organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[1-(5-Acetamido-3-acetyl-2-methyl-2,3-di­hydro-1,3,4-thia­diazol-2-yl)-2-phenyl­ethyl]acetamide

aDepartment of Physics, Urumu Dhanalakshmi College, Tiruchirappalli, Tamilnadu 620 019, India, bDepartment of Physics, Periyar EVR College, Tiruchirappalli, Tamilnadu 620 023, India, cSchool of Chemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India, dDepartment of Physics, Vivekananda College (Autonomous), Chennai, Tamilnadu, India, and eOrganic Chemistry Division, CLRI, Chennai 600 020, Tamilnadu, India
*Correspondence e-mail: sakthi2udc@yahoo.com

(Received 19 November 2007; accepted 30 November 2007; online 6 December 2007)

In the title compound, C17H22N4O3S, the dihedral angle between the planes of the thia­diazole and phenyl rings is 63.47 (7)°. The dihedral angle between the thia­diazole ring and the acetamide side chain is 7.72 (9)°. Mol­ecules related by a 21 screw axis along the a axis are linked by inter­molecular N—H⋯O hydrogen bonds generating a supra­molecular chain.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.]); Bhat et al. (1967[Bhat, A. K., Bharmaria, R. P. & Bellare, R. A. (1967). Indian J. Chem. 5, 1279-1282.]); Castro et al. (1996[Castro, J. L., Ball, R. G., Broughton, H. B., Russell, M. G. N., Rathbone, D., Watt, A. P., Baker, R., Chapman, K. L., Fletcher, A. E., Patel, S., Smith, A. J., Marshall, G. R., Ryecroft, W. & Matassa, V. G. (1996). J. Med. Chem. 39, 842-848.]); Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T., Kurihara, N. & Fujita, T. (1996). J. Pestic. Sci. 21, 195-201.]); Tehranchian et al. (2005[Tehranchian, S., Akbarzadeh, T., Fazeli, R. M., Jamlifar, H. & Shafiee, A. (2005). Bioorg. Med. Chem. Lett. 15, 1023-1025.]); Wang et al. (1999[Wang, Y.-G., Cao, L., Yang, J., Ye, W.-F., Zhou, Q.-C. & Lu, B.-X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.], 2004[Wang, Y. G., Wang, Z. Y., Zhao, X. Y. & Song, X. J. (2004). Chin. J. Org. Chem. 24, 1606-1609.]).

[Scheme 1]

Experimental

Crystal data
  • C17H22N4O3S

  • Mr = 362.46

  • Orthorhombic, P b c a

  • a = 18.3623 (9) Å

  • b = 14.1565 (7) Å

  • c = 14.1386 (7) Å

  • V = 3675.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 (2) K

  • 0.26 × 0.22 × 0.18 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 (Version 1.22), SAINT-NT (Version 6.0), SADABS (Version 2004/1) and XPREP (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.965

  • 81394 measured reflections

  • 5439 independent reflections

  • 3358 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.142

  • S = 1.08

  • 5439 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1i 0.87 1.96 2.809 (2) 166
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 1.22), SAINT-NT (Version 6.0), SADABS (Version 2004/1) and XPREP (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-NT (Bruker, 2004[Bruker (2004). APEX2 (Version 1.22), SAINT-NT (Version 6.0), SADABS (Version 2004/1) and XPREP (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT and XPREP (Bruker, 2004[Bruker (2004). APEX2 (Version 1.22), SAINT-NT (Version 6.0), SADABS (Version 2004/1) and XPREP (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Comment Thiadiazoles and their derivatives represent a group of compounds possessing a wide spectrum of biological activities such as hypoglycemic, antitubercular, antifungal and antibacterial properties (Bhat et al., 1967).

1,3,4-Thiadiazole derivatives are known to display a broad spectrum of pesticidal activity (Nakagawa et al., 1996; Castro & Ball, 1996 Wang et al., 1999, 2004).

Thiadiazole derivatives are known to exhibit high antibacterial activity against Staphylococcus aureus (Tehranchaian et al., 2005).

In the title compound (I), the thiadiazole ring adopts an mild envelop conformation with atom C11 at the flap position. C11 deviates from the mean planes through the other four atoms by 0.085 Å.

The molecular structure of (I) is shown in Fig 1. and selected geometric parameters are listed in Table 1. The bond lengths for C—S, C=N and N—N are within normal ranges (Allen et al., 1987). All the bondlengths and angles in (I) are as expected (Table 1). The dihedral angle between 1,3,4 thiadiazole ring and the phenyl ring is 63.47°. The dihedral angle between thiadiazole ring and the acetamide side chain(N4/C16/O3/C17) is 7.72°.

The molecules related by 21 screw along a axis (Fig 2)are linked by intermolecular N—H..O hydrogen bond (Table 1) generating a supramolecular chain.

Related literature top

For related literature, see: Allen et al. (1987); Bhat et al. (1967); Castro et al. (1996); Nakagawa et al. (1996); Tehranchaian et al. (2005); Wang et al. (1999, 2004).

Experimental top

A mixture of powdered thiosemicarbazone (3.0 mmol, acetic hydride(0.5 ml) and pyridine(2.5 ml) was taken in a round bottom flask and heated on a water bath for 3hrs. The reaction mixture was evaporated under reduced pressure and diluted in methanol. The viscous liquid obtained was allowed to stand overnight. The colour less precipitate formed was seperated by filteration and crystalized in methanol.

Refinement top

All the hydrogen atoms were geometrically fixed and allowed to ride on their parent atoms with C—H = 0.86 - 0.97 Å, and Uiso = 1.5eq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Structure description top

Comment Thiadiazoles and their derivatives represent a group of compounds possessing a wide spectrum of biological activities such as hypoglycemic, antitubercular, antifungal and antibacterial properties (Bhat et al., 1967).

1,3,4-Thiadiazole derivatives are known to display a broad spectrum of pesticidal activity (Nakagawa et al., 1996; Castro & Ball, 1996 Wang et al., 1999, 2004).

Thiadiazole derivatives are known to exhibit high antibacterial activity against Staphylococcus aureus (Tehranchaian et al., 2005).

In the title compound (I), the thiadiazole ring adopts an mild envelop conformation with atom C11 at the flap position. C11 deviates from the mean planes through the other four atoms by 0.085 Å.

The molecular structure of (I) is shown in Fig 1. and selected geometric parameters are listed in Table 1. The bond lengths for C—S, C=N and N—N are within normal ranges (Allen et al., 1987). All the bondlengths and angles in (I) are as expected (Table 1). The dihedral angle between 1,3,4 thiadiazole ring and the phenyl ring is 63.47°. The dihedral angle between thiadiazole ring and the acetamide side chain(N4/C16/O3/C17) is 7.72°.

The molecules related by 21 screw along a axis (Fig 2)are linked by intermolecular N—H..O hydrogen bond (Table 1) generating a supramolecular chain.

For related literature, see: Allen et al. (1987); Bhat et al. (1967); Castro et al. (1996); Nakagawa et al. (1996); Tehranchaian et al. (2005); Wang et al. (1999, 2004).

Computing details top

Data collection: APEX2 (Bruker,2004); cell refinement: APEX2 and SAINT-NT (Bruker,2004); data reduction: SAINT-NT and XPREP (Bruker,2004); program(s) used to solve structure: SHELXS97( Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-32 in WinGX (Farrugia, 1999); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecuar structure and labelling scheme for (I) with displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for (I) is shown. Dashed line indicates intermolecular hydrogen bonding interactions. [Symmetry code: (i) -x + 1/2, -y + 1/2, -z + 1
N-[1-(5-Acetamido-3-acetyl-2-methyl-2,3-dihydro-1,3,4-thiadiazol-2-yl)-2-phenylethyl]acetamide top
Crystal data top
C17H22N4O3SF(000) = 1536
Mr = 362.46Dx = 1.310 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9035 reflections
a = 18.3623 (9) Åθ = 2.2–26.3°
b = 14.1565 (7) ŵ = 0.20 mm1
c = 14.1386 (7) ÅT = 293 K
V = 3675.3 (3) Å3Block, colourless
Z = 80.26 × 0.22 × 0.18 mm
Data collection top
Bruker AXS (Kappa Apex2)
diffractometer
5439 independent reflections
Radiation source: fine focus sealed tube3358 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω and φ scanθmax = 30.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2525
Tmin = 0.949, Tmax = 0.965k = 1919
81394 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.051P)2 + 1.6574P]
where P = (Fo2 + 2Fc2)/3
5439 reflections(Δ/σ)max = 0.001
230 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H22N4O3SV = 3675.3 (3) Å3
Mr = 362.46Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 18.3623 (9) ŵ = 0.20 mm1
b = 14.1565 (7) ÅT = 293 K
c = 14.1386 (7) Å0.26 × 0.22 × 0.18 mm
Data collection top
Bruker AXS (Kappa Apex2)
diffractometer
5439 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3358 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.965Rint = 0.051
81394 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.08Δρmax = 0.29 e Å3
5439 reflectionsΔρmin = 0.27 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.04506 (3)0.14250 (4)0.37866 (4)0.0480 (2)
O10.26773 (7)0.31882 (13)0.50299 (11)0.0618 (6)
O20.11963 (8)0.15943 (13)0.68677 (12)0.0696 (6)
O30.06481 (10)0.11352 (16)0.25369 (12)0.0888 (8)
N10.16783 (7)0.29087 (11)0.41582 (11)0.0401 (5)
N20.04313 (8)0.14086 (11)0.56343 (11)0.0422 (5)
N30.02981 (8)0.13470 (11)0.53490 (11)0.0401 (5)
N40.10278 (8)0.13086 (11)0.40394 (11)0.0421 (5)
C10.09604 (11)0.50438 (15)0.46158 (15)0.0524 (7)
C20.12526 (14)0.59118 (18)0.4846 (2)0.0698 (9)
C30.14873 (14)0.6084 (2)0.5741 (3)0.0777 (12)
C40.14151 (15)0.5396 (2)0.6414 (2)0.0784 (10)
C50.11216 (12)0.45324 (18)0.61921 (15)0.0582 (8)
C60.08915 (9)0.43394 (13)0.52857 (12)0.0388 (5)
C70.05980 (10)0.33795 (14)0.50539 (14)0.0432 (6)
C80.12175 (9)0.26612 (13)0.49578 (13)0.0379 (5)
C90.23630 (9)0.32101 (14)0.42653 (14)0.0437 (6)
C100.27272 (13)0.35813 (19)0.33969 (17)0.0669 (9)
C110.09697 (9)0.16235 (13)0.48823 (14)0.0413 (6)
C120.16144 (11)0.09402 (16)0.49016 (19)0.0620 (8)
C130.05799 (11)0.14390 (15)0.65799 (15)0.0495 (6)
C140.00481 (13)0.1274 (2)0.72238 (15)0.0648 (9)
C150.03488 (9)0.13573 (12)0.44545 (13)0.0364 (5)
C160.11462 (12)0.11840 (17)0.30958 (15)0.0548 (7)
C170.19294 (14)0.1094 (2)0.28282 (19)0.0813 (10)
H10.080740.493120.399900.0629*
H1A0.149210.296880.362490.0481*
H20.128900.638050.438780.0836*
H30.169480.666290.589490.0933*
H40.156700.551490.703000.0939*
H4A0.141160.138310.439070.0506*
H50.107770.407300.665880.0698*
H7A0.026740.317810.554960.0519*
H7B0.032660.340860.446600.0519*
H80.151770.271330.552850.0454*
H10A0.319570.328850.332750.1004*
H10B0.243300.344130.285340.1004*
H10C0.278700.425280.345160.1004*
H12A0.188980.103600.547080.0929*
H12B0.143790.030210.488330.0929*
H12C0.192040.105340.436290.0929*
H14A0.012620.118650.785790.0971*
H14B0.036850.180950.720410.0971*
H14C0.030730.071960.702490.0971*
H17A0.197820.115640.215500.1219*
H17B0.210820.048700.302200.1219*
H17C0.220580.158130.313530.1219*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0386 (2)0.0586 (3)0.0467 (3)0.0125 (2)0.0111 (2)0.0109 (2)
O10.0318 (7)0.0912 (12)0.0624 (9)0.0136 (7)0.0069 (6)0.0129 (8)
O20.0470 (8)0.0966 (13)0.0652 (10)0.0142 (8)0.0205 (7)0.0162 (9)
O30.0711 (12)0.1449 (19)0.0504 (9)0.0258 (12)0.0057 (9)0.0311 (11)
N10.0303 (7)0.0464 (9)0.0436 (8)0.0057 (6)0.0018 (6)0.0007 (7)
N20.0281 (7)0.0531 (9)0.0454 (8)0.0080 (6)0.0011 (6)0.0075 (7)
N30.0283 (7)0.0488 (9)0.0433 (8)0.0062 (6)0.0009 (6)0.0066 (7)
N40.0320 (7)0.0535 (10)0.0409 (8)0.0048 (6)0.0004 (6)0.0000 (7)
C10.0518 (11)0.0518 (12)0.0536 (12)0.0004 (9)0.0013 (9)0.0028 (10)
C20.0607 (14)0.0488 (14)0.100 (2)0.0011 (11)0.0159 (13)0.0056 (13)
C30.0532 (14)0.0568 (16)0.123 (3)0.0071 (11)0.0119 (15)0.0369 (17)
C40.0715 (16)0.091 (2)0.0726 (17)0.0014 (14)0.0091 (13)0.0444 (16)
C50.0665 (14)0.0674 (15)0.0406 (10)0.0033 (11)0.0007 (10)0.0107 (10)
C60.0299 (8)0.0450 (10)0.0414 (9)0.0017 (7)0.0022 (7)0.0062 (8)
C70.0293 (8)0.0481 (11)0.0523 (11)0.0021 (7)0.0007 (7)0.0030 (8)
C80.0255 (7)0.0434 (10)0.0447 (9)0.0043 (7)0.0017 (7)0.0002 (8)
C90.0323 (9)0.0447 (11)0.0540 (11)0.0037 (7)0.0041 (8)0.0032 (9)
C100.0530 (13)0.0831 (18)0.0647 (14)0.0196 (12)0.0135 (11)0.0139 (12)
C110.0282 (8)0.0451 (11)0.0507 (10)0.0038 (7)0.0041 (7)0.0027 (8)
C120.0401 (11)0.0489 (13)0.0969 (18)0.0046 (9)0.0076 (11)0.0088 (12)
C130.0444 (10)0.0548 (12)0.0492 (11)0.0061 (9)0.0091 (8)0.0102 (9)
C140.0582 (13)0.0940 (19)0.0421 (11)0.0131 (12)0.0022 (10)0.0073 (11)
C150.0322 (8)0.0364 (9)0.0406 (9)0.0064 (7)0.0033 (7)0.0010 (7)
C160.0531 (12)0.0622 (14)0.0490 (11)0.0143 (10)0.0069 (9)0.0075 (10)
C170.0591 (14)0.119 (2)0.0658 (16)0.0205 (15)0.0220 (12)0.0029 (15)
Geometric parameters (Å, º) top
S1—C111.841 (2)C9—C101.494 (3)
S1—C151.7480 (18)C11—C121.529 (3)
O1—C91.226 (2)C13—C141.488 (3)
O2—C131.223 (3)C16—C171.493 (3)
O3—C161.211 (3)C1—H10.9300
N1—C81.455 (2)C2—H20.9300
N1—C91.336 (2)C3—H30.9300
N2—N31.402 (2)C4—H40.9300
N2—C111.483 (2)C5—H50.9300
N2—C131.365 (3)C7—H7A0.9700
N3—C151.268 (2)C7—H7B0.9700
N4—C151.380 (2)C8—H80.9800
N4—C161.363 (3)C10—H10A0.9600
N1—H1A0.8300C10—H10B0.9600
N4—H4A0.8700C10—H10C0.9600
C1—C61.381 (3)C12—H12A0.9600
C1—C21.380 (3)C12—H12B0.9600
C2—C31.359 (5)C12—H12C0.9600
C3—C41.368 (5)C14—H14A0.9600
C4—C51.372 (4)C14—H14B0.9600
C5—C61.377 (3)C14—H14C0.9600
C6—C71.498 (3)C17—H17A0.9600
C7—C81.532 (3)C17—H17B0.9600
C8—C111.542 (3)C17—H17C0.9600
S1···O32.7130 (19)C10···H4x2.6600
S1···N13.1257 (15)C13···H7A2.9200
S1···N32.6042 (16)C13···H82.9000
S1···H1A2.9100C13···H12A2.9300
S1···H7B2.9800H1···H7B2.4200
O1···N4i2.809 (2)H1···O3xiii2.7800
O1···C17i3.275 (3)H1···H14Axiv2.5800
O2···C123.029 (3)H1A···S12.9100
O2···C83.094 (3)H1A···H7B2.5300
O3···S12.7130 (19)H1A···H10B2.1500
O1···H17Ci2.6200H1A···O2xiv2.6200
O1···H4Ai1.9600H2···H17Axiii2.5400
O1···H82.3400H3···O1xii2.7400
O1···H3ii2.7400H4···C10ix2.6600
O2···H82.5400H4···H10Aix2.5300
O2···H1Aiii2.6200H4···H10Cix2.3600
O2···H10Biii2.6600H4A···H17C2.3100
O2···H12A2.4800H4A···O1v1.9600
O3···H1iv2.7800H4A···C9v3.0000
N1···S13.1257 (15)H4A···H12Bvi2.6000
N1···C13.360 (3)H5···H7A2.5100
N2···S12.6127 (17)H7A···N22.5300
N3···S12.6042 (16)H7A···N32.8100
N3···C73.341 (2)H7A···C132.9200
N4···O1v2.809 (2)H7A···H52.5100
N1···H12C2.6800H7B···S12.9800
N2···H7A2.5300H7B···H12.4200
N3···H14B2.7100H7B···H1A2.5300
N3···H14C2.5300H7B···H14Axiv2.3700
N3···H7A2.8100H8···O12.3400
N4···H12Bvi2.8400H8···O22.5400
C1···N13.360 (3)H8···C52.8400
C1···C6vii3.514 (3)H8···C132.9000
C2···C7vii3.546 (3)H8···H12A2.4700
C4···C14viii3.399 (4)H10A···H4x2.5300
C4···C10ix3.527 (4)H10B···H1A2.1500
C6···C1vii3.514 (3)H10B···O2xiv2.6600
C6···C93.455 (2)H10C···H4x2.3600
C7···C133.493 (3)H12A···O22.4800
C7···C2vii3.546 (3)H12A···C132.9300
C7···N33.341 (2)H12A···H82.4700
C7···C153.455 (3)H12A···C3ii3.0100
C8···O23.094 (3)H12B···N4vi2.8400
C9···C63.455 (2)H12B···H4Avi2.6000
C10···C4x3.527 (4)H12C···N12.6800
C12···O23.029 (3)H14A···H1iii2.5800
C13···C73.493 (3)H14A···H7Biii2.3700
C14···C4xi3.399 (4)H14B···N32.7100
C15···C73.455 (3)H14C···N32.5300
C17···O1v3.275 (3)H14C···C4xi3.0400
C3···H12Axii3.0100H17A···H2iv2.5400
C4···H14Cviii3.0400H17B···C4v3.0900
C4···H17Bi3.0900H17C···H4A2.3100
C5···H82.8400H17C···O1v2.6200
C9···H4Ai3.0000
C11—S1—C1589.35 (8)C6—C1—H1119.00
C8—N1—C9122.41 (15)C1—C2—H2120.00
N3—N2—C11116.32 (14)C3—C2—H2120.00
N3—N2—C13118.35 (15)C2—C3—H3120.00
C11—N2—C13124.21 (15)C4—C3—H3120.00
N2—N3—C15110.88 (14)C3—C4—H4120.00
C15—N4—C16124.53 (16)C5—C4—H4120.00
C9—N1—H1A117.00C4—C5—H5120.00
C8—N1—H1A119.00C6—C5—H5120.00
C16—N4—H4A116.00C6—C7—H7A109.00
C15—N4—H4A119.00C6—C7—H7B109.00
C2—C1—C6121.1 (2)C8—C7—H7A109.00
C1—C2—C3120.2 (2)C8—C7—H7B109.00
C2—C3—C4119.3 (3)H7A—C7—H7B108.00
C3—C4—C5120.9 (3)N1—C8—H8107.00
C4—C5—C6120.7 (2)C7—C8—H8107.00
C1—C6—C7122.54 (17)C11—C8—H8107.00
C5—C6—C7119.61 (18)C9—C10—H10A109.00
C1—C6—C5117.84 (19)C9—C10—H10B109.00
C6—C7—C8110.76 (15)C9—C10—H10C109.00
N1—C8—C7109.93 (15)H10A—C10—H10B109.00
N1—C8—C11110.33 (15)H10A—C10—H10C109.00
C7—C8—C11114.81 (14)H10B—C10—H10C109.00
O1—C9—C10121.54 (17)C11—C12—H12A109.00
N1—C9—C10116.13 (17)C11—C12—H12B109.00
O1—C9—N1122.33 (18)C11—C12—H12C109.00
N2—C11—C12111.93 (16)H12A—C12—H12B109.00
C8—C11—C12111.91 (15)H12A—C12—H12C109.00
S1—C11—C8110.89 (13)H12B—C12—H12C109.00
S1—C11—C12108.63 (15)C13—C14—H14A109.00
S1—C11—N2103.11 (11)C13—C14—H14B109.00
N2—C11—C8110.03 (15)C13—C14—H14C109.00
O2—C13—N2121.11 (19)H14A—C14—H14B109.00
O2—C13—C14122.8 (2)H14A—C14—H14C109.00
N2—C13—C14116.07 (17)H14B—C14—H14C109.00
S1—C15—N3118.54 (13)C16—C17—H17A109.00
S1—C15—N4122.13 (14)C16—C17—H17B109.00
N3—C15—N4119.34 (16)C16—C17—H17C109.00
O3—C16—C17123.9 (2)H17A—C17—H17B109.00
N4—C16—C17114.38 (19)H17A—C17—H17C109.00
O3—C16—N4121.7 (2)H17B—C17—H17C109.00
C2—C1—H1119.00
C15—S1—C11—N211.14 (12)C16—N4—C15—S19.0 (3)
C15—S1—C11—C8106.59 (13)C16—N4—C15—N3170.58 (19)
C15—S1—C11—C12130.03 (14)C15—N4—C16—O32.4 (3)
C11—S1—C15—N37.87 (16)C15—N4—C16—C17176.33 (19)
C11—S1—C15—N4172.58 (15)C6—C1—C2—C30.8 (4)
C9—N1—C8—C7111.74 (19)C2—C1—C6—C50.2 (3)
C9—N1—C8—C11120.66 (18)C2—C1—C6—C7178.1 (2)
C8—N1—C9—O19.2 (3)C1—C2—C3—C41.5 (4)
C8—N1—C9—C10170.62 (18)C2—C3—C4—C51.2 (4)
C11—N2—N3—C159.4 (2)C3—C4—C5—C60.1 (4)
C13—N2—N3—C15177.80 (17)C4—C5—C6—C10.6 (3)
N3—N2—C11—S113.94 (17)C4—C5—C6—C7177.8 (2)
N3—N2—C11—C8104.40 (17)C1—C6—C7—C8101.7 (2)
N3—N2—C11—C12130.51 (17)C5—C6—C7—C876.6 (2)
C13—N2—C11—S1178.39 (15)C6—C7—C8—N164.50 (19)
C13—N2—C11—C863.3 (2)C6—C7—C8—C11170.43 (15)
C13—N2—C11—C1261.8 (2)N1—C8—C11—S159.86 (16)
N3—N2—C13—O2172.06 (19)N1—C8—C11—N2173.28 (13)
N3—N2—C13—C147.9 (3)N1—C8—C11—C1261.6 (2)
C11—N2—C13—O24.6 (3)C7—C8—C11—S165.02 (18)
C11—N2—C13—C14175.33 (19)C7—C8—C11—N248.4 (2)
N2—N3—C15—S10.9 (2)C7—C8—C11—C12173.52 (17)
N2—N3—C15—N4179.59 (15)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y1/2, z; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x1/2, y+1/2, z+1; (vi) x, y, z+1; (vii) x, y+1, z+1; (viii) x, y+1/2, z+3/2; (ix) x+1/2, y+1, z+1/2; (x) x+1/2, y+1, z1/2; (xi) x, y1/2, z+3/2; (xii) x+1/2, y+1/2, z; (xiii) x, y+1/2, z+1/2; (xiv) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1v0.87001.96002.809 (2)166.00
Symmetry code: (v) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC17H22N4O3S
Mr362.46
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)18.3623 (9), 14.1565 (7), 14.1386 (7)
V3)3675.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.26 × 0.22 × 0.18
Data collection
DiffractometerBruker AXS (Kappa Apex2)
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.949, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
81394, 5439, 3358
Rint0.051
(sin θ/λ)max1)0.708
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.142, 1.08
No. of reflections5439
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.27

Computer programs: APEX2 (Bruker,2004), APEX2 and SAINT-NT (Bruker,2004), SAINT-NT and XPREP (Bruker,2004), SHELXS97( Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-32 in WinGX (Farrugia, 1999), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O1i0.87001.96002.809 (2)166.00
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Acknowledgements

The data set was collected at SAIF (IIT, Chennai), a facility funded by the Department of Science and Technology (New Delhi), India.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBhat, A. K., Bharmaria, R. P. & Bellare, R. A. (1967). Indian J. Chem. 5, 1279–1282.  Google Scholar
First citationBruker (2004). APEX2 (Version 1.22), SAINT-NT (Version 6.0), SADABS (Version 2004/1) and XPREP (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastro, J. L., Ball, R. G., Broughton, H. B., Russell, M. G. N., Rathbone, D., Watt, A. P., Baker, R., Chapman, K. L., Fletcher, A. E., Patel, S., Smith, A. J., Marshall, G. R., Ryecroft, W. & Matassa, V. G. (1996). J. Med. Chem. 39, 842–848.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T., Kurihara, N. & Fujita, T. (1996). J. Pestic. Sci. 21, 195–201.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTehranchian, S., Akbarzadeh, T., Fazeli, R. M., Jamlifar, H. & Shafiee, A. (2005). Bioorg. Med. Chem. Lett. 15, 1023–1025.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, Y.-G., Cao, L., Yang, J., Ye, W.-F., Zhou, Q.-C. & Lu, B.-X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar
First citationWang, Y. G., Wang, Z. Y., Zhao, X. Y. & Song, X. J. (2004). Chin. J. Org. Chem. 24, 1606–1609.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds