organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-(6-phenyl-4λ4-1,2-di­thiolo[1,5-b][1,2,4]di­thia­zol-2-yl)propanoate

aFaculty of Chemistry, University of Belgrade, Studentski trg 16, PO Box 158, 11001 Belgrade, Serbia, bCenter for Chemistry ICTM, PO Box 815, 11000 Belgrade, Serbia, and cChemistry Department, University of Canterbury, PO Box 4800, Christchurch, New Zealand
*Correspondence e-mail: peter.steel@canterbury.ac.nz

(Received 19 November 2007; accepted 26 November 2007; online 6 December 2007)

The title compound, C15H15NO2S3, exists in a bicyclic form, with resonance contributions from two monocyclic forms, each without a second S—S bond. The trithiapentalene heterocyclic ring system is planar, with a mean deviation of 0.014 (2) Å from the mean plane, and is inclined to the plane of the attached phenyl ring at an angle of 17.24 (7)°.

Related literature

For related compounds, see: Rašović et al. (2007[Rašović, A., Steel, P. J., Kleinpeter, E. & Marković, R. (2007). Tetrahedron, 63, 1937-1945.]); Yokoyama et al. (1985[Yokoyama, M., Shiraishi, T., Hatanaka, H. & Ogata, K. (1985). J. Chem. Soc. Chem. Commun. pp. 1704-1705.]). For related literature, see: Lozac'h (1984[Lozac'h, N. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. R. Katritzky, C. W. Rees & K. T. Potts, pp. 1049-1070. Oxford: Pergamon Press.]); Marković et al. (2004[Marković, R., Rašović, A., Baranac, M., Stojanović, M., Steel, P. J. & Jovetić, S. (2004). J. Serb. Chem. Soc. 69, 909-918.]); Terem (1996[Terem, B. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 8, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven, pp. 833-862. Oxford: Pergamon Press.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO2S3

  • Mr = 337.46

  • Monoclinic, P 21 /c

  • a = 4.5830 (8) Å

  • b = 15.550 (3) Å

  • c = 21.858 (4) Å

  • β = 91.579 (2)°

  • V = 1557.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 168 (2) K

  • 0.56 × 0.15 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.]) Tmin = 0.776, Tmax = 0.936

  • 18585 measured reflections

  • 3154 independent reflections

  • 2496 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.081

  • S = 1.04

  • 3154 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (1) was prepared in the course of a study of the thionation of thiazolidine enaminones (Marković et al., 2004). It could potentially exist in any of three forms (1 A - 1 C) as shown in Scheme 1. The X-ray structure reveals that it exists in the bicyclic form (1 A). However, comparison of the S—S bond lengths (Table 1) with the average value (2.07 Å) for the 31 1,2-dithiolanes and the 11 3-imino-3H-1,2-dithioles (as in 1B) in the Cambridge Structural Database (Allen, 2002) along with consideration of the S—C bond lengths suggests that resonance forms (1B) and (1 C) make some contribution to the overall structure. These results are consistent with two structurally related compounds that have been published previously (Rašović et al., 2007; Yokoyama et al., 1985) and with the known resonance behaviour of 1,6,6a-trithiapentalenes (Lozac'h, 1984; Terem, 1996; Rašović et al., 2007).

The whole molecule is remarkably close to being planar with both substituents lying in the same plane as the trithiaazapentalene ring system. This bicyclic system is planar [mean deviation = 0.014 (3) Å] and the attached phenyl ring is inclined to this plane at an angle of 17.4 (1) °. Inspection of the packing shows that there are short intermolecular contacts [3.491 (1) Å] between sulfur atoms of molecules related by a crystallographic centre of inversion, as well as other weak C–H···O and C–H···π interactions.

Related literature top

For related compounds, see: Rašović et al. (2007); Yokoyama et al. (1985). For related literature, see: Lozac'h (1984); Marković et al. (2004); Terem (1996); Allen (2002).

Experimental top

The title compound was prepared as previously described (Marković et al., 2004).

Refinement top

All H atoms were introduced in calculated positions as riding atoms, with Uiso(H) = 1.5Ueq(C) for the methyl group and Uiso(H) = 1.2Ueq(C) for other carbons.

Structure description top

The title compound (1) was prepared in the course of a study of the thionation of thiazolidine enaminones (Marković et al., 2004). It could potentially exist in any of three forms (1 A - 1 C) as shown in Scheme 1. The X-ray structure reveals that it exists in the bicyclic form (1 A). However, comparison of the S—S bond lengths (Table 1) with the average value (2.07 Å) for the 31 1,2-dithiolanes and the 11 3-imino-3H-1,2-dithioles (as in 1B) in the Cambridge Structural Database (Allen, 2002) along with consideration of the S—C bond lengths suggests that resonance forms (1B) and (1 C) make some contribution to the overall structure. These results are consistent with two structurally related compounds that have been published previously (Rašović et al., 2007; Yokoyama et al., 1985) and with the known resonance behaviour of 1,6,6a-trithiapentalenes (Lozac'h, 1984; Terem, 1996; Rašović et al., 2007).

The whole molecule is remarkably close to being planar with both substituents lying in the same plane as the trithiaazapentalene ring system. This bicyclic system is planar [mean deviation = 0.014 (3) Å] and the attached phenyl ring is inclined to this plane at an angle of 17.4 (1) °. Inspection of the packing shows that there are short intermolecular contacts [3.491 (1) Å] between sulfur atoms of molecules related by a crystallographic centre of inversion, as well as other weak C–H···O and C–H···π interactions.

For related compounds, see: Rašović et al. (2007); Yokoyama et al. (1985). For related literature, see: Lozac'h (1984); Marković et al. (2004); Terem (1996); Allen (2002).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1), showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Forms of the title compound.
Ethyl 3-(6-phenyl-4λ4-1,2-dithiolo[1,5-b][1,2,4]dithiazol-2-yl)propanoate top
Crystal data top
C15H15NO2S3F(000) = 704
Mr = 337.46Dx = 1.440 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4889 reflections
a = 4.5830 (8) Åθ = 2.3–26.3°
b = 15.550 (3) ŵ = 0.48 mm1
c = 21.858 (4) ÅT = 168 K
β = 91.579 (2)°Block, red
V = 1557.1 (5) Å30.56 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3154 independent reflections
Radiation source: fine-focus sealed tube2496 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 26.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 53
Tmin = 0.776, Tmax = 0.936k = 1919
18585 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.040P)2 + 0.6P]
where P = (Fo2 + 2Fc2)/3
3154 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C15H15NO2S3V = 1557.1 (5) Å3
Mr = 337.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.5830 (8) ŵ = 0.48 mm1
b = 15.550 (3) ÅT = 168 K
c = 21.858 (4) Å0.56 × 0.15 × 0.14 mm
β = 91.579 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3154 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2496 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 0.936Rint = 0.024
18585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
3154 reflectionsΔρmin = 0.18 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.14659 (10)0.93968 (3)0.06460 (2)0.03515 (13)
S20.45583 (10)0.88164 (3)0.01317 (2)0.03275 (13)
S30.75628 (10)0.81544 (3)0.08417 (2)0.03547 (13)
N10.1422 (3)0.77027 (9)0.05925 (6)0.0310 (3)
O10.6255 (3)0.78860 (8)0.22517 (6)0.0469 (4)
O20.4823 (3)0.65138 (8)0.22943 (6)0.0374 (3)
C10.0397 (4)0.83948 (10)0.08685 (8)0.0301 (4)
C20.3385 (4)0.77998 (10)0.01248 (8)0.0299 (4)
C30.4558 (4)0.70707 (11)0.01639 (8)0.0323 (4)
H3A0.39160.65170.00340.039*
C40.6610 (4)0.71354 (11)0.06291 (8)0.0310 (4)
C110.1756 (4)0.83021 (10)0.13943 (8)0.0321 (4)
H11A0.09300.85710.17620.039*
H11B0.35590.86190.12970.039*
C120.2545 (4)0.73746 (10)0.15426 (8)0.0320 (4)
H12A0.07560.70570.16480.038*
H12B0.33610.71000.11760.038*
C130.4727 (4)0.73123 (11)0.20648 (8)0.0310 (4)
C140.6901 (4)0.63594 (12)0.27984 (9)0.0386 (4)
H14A0.65790.67720.31350.046*
H14B0.89240.64290.26590.046*
C150.6416 (5)0.54575 (13)0.30130 (10)0.0502 (5)
H15A0.77480.53330.33600.075*
H15B0.67880.50560.26790.075*
H15C0.43940.53940.31410.075*
C410.8042 (4)0.63919 (11)0.09330 (8)0.0336 (4)
C420.7975 (5)0.55824 (13)0.06601 (10)0.0565 (6)
H42A0.69560.55040.02800.068*
C430.9372 (6)0.48925 (14)0.09362 (12)0.0697 (8)
H43A0.92860.43430.07470.084*
C441.0889 (5)0.49931 (13)0.14834 (11)0.0559 (6)
H44A1.18550.45170.16720.067*
C451.0989 (5)0.57867 (13)0.17530 (10)0.0531 (6)
H45A1.20400.58620.21300.064*
C460.9578 (5)0.64779 (12)0.14830 (9)0.0451 (5)
H46A0.96620.70230.16780.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0389 (3)0.0220 (2)0.0444 (3)0.00255 (17)0.0017 (2)0.00393 (17)
S20.0358 (3)0.0245 (2)0.0379 (2)0.00752 (17)0.00185 (19)0.00651 (17)
S30.0410 (3)0.0291 (2)0.0361 (2)0.00723 (18)0.0037 (2)0.00541 (18)
N10.0316 (8)0.0253 (7)0.0359 (8)0.0035 (6)0.0013 (6)0.0045 (6)
O10.0529 (9)0.0353 (7)0.0514 (8)0.0115 (6)0.0168 (7)0.0040 (6)
O20.0415 (7)0.0292 (6)0.0406 (7)0.0029 (5)0.0119 (6)0.0066 (5)
C10.0290 (9)0.0251 (8)0.0364 (9)0.0006 (7)0.0045 (7)0.0045 (7)
C20.0301 (9)0.0251 (8)0.0347 (9)0.0071 (7)0.0029 (7)0.0053 (7)
C30.0362 (10)0.0234 (8)0.0372 (9)0.0059 (7)0.0003 (8)0.0043 (7)
C40.0336 (9)0.0281 (8)0.0315 (9)0.0060 (7)0.0049 (7)0.0026 (7)
C110.0335 (10)0.0243 (8)0.0384 (9)0.0020 (7)0.0004 (7)0.0025 (7)
C120.0349 (10)0.0257 (8)0.0351 (9)0.0015 (7)0.0026 (7)0.0022 (7)
C130.0316 (9)0.0278 (9)0.0336 (9)0.0006 (7)0.0022 (7)0.0012 (7)
C140.0375 (11)0.0418 (10)0.0359 (10)0.0002 (8)0.0071 (8)0.0068 (8)
C150.0638 (14)0.0408 (11)0.0453 (11)0.0062 (10)0.0109 (10)0.0088 (9)
C410.0365 (10)0.0306 (9)0.0337 (9)0.0070 (7)0.0014 (8)0.0004 (7)
C420.0761 (17)0.0369 (11)0.0547 (13)0.0049 (10)0.0300 (12)0.0110 (9)
C430.103 (2)0.0333 (11)0.0707 (15)0.0070 (12)0.0400 (15)0.0110 (11)
C440.0726 (16)0.0341 (10)0.0596 (13)0.0006 (10)0.0232 (12)0.0036 (9)
C450.0711 (15)0.0404 (11)0.0464 (12)0.0049 (10)0.0244 (11)0.0019 (9)
C460.0589 (13)0.0323 (10)0.0433 (11)0.0069 (9)0.0117 (10)0.0036 (8)
Geometric parameters (Å, º) top
S1—C11.7003 (16)C12—H12A0.9900
S1—S22.3623 (7)C12—H12B0.9900
S2—C21.7567 (16)C14—C151.497 (3)
S2—S32.2905 (7)C14—H14A0.9900
S3—C41.7047 (17)C14—H14B0.9900
N1—C11.314 (2)C15—H15A0.9800
N1—C21.351 (2)C15—H15B0.9800
O1—C131.199 (2)C15—H15C0.9800
O2—C131.339 (2)C41—C461.383 (3)
O2—C141.456 (2)C41—C421.393 (3)
C1—C111.501 (2)C42—C431.380 (3)
C2—C31.398 (2)C42—H42A0.9500
C3—C41.370 (2)C43—C441.376 (3)
C3—H3A0.9500C43—H43A0.9500
C4—C411.478 (3)C44—C451.368 (3)
C11—C121.520 (2)C44—H44A0.9500
C11—H11A0.9900C45—C461.379 (3)
C11—H11B0.9900C45—H45A0.9500
C12—C131.500 (2)C46—H46A0.9500
C1—S1—S291.04 (6)O1—C13—C12125.60 (16)
C2—S2—S389.13 (6)O2—C13—C12111.04 (14)
C2—S2—S186.66 (6)O2—C14—C15106.97 (15)
S3—S2—S1175.44 (2)O2—C14—H14A110.3
C4—S3—S295.07 (6)C15—C14—H14A110.3
C1—N1—C2118.55 (14)O2—C14—H14B110.3
C13—O2—C14116.74 (14)C15—C14—H14B110.3
N1—C1—C11119.47 (14)H14A—C14—H14B108.6
N1—C1—S1121.50 (13)C14—C15—H15A109.5
C11—C1—S1119.03 (12)C14—C15—H15B109.5
N1—C2—C3119.38 (14)H15A—C15—H15B109.5
N1—C2—S2122.25 (13)C14—C15—H15C109.5
C3—C2—S2118.38 (13)H15A—C15—H15C109.5
C4—C3—C2121.55 (15)H15B—C15—H15C109.5
C4—C3—H3A119.2C46—C41—C42117.67 (18)
C2—C3—H3A119.2C46—C41—C4121.61 (16)
C3—C4—C41124.30 (16)C42—C41—C4120.68 (16)
C3—C4—S3115.86 (13)C43—C42—C41120.72 (19)
C41—C4—S3119.82 (13)C43—C42—H42A119.6
C1—C11—C12113.71 (14)C41—C42—H42A119.6
C1—C11—H11A108.8C44—C43—C42120.6 (2)
C12—C11—H11A108.8C44—C43—H43A119.7
C1—C11—H11B108.8C42—C43—H43A119.7
C12—C11—H11B108.8C45—C44—C43119.2 (2)
H11A—C11—H11B107.7C45—C44—H44A120.4
C13—C12—C11111.93 (14)C43—C44—H44A120.4
C13—C12—H12A109.2C44—C45—C46120.60 (19)
C11—C12—H12A109.2C44—C45—H45A119.7
C13—C12—H12B109.2C46—C45—H45A119.7
C11—C12—H12B109.2C45—C46—C41121.23 (18)
H12A—C12—H12B107.9C45—C46—H46A119.4
O1—C13—O2123.33 (16)C41—C46—H46A119.4

Experimental details

Crystal data
Chemical formulaC15H15NO2S3
Mr337.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)168
a, b, c (Å)4.5830 (8), 15.550 (3), 21.858 (4)
β (°) 91.579 (2)
V3)1557.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.56 × 0.15 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.776, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
18585, 3154, 2496
Rint0.024
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.081, 1.04
No. of reflections3154
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Selected geometric parameters (Å, º) top
S1—C11.7003 (16)N1—C11.314 (2)
S1—S22.3623 (7)N1—C21.351 (2)
S2—C21.7567 (16)C2—C31.398 (2)
S2—S32.2905 (7)C3—C41.370 (2)
S3—C41.7047 (17)
C1—S1—S291.04 (6)N1—C1—S1121.50 (13)
C2—S2—S389.13 (6)N1—C2—C3119.38 (14)
C2—S2—S186.66 (6)N1—C2—S2122.25 (13)
S3—S2—S1175.44 (2)C3—C2—S2118.38 (13)
C4—S3—S295.07 (6)C4—C3—C2121.55 (15)
C1—N1—C2118.55 (14)C3—C4—S3115.86 (13)
 

Acknowledgements

PJS thanks the Royal Society of New Zealand for the award of a James Cook Research Fellowship.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLozac'h, N. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. R. Katritzky, C. W. Rees & K. T. Potts, pp. 1049–1070. Oxford: Pergamon Press.  Google Scholar
First citationMarković, R., Rašović, A., Baranac, M., Stojanović, M., Steel, P. J. & Jovetić, S. (2004). J. Serb. Chem. Soc. 69, 909–918.  Google Scholar
First citationRašović, A., Steel, P. J., Kleinpeter, E. & Marković, R. (2007). Tetrahedron, 63, 1937–1945.  Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.  Google Scholar
First citationTerem, B. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 8, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven, pp. 833–862. Oxford: Pergamon Press.  Google Scholar
First citationYokoyama, M., Shiraishi, T., Hatanaka, H. & Ogata, K. (1985). J. Chem. Soc. Chem. Commun. pp. 1704–1705.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds