (3)
S1B0.3980 (11)0.0978 (10)0.532 (7)0.0747 (14)0.100 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0532 (11)0.0451 (11)0.0528 (11)0.0072 (9)0.0047 (9)0.0017 (9)
C20.0557 (12)0.0503 (12)0.0754 (13)0.0021 (10)0.0032 (11)0.0117 (11)
C30.0575 (12)0.0517 (12)0.0874 (16)0.0001 (10)0.0055 (12)0.0126 (12)
C40.0699 (14)0.0503 (13)0.0717 (13)0.0051 (11)0.0093 (13)0.0153 (12)
C50.0684 (13)0.0544 (12)0.0555 (11)0.0128 (10)0.0014 (11)0.0072 (11)
C60.0570 (11)0.0428 (11)0.0473 (10)0.0082 (9)0.0039 (10)0.0004 (9)
C70.0542 (11)0.0438 (11)0.0500 (11)0.0054 (9)0.0035 (9)0.0041 (10)
C80.0657 (13)0.0608 (13)0.0557 (10)0.0042 (11)0.0049 (12)0.0017 (11)
C90.0649 (14)0.0688 (15)0.0673 (15)0.0031 (11)0.0130 (11)0.0128 (12)
C100.0643 (13)0.0580 (13)0.0750 (14)0.0076 (10)0.0009 (12)0.0077 (13)
C110.0671 (13)0.0519 (12)0.0634 (12)0.0033 (10)0.0028 (12)0.0026 (11)
C120.0520 (11)0.0468 (10)0.0483 (11)0.0047 (9)0.0057 (8)0.0018 (9)
C130.0528 (10)0.0461 (10)0.0482 (11)0.0072 (9)0.0042 (9)0.0000 (9)
C140.0555 (11)0.0487 (11)0.0513 (11)0.0028 (9)0.0087 (9)0.0005 (9)
C15A0.0598 (12)0.0461 (11)0.0480 (11)0.0100 (9)0.0005 (9)0.0023 (9)
C18A0.0757 (15)0.0666 (15)0.0771 (14)0.0061 (12)0.0193 (14)0.0019 (14)
C17A0.0865 (16)0.0614 (14)0.0531 (12)0.0118 (13)0.0108 (12)0.0052 (12)
C16A0.082 (3)0.0744 (16)0.0680 (12)0.022 (2)0.005 (2)0.0022 (11)
S1A0.0667 (6)0.0868 (6)0.0731 (5)0.0098 (4)0.0143 (4)0.0252 (5)
C15B0.0598 (12)0.0461 (11)0.0480 (11)0.0100 (9)0.0005 (9)0.0023 (9)
C17B0.0865 (16)0.0614 (14)0.0531 (12)0.0118 (13)0.0108 (12)0.0052 (12)
C18B0.0757 (15)0.0666 (15)0.0771 (14)0.0061 (12)0.0193 (14)0.0019 (14)
C16B0.0667 (6)0.0868 (6)0.0731 (5)0.0098 (4)0.0143 (4)0.0252 (5)
S1B0.082 (3)0.0744 (16)0.0680 (12)0.022 (2)0.005 (2)0.0022 (11)
Geometric parameters (Å, º) top
C1—C21.387 (3)C10—C111.377 (3)
C1—C61.403 (3)C10—H10A0.9500
C1—C131.487 (3)C11—C121.391 (3)
C2—C31.389 (3)C11—H11A0.9500
C2—H2A0.9500C12—C131.474 (3)
C3—C41.371 (3)C13—C141.363 (3)
C3—H3A0.9500C14—C15A1.442 (3)
C4—C51.385 (3)C14—H14A0.9500
C4—H4A0.9500C15A—C16A1.416 (19)
C5—C61.380 (3)C15A—S1A1.725 (3)
C5—H5A0.9500C18A—C17A1.332 (3)
C6—C71.464 (3)C18A—S1A1.692 (3)
C7—C81.377 (3)C18A—H18A0.9500
C7—C121.405 (3)C17A—C16A1.388 (3)
C8—C91.386 (3)C17A—H17A0.9500
C8—H8A0.9500C16A—H16A0.9500
C9—C101.384 (3)C16B—H16B0.9500
C9—H9A0.9500
C2—C1—C6118.53 (18)C11—C10—H10A119.5
C2—C1—C13133.10 (18)C9—C10—H10A119.5
C6—C1—C13108.35 (17)C10—C11—C12119.2 (2)
C1—C2—C3119.2 (2)C10—C11—H11A120.4
C1—C2—H2A120.4C12—C11—H11A120.4
C3—C2—H2A120.4C11—C12—C7119.26 (19)
C4—C3—C2121.6 (2)C11—C12—C13131.25 (18)
C4—C3—H3A119.2C7—C12—C13109.45 (17)
C2—C3—H3A119.2C14—C13—C12120.45 (17)
C3—C4—C5120.2 (2)C14—C13—C1134.33 (19)
C3—C4—H4A119.9C12—C13—C1105.19 (16)
C5—C4—H4A119.9C13—C14—C15A136.09 (18)
C6—C5—C4118.6 (2)C13—C14—H14A112.0
C6—C5—H5A120.7C15A—C14—H14A112.0
C4—C5—H5A120.7C16A—C15A—C14122.8 (4)
C5—C6—C1121.84 (18)C16A—C15A—S1A108.9 (4)
C5—C6—C7129.06 (17)C14—C15A—S1A128.03 (14)
C1—C6—C7109.09 (16)C17A—C18A—S1A113.1 (2)
C8—C7—C12121.16 (18)C17A—C18A—H18A123.5
C8—C7—C6131.03 (19)S1A—C18A—H18A123.5
C12—C7—C6107.78 (17)C18A—C17A—C16A113.4 (9)
C7—C8—C9118.8 (2)C18A—C17A—H17A123.3
C7—C8—H8A120.6C16A—C17A—H17A123.3
C9—C8—H8A120.6C17A—C16A—C15A112.5 (12)
C10—C9—C8120.5 (2)C17A—C16A—H16A123.8
C10—C9—H9A119.8C15A—C16A—H16A123.8
C8—C9—H9A119.8C18A—S1A—C15A92.08 (13)
C11—C10—C9121.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···S1A0.952.553.311 (4)139

Experimental details

Crystal data
Chemical formulaC18H12S
Mr260.34
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)100
a, b, c (Å)20.757 (4), 44.434 (9), 5.6260 (11)
V3)5189.0 (18)
Z16
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.57 × 0.13 × 0.08
Data collection
DiffractometerOxford Diffraction Gemini R CCD
Absorption correctionAnalytical
(Clark & Reid, 1995)
Tmin, Tmax0.938, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
11725, 3018, 1903
Rint0.029
(sin θ/λ)max1)0.683
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 0.99
No. of reflections3018
No. of parameters180
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.17
Absolute structureFlack (1983), 1110 Friedel pairs
Absolute structure parameter0.07 (8)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1998), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···S1A0.952.553.311 (4)138.51
 

Acknowledgements

The authors thank the Grant Agency of Slovak Republic (grant Nos. 1/2449/05, 1/4453/07 and APVT-20–007304) as well as the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFave, C., Hissler, M., Karpati, T., Rault-Berthelot, J., Deborde, V., Toupet, L., Nyulaszi, L. & Reau, R. (2004). J. Am. Chem. Soc. 126, 6058–6059.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLukeš, V., Végh, D., Hrdlovič, P., Štefko, M., Matuszna, K. & Laurinc, V. (2003). Synth. Met. pp. 399–408.  Google Scholar
First citationMullen, K. & Wegner, G. (1998). Electronic Materials: The Oligomer Approach. New York: Wiley.  Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds