metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bis[2-(cyclo­propyl­imino­meth­yl)-6-meth­oxy­phenolato]bis­­(thio­cyanato)cobalt(II)

aDepartment of Chemistry, Zaozhuang University, Zaozhuang Shandong 277160, People's Republic of China
*Correspondence e-mail: shouxing_wang@126.com

(Received 22 November 2007; accepted 22 November 2007; online 6 December 2007)

In the title compound, [Co(NCS)2(C11H13NO2)2], a mononuclear Schiff base cobalt(II) complex, the Co atom is six-coordinated by four O atoms from two Schiff base ligands, and by two N atoms from two thio­cyanate ligands, forming a distorted octa­hedral geometry. The central Co atom lies on a twofold rotation axis. An intramolecular N—H⋯O hydrogen bond is present.

Related literature

For related literature, see: Di Bella et al. (1997[Di Bella, S., Fragala, I., Ledoux, I., Diaz-Garcia, M. A. & Marks, T. J. (1997). J. Am. Chem. Soc. 119, 9550-9557.]); Kraihanzel et al. (1981[Kraihanzel, C. S., Sinn, E. & Gray, G. M. (1981). J. Am. Chem. Soc. 103, 960-962.]); Loeb et al. (1984[Loeb, S. J., Stephan, D. W. & Willis, C. J. (1984). Inorg. Chem. 23, 1509-1512.]); Mukhopadhyay et al. (2003[Mukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem. 42, 8439-8445.]); Wang (2007a[Wang, S.-X. (2007a). Acta Cryst. E63, m706-m707.],b[Wang, S.-X. (2007b). Acta Cryst. E63, m1946.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NCS)2(C11H13NO2)2]

  • Mr = 557.54

  • Monoclinic, C 2/c

  • a = 21.851 (3) Å

  • b = 7.6424 (11) Å

  • c = 16.073 (2) Å

  • β = 103.196 (3)°

  • V = 2613.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 298 (2) K

  • 0.23 × 0.20 × 0.17 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.828, Tmax = 0.869

  • 10900 measured reflections

  • 2962 independent reflections

  • 1960 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.130

  • S = 1.05

  • 2962 reflections

  • 163 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O1 1.997 (2)
Co1—N2 2.031 (3)
Co1—O2 2.387 (2)
O1i—Co1—O1 148.34 (13)
O1i—Co1—N2 106.91 (9)
O1—Co1—N2 92.76 (9)
N2i—Co1—N2 103.17 (16)
O1i—Co1—O2 86.55 (8)
O1—Co1—O2 71.97 (8)
N2i—Co1—O2 82.96 (10)
N2—Co1—O2 164.69 (9)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.901 (10) 1.93 (3) 2.609 (3) 131 (3)

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base complexes have been studied extensively due to their interesting structures and numerous applications (Mukhopadhyay et al., 2003; Kraihanzel et al., 1981; Di Bella et al., 1997; Loeb et al., 1984). Previously, the author has reported the crystal structure of a Schiff base zinc(II) complex (Wang, 2007a) and a Schiff base nickel(II) complex (Wang, 2007b). As part of a further investigation of Schiff base complexes, the structure of the title compound, a mononuclear cobalt(II) complex, is reported here.

The octahedral coordination environment of CoII atom in the title compound is formed by four O atoms from two Schiff base ligands, and by two N atoms from two thiocyanate ligands (Fig. 1). The central Co atom lies on a twofold axis symmetry position.The coordination bond distances and angles are listed in Table 1.

Related literature top

For related literature, see: Di Bella et al. (1997); Kraihanzel et al. (1981); Loeb et al. (1984); Mukhopadhyay et al. (2003); Wang (2007a,b).

Experimental top

The title compound was obtained by stirring of 3-methoxysalicylaldehyde (0.2 mmol, 30.5 mg), cyclopropylamine (0.2 mmol, 11.5 mg), ammonium thiocyanate (0.2 mmol, 15.2 mg), and cobalt(II) acetate (0.1 mmol, 25.0 mg) in methanol (20 ml) for 30 min. The reaction mixture was then filtered. Brown block-shaped single crystals suitable for X-ray diffraction were formed from the filtrate after nine days.

Refinement top

H1 was located from a difference Fourier map and refined isotropically, with N—H distance restrained to 0.90 (1) Å. Other H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined as riding, with Uiso(H) = 1.2 or 1.5Ueq(C).

Structure description top

Schiff base complexes have been studied extensively due to their interesting structures and numerous applications (Mukhopadhyay et al., 2003; Kraihanzel et al., 1981; Di Bella et al., 1997; Loeb et al., 1984). Previously, the author has reported the crystal structure of a Schiff base zinc(II) complex (Wang, 2007a) and a Schiff base nickel(II) complex (Wang, 2007b). As part of a further investigation of Schiff base complexes, the structure of the title compound, a mononuclear cobalt(II) complex, is reported here.

The octahedral coordination environment of CoII atom in the title compound is formed by four O atoms from two Schiff base ligands, and by two N atoms from two thiocyanate ligands (Fig. 1). The central Co atom lies on a twofold axis symmetry position.The coordination bond distances and angles are listed in Table 1.

For related literature, see: Di Bella et al. (1997); Kraihanzel et al. (1981); Loeb et al. (1984); Mukhopadhyay et al. (2003); Wang (2007a,b).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing the numbering scheme and displacement ellipsoids drawn at the 30% probability level
cis-Bis[2-(cyclopropyliminomethyl)-6-methoxyphenolato]bis(thiocyanato)cobalt(II) top
Crystal data top
[Co(NCS)2(C11H13NO2)2]F(000) = 1156
Mr = 557.54Dx = 1.417 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1290 reflections
a = 21.851 (3) Åθ = 2.5–24.3°
b = 7.6424 (11) ŵ = 0.85 mm1
c = 16.073 (2) ÅT = 298 K
β = 103.196 (3)°Block, brown
V = 2613.2 (6) Å30.23 × 0.20 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEX area-detector
diffractometer
2962 independent reflections
Radiation source: fine-focus sealed tube1960 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2728
Tmin = 0.828, Tmax = 0.869k = 99
10900 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.3065P]
where P = (Fo2 + 2Fc2)/3
2962 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.39 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
[Co(NCS)2(C11H13NO2)2]V = 2613.2 (6) Å3
Mr = 557.54Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.851 (3) ŵ = 0.85 mm1
b = 7.6424 (11) ÅT = 298 K
c = 16.073 (2) Å0.23 × 0.20 × 0.17 mm
β = 103.196 (3)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
2962 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1960 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 0.869Rint = 0.055
10900 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.39 e Å3
2962 reflectionsΔρmin = 0.25 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.87110 (8)0.25000.0439 (2)
N10.41206 (13)0.8517 (4)0.02768 (16)0.0525 (7)
N20.42546 (13)1.0362 (4)0.23494 (17)0.0583 (7)
O10.47825 (9)0.7998 (3)0.12725 (12)0.0507 (5)
O20.57533 (10)0.6595 (3)0.22880 (14)0.0590 (6)
S10.30172 (5)1.14011 (15)0.17478 (7)0.0854 (4)
C10.51623 (15)0.7354 (4)0.00295 (19)0.0491 (8)
C20.52171 (13)0.7346 (4)0.09220 (18)0.0437 (7)
C30.57669 (14)0.6617 (4)0.1437 (2)0.0485 (8)
C40.62403 (15)0.6003 (4)0.1085 (2)0.0621 (9)
H40.66010.55330.14350.075*
C50.61837 (18)0.6079 (5)0.0207 (3)0.0704 (11)
H50.65110.56800.00250.085*
C60.56587 (17)0.6727 (4)0.0313 (2)0.0626 (9)
H60.56250.67600.09000.075*
C70.46021 (15)0.7952 (4)0.0526 (2)0.0529 (8)
H70.45820.79340.11100.063*
C80.35288 (18)0.8950 (6)0.0835 (2)0.0759 (11)
H80.35440.91780.14290.091*
C90.29577 (17)0.8083 (6)0.0720 (3)0.0946 (14)
H9A0.26460.77560.12280.114*
H9B0.29950.72820.02420.114*
C100.30497 (19)0.9911 (6)0.0532 (3)0.0912 (13)
H10A0.31441.02620.00640.109*
H10B0.27951.07350.09220.109*
C110.63187 (18)0.6133 (5)0.2889 (3)0.0874 (13)
H11A0.64030.49110.28350.131*
H11B0.62710.63680.34580.131*
H11C0.66620.68100.27790.131*
C120.37396 (16)1.0796 (4)0.2087 (2)0.0510 (8)
H10.4126 (16)0.857 (4)0.0285 (8)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0370 (3)0.0611 (4)0.0314 (3)0.0000.0029 (2)0.000
N10.0502 (16)0.0656 (18)0.0380 (14)0.0084 (13)0.0025 (13)0.0051 (13)
N20.0484 (16)0.0724 (19)0.0538 (16)0.0111 (14)0.0109 (13)0.0032 (14)
O10.0378 (11)0.0764 (14)0.0359 (11)0.0060 (10)0.0045 (9)0.0060 (10)
O20.0489 (13)0.0754 (16)0.0477 (13)0.0137 (11)0.0003 (10)0.0001 (11)
S10.0532 (6)0.0992 (8)0.0930 (8)0.0165 (5)0.0054 (5)0.0037 (6)
C10.0559 (19)0.0499 (19)0.0434 (18)0.0123 (15)0.0151 (15)0.0048 (14)
C20.0393 (16)0.0477 (18)0.0439 (17)0.0078 (13)0.0094 (13)0.0066 (14)
C30.0420 (18)0.0489 (18)0.0534 (19)0.0044 (13)0.0085 (15)0.0040 (14)
C40.0458 (19)0.062 (2)0.079 (3)0.0045 (16)0.0149 (18)0.0026 (18)
C50.061 (2)0.075 (3)0.087 (3)0.0018 (19)0.040 (2)0.012 (2)
C60.069 (2)0.071 (2)0.056 (2)0.0079 (19)0.0313 (19)0.0101 (17)
C70.062 (2)0.062 (2)0.0357 (17)0.0158 (17)0.0126 (16)0.0028 (15)
C80.059 (2)0.118 (3)0.0442 (19)0.004 (2)0.0002 (17)0.012 (2)
C90.051 (2)0.090 (3)0.131 (4)0.004 (2)0.006 (2)0.001 (3)
C100.076 (3)0.081 (3)0.104 (3)0.019 (2)0.006 (2)0.010 (3)
C110.069 (3)0.112 (3)0.069 (3)0.035 (2)0.009 (2)0.014 (2)
C120.059 (2)0.0513 (19)0.0439 (18)0.0003 (16)0.0133 (15)0.0017 (15)
Geometric parameters (Å, º) top
Co1—O1i1.997 (2)C3—C41.371 (4)
Co1—O11.997 (2)C4—C51.389 (5)
Co1—N2i2.031 (3)C4—H40.9300
Co1—N22.031 (3)C5—C61.350 (5)
Co1—O22.387 (2)C5—H50.9300
Co1—O2i2.387 (2)C6—H60.9300
N1—C71.283 (4)C7—H70.9300
N1—C81.434 (4)C8—C101.451 (5)
N1—H10.901 (10)C8—C91.461 (5)
N2—C121.157 (4)C8—H80.9800
O1—C21.308 (3)C9—C101.434 (6)
O2—C31.375 (4)C9—H9A0.9700
O2—C111.428 (4)C9—H9B0.9700
S1—C121.615 (4)C10—H10A0.9700
C1—C61.408 (4)C10—H10B0.9700
C1—C21.412 (4)C11—H11A0.9600
C1—C71.416 (4)C11—H11B0.9600
C2—C31.409 (4)C11—H11C0.9600
O1i—Co1—O1148.34 (13)C6—C5—C4120.7 (3)
O1i—Co1—N2i92.76 (9)C6—C5—H5119.6
O1—Co1—N2i106.91 (9)C4—C5—H5119.6
O1i—Co1—N2106.91 (9)C5—C6—C1120.3 (3)
O1—Co1—N292.76 (9)C5—C6—H6119.9
N2i—Co1—N2103.17 (16)C1—C6—H6119.9
O1i—Co1—O286.55 (8)N1—C7—C1124.3 (3)
O1—Co1—O271.97 (8)N1—C7—H7117.8
N2i—Co1—O282.96 (10)C1—C7—H7117.8
N2—Co1—O2164.69 (9)N1—C8—C10121.6 (3)
O1i—Co1—O2i71.97 (8)N1—C8—C9119.4 (3)
O1—Co1—O2i86.55 (8)C10—C8—C959.0 (3)
N2i—Co1—O2i164.69 (9)N1—C8—H8115.1
N2—Co1—O2i82.96 (10)C10—C8—H8115.1
O2—Co1—O2i94.69 (11)C9—C8—H8115.1
C7—N1—C8124.7 (3)C10—C9—C860.1 (3)
C7—N1—H1120 (2)C10—C9—H9A117.8
C8—N1—H1115 (2)C8—C9—H9A117.8
C12—N2—Co1155.4 (3)C10—C9—H9B117.8
C2—O1—Co1119.80 (17)C8—C9—H9B117.8
C3—O2—C11117.7 (3)H9A—C9—H9B114.9
C3—O2—Co1107.81 (17)C9—C10—C860.9 (3)
C11—O2—Co1126.1 (2)C9—C10—H10A117.7
C6—C1—C2120.1 (3)C8—C10—H10A117.7
C6—C1—C7119.7 (3)C9—C10—H10B117.7
C2—C1—C7120.2 (3)C8—C10—H10B117.7
O1—C2—C3120.2 (3)H10A—C10—H10B114.8
O1—C2—C1122.3 (3)O2—C11—H11A109.5
C3—C2—C1117.5 (3)O2—C11—H11B109.5
C4—C3—O2126.6 (3)H11A—C11—H11B109.5
C4—C3—C2121.0 (3)O2—C11—H11C109.5
O2—C3—C2112.3 (3)H11A—C11—H11C109.5
C3—C4—C5120.3 (3)H11B—C11—H11C109.5
C3—C4—H4119.8N2—C12—S1178.3 (3)
C5—C4—H4119.8
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.90 (1)1.93 (3)2.609 (3)131 (3)

Experimental details

Crystal data
Chemical formula[Co(NCS)2(C11H13NO2)2]
Mr557.54
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)21.851 (3), 7.6424 (11), 16.073 (2)
β (°) 103.196 (3)
V3)2613.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.23 × 0.20 × 0.17
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.828, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
10900, 2962, 1960
Rint0.055
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.130, 1.05
No. of reflections2962
No. of parameters163
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.25

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXL97.

Selected geometric parameters (Å, º) top
Co1—O11.997 (2)Co1—O22.387 (2)
Co1—N22.031 (3)
O1i—Co1—O1148.34 (13)O1i—Co1—O286.55 (8)
O1i—Co1—N2106.91 (9)O1—Co1—O271.97 (8)
O1—Co1—N292.76 (9)N2i—Co1—O282.96 (10)
N2i—Co1—N2103.17 (16)N2—Co1—O2164.69 (9)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.901 (10)1.93 (3)2.609 (3)131 (3)
 

References

First citationDi Bella, S., Fragala, I., Ledoux, I., Diaz-Garcia, M. A. & Marks, T. J. (1997). J. Am. Chem. Soc. 119, 9550–9557.  CrossRef CAS Web of Science Google Scholar
First citationKraihanzel, C. S., Sinn, E. & Gray, G. M. (1981). J. Am. Chem. Soc. 103, 960–962.  CSD CrossRef CAS Web of Science Google Scholar
First citationLoeb, S. J., Stephan, D. W. & Willis, C. J. (1984). Inorg. Chem. 23, 1509–1512.  CSD CrossRef CAS Web of Science Google Scholar
First citationMukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem. 42, 8439–8445.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, S.-X. (2007a). Acta Cryst. E63, m706–m707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, S.-X. (2007b). Acta Cryst. E63, m1946.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds