organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3,4-Di­chloro­phen­yl)-3,4-di­hydronaphthalen-1(2H)-one

aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: liaj@yeah.net

(Received 24 July 2007; accepted 4 September 2007; online 6 December 2007)

The title compound, C16H12Cl2O, was synthesized from 1-naphthol and 1,2-dichloro­benzene with anhydrous aluminium chloride as a cataylst. In the mol­ecule, the two ring systems are approximately perpendicular to one other with a dihedral angle of 82.06 (4)°. There are two CH-type hydrogen bonds.

Related literature

Synthesis: Taber et al. (2004[Taber, G. P., Pfisterer, D. M. & Colberg, J. C. (2004). Org. Process. Res. Dev. 8, 385-388.]); Vukics et al. (2002[Vukics, K., Fodor, T., Fischer, J., Fellegvari, I. & Leval, S. (2002). Org. Process. Res. Dev. 6, 82-85.]); Quallich (2005[Quallich, J. Q. (2005). Chirality, 17, S120-S126.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12Cl2O

  • Mr = 291.16

  • Monoclinic, P 21 /n

  • a = 10.7705 (14) Å

  • b = 10.7317 (14) Å

  • c = 12.3765 (16) Å

  • β = 111.359 (6)°

  • V = 1332.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 113 (2) K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.903, Tmax = 0.920

  • 16212 measured reflections

  • 3172 independent reflections

  • 2676 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.11

  • 3172 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.95 2.40 3.3469 (17) 172
C9—H9⋯Cl1ii 0.95 2.91 3.6984 (16) 142
C16—H16⋯Cl1iii 0.95 2.91 3.7705 (15) 151
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: CHEMDRAW (Cambridgesoft, 2003[Cambridgesoft (2003). CHEMDRAW. Version 8.0. Cambridgesoft Corporation, Cambridge, MA, USA.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]).

Supporting information


Comment top

The title compound (I) is an intermediate for the synthesis of sertraline hydrochloride. Sertraline hydrochloride is an inhibitor of synaptosomal serotonin uptake makng it an important pharmaceutical agent for the treatment of depression and other anxiety-related disorders.

The molecular structure of the title compound is illustrated in Fig. 1. In the molecule, the angle between the two benzene ring planes is 82.06(0.04). In the molecule, the two ring systems are approximately perpendicular to one other with a dihedral angle of 82.06 (4). There are two CH type hydrogen bonds (Cl···H at 2.9Å and O..H of 2.4 Å).

Related literature top

Synthesis: Taber et al. (2004); Vukics et al. (2002); Quallich (2005).

Experimental top

To a stirred solution of 1-naphthol(21.62 g, 0.15 mol) in 1,2-dichlorobenzene(160 ml) anhydrous AlCl3(53.3 g, 0.4 mol)was added. The reaction mixture was heated to 110¡ae and stirred at this temperature for 3 h. The mixture was then cooled to room temperature and poured into ice(300 g) and concentrated hydrochloric acid(80 ml), followed by addition of CH2Cl2(300 ml). The organic layer was separated, and washed with water(300 ml). The solvents were evaporated in vacuum. To the oily residue methanol(50 ml) was added. The product was crystallized, filtered,and then washed twice with methanol(50 ml). Yield:32.0 g(73.4%). (Taber et al., 2004; Vukics et al., 2002; Quallich, 2005). Crystals suitable for X-ray analysis were white by slow evaporation of an absolute methanol and acetone solution at room temperature over 15 days.

Refinement top

All H atoms were positioned geometrically and refined as riding, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

The title compound (I) is an intermediate for the synthesis of sertraline hydrochloride. Sertraline hydrochloride is an inhibitor of synaptosomal serotonin uptake makng it an important pharmaceutical agent for the treatment of depression and other anxiety-related disorders.

The molecular structure of the title compound is illustrated in Fig. 1. In the molecule, the angle between the two benzene ring planes is 82.06(0.04). In the molecule, the two ring systems are approximately perpendicular to one other with a dihedral angle of 82.06 (4). There are two CH type hydrogen bonds (Cl···H at 2.9Å and O..H of 2.4 Å).

Synthesis: Taber et al. (2004); Vukics et al. (2002); Quallich (2005).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CHEMDRAW (Cambridgesoft, 2003); software used to prepare material for publication: CrystalStructure (Rigaku, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. The crystal structure of (I), viewed along a axis
4-(3,4-Dichlorophenyl)-3,4-dihydronaphthalen-1(2H)-one top
Crystal data top
C16H12Cl2OF(000) = 600
Mr = 291.16Dx = 1.452 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
a = 10.7705 (14) ÅCell parameters from 3625 reflections
b = 10.7317 (14) Åθ = 2.6–25.0°
c = 12.3765 (16) ŵ = 0.47 mm1
β = 111.359 (6)°T = 113 K
V = 1332.3 (3) Å3Prism, colorless
Z = 40.22 × 0.20 × 0.18 mm
Data collection top
Rigaku Saturn
diffractometer
3172 independent reflections
Radiation source: rotating anode2676 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.035
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.2°
ω scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.903, Tmax = 0.920l = 1616
16212 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.1288P]
where P = (Fo2 + 2Fc2)/3
3172 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H12Cl2OV = 1332.3 (3) Å3
Mr = 291.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.7705 (14) ŵ = 0.47 mm1
b = 10.7317 (14) ÅT = 113 K
c = 12.3765 (16) Å0.22 × 0.20 × 0.18 mm
β = 111.359 (6)°
Data collection top
Rigaku Saturn
diffractometer
3172 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2676 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.920Rint = 0.035
16212 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.11Δρmax = 0.44 e Å3
3172 reflectionsΔρmin = 0.23 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.43486 (4)0.71805 (3)0.50411 (3)0.01997 (10)
Cl20.22276 (4)0.54210 (3)0.54838 (3)0.02382 (11)
O10.47445 (10)0.26530 (10)0.12559 (9)0.0211 (2)
C10.45158 (13)0.30731 (13)0.04246 (12)0.0154 (3)
C20.53907 (14)0.27547 (13)0.08047 (11)0.0180 (3)
H2A0.62170.32570.10240.022*
H2B0.56470.18660.08380.022*
C30.47278 (14)0.29863 (13)0.16876 (12)0.0180 (3)
H3A0.53830.28510.24820.022*
H3B0.39850.23910.15550.022*
C40.41922 (14)0.43295 (13)0.15738 (11)0.0155 (3)
H40.49670.48970.16930.019*
C50.32019 (13)0.45560 (12)0.03435 (11)0.0150 (3)
C60.33808 (13)0.39489 (12)0.05995 (11)0.0148 (3)
C70.24896 (14)0.41618 (13)0.17352 (12)0.0177 (3)
H70.26170.37430.23630.021*
C80.14277 (15)0.49738 (15)0.19542 (13)0.0223 (3)
H80.08260.51140.27250.027*
C90.12560 (15)0.55839 (15)0.10222 (13)0.0234 (3)
H90.05310.61440.11620.028*
C100.21314 (15)0.53833 (14)0.01059 (13)0.0201 (3)
H100.20020.58150.07270.024*
C110.36440 (14)0.46337 (13)0.25172 (11)0.0154 (3)
C120.41425 (13)0.56497 (13)0.32404 (11)0.0153 (3)
H120.47870.61760.31160.018*
C130.37027 (14)0.59043 (13)0.41504 (11)0.0151 (3)
C140.27583 (14)0.51357 (13)0.43366 (12)0.0167 (3)
C150.22341 (14)0.41266 (14)0.36055 (12)0.0187 (3)
H150.15810.36070.37240.022*
C160.26752 (14)0.38851 (14)0.26993 (12)0.0186 (3)
H160.23120.32010.21960.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0274 (2)0.01779 (18)0.01560 (17)0.00214 (14)0.00882 (14)0.00271 (13)
Cl20.0328 (2)0.0250 (2)0.02175 (19)0.00121 (15)0.01954 (16)0.00068 (14)
O10.0258 (6)0.0237 (5)0.0172 (5)0.0048 (4)0.0119 (4)0.0016 (4)
C10.0169 (7)0.0145 (7)0.0163 (7)0.0020 (5)0.0076 (6)0.0007 (5)
C20.0203 (7)0.0187 (7)0.0160 (7)0.0050 (6)0.0079 (6)0.0009 (5)
C30.0217 (7)0.0196 (7)0.0136 (6)0.0034 (6)0.0074 (6)0.0020 (5)
C40.0175 (7)0.0178 (7)0.0125 (6)0.0002 (5)0.0072 (5)0.0010 (5)
C50.0166 (7)0.0155 (7)0.0141 (6)0.0021 (5)0.0069 (5)0.0002 (5)
C60.0159 (7)0.0148 (7)0.0144 (6)0.0018 (5)0.0064 (5)0.0004 (5)
C70.0190 (7)0.0204 (7)0.0150 (7)0.0016 (6)0.0077 (6)0.0022 (5)
C80.0199 (7)0.0300 (8)0.0147 (7)0.0035 (6)0.0034 (6)0.0018 (6)
C90.0213 (7)0.0267 (8)0.0222 (7)0.0091 (6)0.0079 (6)0.0019 (6)
C100.0231 (7)0.0225 (8)0.0167 (7)0.0040 (6)0.0097 (6)0.0007 (6)
C110.0162 (6)0.0178 (7)0.0118 (6)0.0028 (5)0.0048 (5)0.0005 (5)
C120.0162 (7)0.0168 (7)0.0132 (6)0.0007 (5)0.0058 (5)0.0027 (5)
C130.0177 (7)0.0141 (6)0.0123 (6)0.0020 (5)0.0041 (5)0.0004 (5)
C140.0196 (7)0.0189 (7)0.0142 (7)0.0047 (6)0.0094 (6)0.0038 (5)
C150.0176 (7)0.0197 (7)0.0202 (7)0.0017 (6)0.0084 (6)0.0020 (6)
C160.0184 (7)0.0204 (7)0.0162 (7)0.0018 (6)0.0055 (6)0.0024 (6)
Geometric parameters (Å, º) top
Cl1—C131.7367 (14)C7—C81.384 (2)
Cl2—C141.7400 (14)C7—H70.9500
O1—C11.2276 (16)C8—C91.396 (2)
C1—C61.4939 (19)C8—H80.9500
C1—C21.5083 (19)C9—C101.388 (2)
C2—C31.5278 (18)C9—H90.9500
C2—H2A0.9900C10—H100.9500
C2—H2B0.9900C11—C121.3886 (19)
C3—C41.5399 (19)C11—C161.399 (2)
C3—H3A0.9900C12—C131.3985 (18)
C3—H3B0.9900C12—H120.9500
C4—C111.5234 (18)C13—C141.392 (2)
C4—C51.5272 (18)C14—C151.392 (2)
C4—H41.0000C15—C161.3924 (19)
C5—C101.399 (2)C15—H150.9500
C5—C61.4098 (18)C16—H160.9500
C6—C71.4024 (19)
O1—C1—C6120.86 (12)C6—C7—H7119.5
O1—C1—C2121.32 (12)C7—C8—C9118.83 (13)
C6—C1—C2117.79 (11)C7—C8—H8120.6
C1—C2—C3113.68 (11)C9—C8—H8120.6
C1—C2—H2A108.8C10—C9—C8120.84 (14)
C3—C2—H2A108.8C10—C9—H9119.6
C1—C2—H2B108.8C8—C9—H9119.6
C3—C2—H2B108.8C9—C10—C5121.05 (13)
H2A—C2—H2B107.7C9—C10—H10119.5
C2—C3—C4110.11 (11)C5—C10—H10119.5
C2—C3—H3A109.6C12—C11—C16118.89 (12)
C4—C3—H3A109.6C12—C11—C4119.70 (12)
C2—C3—H3B109.6C16—C11—C4121.37 (12)
C4—C3—H3B109.6C11—C12—C13120.51 (13)
H3A—C3—H3B108.2C11—C12—H12119.7
C11—C4—C5113.90 (11)C13—C12—H12119.7
C11—C4—C3111.55 (11)C14—C13—C12119.97 (13)
C5—C4—C3110.03 (11)C14—C13—Cl1120.66 (11)
C11—C4—H4107.0C12—C13—Cl1119.36 (11)
C5—C4—H4107.0C15—C14—C13120.07 (13)
C3—C4—H4107.0C15—C14—Cl2119.42 (11)
C10—C5—C6118.03 (12)C13—C14—Cl2120.51 (11)
C10—C5—C4122.23 (12)C14—C15—C16119.45 (13)
C6—C5—C4119.70 (12)C14—C15—H15120.3
C7—C6—C5120.29 (12)C16—C15—H15120.3
C7—C6—C1118.23 (12)C15—C16—C11121.08 (13)
C5—C6—C1121.48 (12)C15—C16—H16119.5
C8—C7—C6120.93 (13)C11—C16—H16119.5
C8—C7—H7119.5
O1—C1—C2—C3160.86 (13)C8—C9—C10—C50.6 (2)
C6—C1—C2—C320.89 (17)C6—C5—C10—C91.2 (2)
C1—C2—C3—C452.96 (16)C4—C5—C10—C9179.15 (14)
C2—C3—C4—C11174.50 (11)C5—C4—C11—C12110.85 (14)
C2—C3—C4—C558.08 (15)C3—C4—C11—C12123.85 (14)
C11—C4—C5—C1023.18 (19)C5—C4—C11—C1671.33 (17)
C3—C4—C5—C10149.28 (13)C3—C4—C11—C1653.97 (17)
C11—C4—C5—C6158.88 (12)C16—C11—C12—C131.3 (2)
C3—C4—C5—C632.78 (16)C4—C11—C12—C13176.57 (12)
C10—C5—C6—C71.1 (2)C11—C12—C13—C140.0 (2)
C4—C5—C6—C7179.11 (12)C11—C12—C13—Cl1179.87 (11)
C10—C5—C6—C1178.62 (13)C12—C13—C14—C151.1 (2)
C4—C5—C6—C10.60 (19)Cl1—C13—C14—C15179.05 (11)
O1—C1—C6—C77.5 (2)C12—C13—C14—Cl2178.62 (10)
C2—C1—C6—C7174.23 (12)Cl1—C13—C14—Cl21.21 (17)
O1—C1—C6—C5172.20 (13)C13—C14—C15—C160.8 (2)
C2—C1—C6—C56.05 (19)Cl2—C14—C15—C16178.90 (11)
C5—C6—C7—C80.5 (2)C14—C15—C16—C110.5 (2)
C1—C6—C7—C8179.25 (13)C12—C11—C16—C151.6 (2)
C6—C7—C8—C90.1 (2)C4—C11—C16—C15176.25 (13)
C7—C8—C9—C100.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.952.403.3469 (17)172
C9—H9···Cl1ii0.952.913.6984 (16)142
C16—H16···Cl1iii0.952.913.7705 (15)151
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z1/2; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H12Cl2O
Mr291.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)10.7705 (14), 10.7317 (14), 12.3765 (16)
β (°) 111.359 (6)
V3)1332.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.903, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
16212, 3172, 2676
Rint0.035
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.11
No. of reflections3172
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.23

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), CHEMDRAW (Cambridgesoft, 2003), CrystalStructure (Rigaku, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.952.403.3469 (17)172.0
C9—H9···Cl1ii0.952.913.6984 (16)141.5
C16—H16···Cl1iii0.952.913.7705 (15)151.4
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z1/2; (iii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Science Foundation of China (No. 20576094)

References

First citationCambridgesoft (2003). CHEMDRAW. Version 8.0. Cambridgesoft Corporation, Cambridge, MA, USA.  Google Scholar
First citationQuallich, J. Q. (2005). Chirality, 17, S120–S126.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTaber, G. P., Pfisterer, D. M. & Colberg, J. C. (2004). Org. Process. Res. Dev. 8, 385–388.  Web of Science CrossRef CAS Google Scholar
First citationVukics, K., Fodor, T., Fischer, J., Fellegvari, I. & Leval, S. (2002). Org. Process. Res. Dev. 6, 82–85.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds