organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,3,3′-Tetra­phenyl-7,7′-biquinoxaline

aDepartment of Chemistry, Eastern Kentucky University, 521 Lancaster Avenue, Richmond, KY 40475, USA, bDepartment of Chemistry, The College of William and Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA, and cDepartamento de Quimica, Universidad San Francisco de Quito, Pampite & Robles - Cumbaya, Quito, Ecuador
*Correspondence e-mail: eric.dueno@eku.edu

(Received 29 June 2007; accepted 9 July 2007; online 6 December 2007)

In the crystal structure of the title compound, C40H26N4, mol­ecules reside on crystallographic centers of inversion and are linked via C—H⋯N inter­actions about inversion centers into one-dimensional chains: longer C—H⋯π(arene) inter­actions complete the inter­molecular inter­actions.

Related literature

For the synthesis of quinoxalines, see: Kowalski et al. (2006[Kowalski, J. A., Leonard, S. F. & Lee, G. E. Jr (2006). J. Comb. Chem. 8, 774-779.]); Kou et al. (2006[Kou, B.-B., Zhang, F., Yang, T.-M. & Liu, G. (2006). J. Comb. Chem. 8, 841-847.]); Baek & Tan (2006[Baek, J.-B. & Tan, L.-S. (2006). Macromolecules, 39, 2794-2803.]). For applications of quinoxalines see: Mollegaard et al. (2000[Mollegaard, N. E., Bailly, C., Waring, M. J. & Nielsen, P. E. (2000). Biochemistry, 39, 9502-9507.]); Aldakov et al. (2005[Aldakov, D., Palacios, M. A. & Anzenbacher, P. Jr (2005). Chem. Mater. 17, 5238-5241.]); Kaiwar et al. (1997[Kaiwar, S. P., Vodacek, A., Blough, N. V. & Pilato, R. S. (1997). J. Am. Chem. Soc. 119, 3311-3316.]); Anzenbacher et al. (2000[Anzenbacher, P. Jr, Try, A. C., Miyaji, H., Jursikova, K., Lynch, V. M., Marquez, M. & Sessler, J. L. (2000). J. Am. Chem. Soc. 122, 10268-10272.]). For related literature, see: Brown et al. (2004[Brown, D. J., Taylor, E. C. & Wipf, P. (2004). The Chemistry of Heterocyclic Compounds, Vol. 61, Quinoxalines, Suppl. II, pp. 100-105. New York: Wiley.]); Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); Gibson et al. (2006[Gibson, R. J. P., Kass, J. P., Zambrano, C. H., Fronczek, F. R. & Dueno, E. E. (2006). Acta Cryst. E62, o2947-o2948.]); Page et al. (1998[Page, S. E., Gordon, K. C. & Burrell, A. K. (1998). Inorg. Chem. 37, 4452-4459.]); Pascal & Ho (1993[Pascal, R. A. Jr & Ho, D. M. (1993). J. Am. Chem. Soc. 115, 8507-8508.]); Salvatore et al. (2006[Salvatore, R. N., Kass, J. P., Gibson, R. J. P., Zambrano, C. H., Pike, R. D. & Dueno, E. E. (2006). Acta Cryst. E62, o4547-o4548.]); Simpson & Gordon (1995[Simpson, T. J. & Gordon, K. C. (1995). Inorg. Chem. 34, 6323-6329.]); Willett et al. (2001[Willett, R. D., Jeitler, R. J. & Twamley, B. (2001). Inorg. Chem. 40, 6502-6505.]); Wozniak et al. (1993[Wozniak, K., Krygowski, T. M., Grech, E., Kolodziejski, W. & Klinowski, J. (1993). J. Phys. Chem. 97, 1862-1867.]); Wu et al. (2002[Wu, C. D., Lu, C.-Z., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. 41, 5636-5637.]).

[Scheme 1]

Experimental

Crystal data
  • C40H26N4

  • Mr = 562.65

  • Triclinic, [P \overline 1]

  • a = 5.70240 (10) Å

  • b = 9.9534 (2) Å

  • c = 12.9785 (3) Å

  • α = 105.3520 (10)°

  • β = 96.6170 (10)°

  • γ = 91.7510 (10)°

  • V = 704.19 (3) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 0.61 mm−1

  • T = 100 (2) K

  • 0.19 × 0.12 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.893, Tmax = 0.964

  • 12179 measured reflections

  • 2429 independent reflections

  • 2156 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.091

  • S = 1.06

  • 2429 reflections

  • 251 parameters

  • All H-atom parameters refined

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯C18i 0.977 (15) 2.722 (15) 3.5521 (16) 143.1 (12)
C7—H7⋯N2ii 0.979 (15) 2.593 (16) 3.3635 (15) 135.6 (11)
C10—H10⋯C3iii 0.974 (13) 2.935 (12) 3.2994 (15) 103.4 (8)
C10—H10⋯C6iii 0.974 (13) 2.974 (13) 3.1801 (15) 93.1 (8)
C11—H11⋯N1iii 0.963 (15) 2.893 (14) 3.3233 (14) 108.3 (10)
C12—H12⋯C18iv 0.975 (15) 2.959 (15) 3.6146 (16) 125.6 (10)
C13—H13⋯C18iv 0.999 (15) 2.978 (15) 3.6141 (16) 122.5 (10)
C16—H16⋯N2iii 0.978 (14) 2.815 (14) 3.7256 (14) 155.2 (11)
C17—H17⋯C1v 0.969 (13) 2.993 (14) 3.7019 (16) 131.0 (9)
C17—H17⋯C8v 0.969 (13) 2.860 (14) 3.6338 (15) 137.5 (9)
C18—H18⋯N1vi 0.975 (14) 2.808 (14) 3.6217 (14) 141.5 (10)
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z+1; (iii) x+1, y, z; (iv) -x+2, -y+1, -z+2; (v) -x+1, -y+1, -z+1; (vi) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 2.0), SAINT-Plus (Version 7.12A) and XSHELL (Version 6.3.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 (Version 2.0), SAINT-Plus (Version 7.12A) and XSHELL (Version 6.3.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: XSHELL (Bruker, 2004[Bruker (2004). APEX2 (Version 2.0), SAINT-Plus (Version 7.12A) and XSHELL (Version 6.3.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]).

Supporting information


Comment top

Quinoxalines and their derivatives have received considerable attention in the past several years due to their electronic properties (Page et al., 1998; Simpson & Gordon, 1995), H-bonding ability (Pascal et al., 1993; Wozniak et al., 1993), and their capacity to coordinate to metals forming interesting three-dimensional structures (Wu et al., 2002; Willett et al., 2001). During our investigations, we have prepared a number of substituted quinoxalines and phenazines, some of which coordinate to metal salts forming novel structures (Dueno, et al., unpublished). Our current work involves the synthesis of new nitrogen heterocycles (Gibson, et al., 2006; Salvatore, et al., 2006) which may lead to novel three dimensional structures upon coordination to metal salts. Here, we report the crystal structure of 2,2',3,3'-Tetraphenyl-7,7'-biquinoxaline (I), (Figure 1).

The structure of (I) has bond distances and angles that are unexceptional, as all fall within ranges found in the literature for similar nitrogen heterocycles (Brown et al., 2004). The one molecule present in the asymmetric unit cell lies on an inversion center, so that half the molecule is related to its counterpart by symmetry (symmetry code, -x,-y,-z). As expected, the steric bulk of the phenyl substituents prevents them from being coplanar with the quinoxaline rings: the dihedral angle N2—C5—C15—C20 (phenyl ring 1) is 59.80 (11)°, and the dihedral angle N1—C4—C9—C10 (phenyl ring 2) is 25.98 (11)°. An interesting feature worth mentioning is that the two rings that make up the quinoxaline unit are not perfectly planar, for the angle between the N containing ring and the carbon-only ring is 3.50 (11)° (based on a least squares mean planes of N1—C4—C5—N2—C6—C3 and C1—C2—C3—C6—C7—C8). It is conceivable that this deviation from a planar structure is due to Van der Waals repulsion interactions between the aromatic substituents. Another interesting aspect of this molecule is that the packing diagram shows short contact interactions between phenyl substituents on one molecule and the quinoxaline ring of an adjacent molecule. Intermolecular distances range from 3.181 (2) Å (C10—C6) to 3.376 (2) Å (C11—C4), which suggests some degree of σ(CH)···π interaction (Figure 2).

Related literature top

For the synthesis of quinoxalines, see: Kowalski et al. (2006); Kou et al. (2006); Baek & Tan (2006). For applications of quinoxalines see: Mollegaard et al. (2000; Aldakov et al. (2005); Kaiwar et al. (1997); Anzenbacher et al. (2000). For related literature, see: Brown et al. (2004); Bruno et al. (2002); Farrugia (1997); Gibson et al. (2006); Page et al. (1998); Pascal & Ho (1993); Salvatore et al. (2006); Simpson & Gordon (1995); Willett et al. (2001); Wozniak et al. (1993); Wu et al. (2002).

Experimental top

A 50 ml round-bottomed flask was charged with biphenyl-3,3',4,4'-tetramine (214 mg, 1 mmol), benzil (420 mg, 2 mmol), iodine (51 mg, 0.2 mmol), and acetonitrile (15 ml). The reaction was monitored by thin-layer chromatography until complete consumption of the starting materials (15 min). The resulting amber solution was concentrated to dryness under reduced pressure. The dark-brown crude product was then subjected to flash column chromatography using silica gel (eluent: 9:1 hexane–EtOAc) in order to remove residual iodine. The pale-yellow solution was evaporated to dryness under reduced pressure to give (I) (yield 0.413 mg, 74%), as a white powder (m.p. 573 K). This powder was then crystallized from a minimal amount of toluene, and afforded (I) as pale-yellow cubes.

Refinement top

H atoms were placed in idealized positions (C—H = 0.96 – 1.00 A) and allowed to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C).

Structure description top

no drafts

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: XSHELL (Bruker, 2004); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. ORTEP (Farrugia, 1997) drawing of (I). Displacement ellipsoids have been drawn at the 50% probability level. Unlabeled atoms are related to labeled atoms by symmetry (code –x,-y,-z). H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Mercury (Bruno et al., 2002) packing diagram of (I) along the b axis showing short contact interactions.
2,2,3,3'-Tetraphenyl-7,7'-biquinoxaline top
Crystal data top
C40H26N4Z = 1
Mr = 562.65F(000) = 294
Triclinic, P1Dx = 1.327 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 5.7024 (1) ÅCell parameters from 585 reflections
b = 9.9534 (2) Åθ = 3.6–67.0°
c = 12.9785 (3) ŵ = 0.61 mm1
α = 105.352 (1)°T = 100 K
β = 96.617 (1)°Block, colourless
γ = 91.751 (1)°0.19 × 0.12 × 0.06 mm
V = 704.19 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
2429 independent reflections
Radiation source: fine-focus sealed tube2156 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ψ scansθmax = 67.0°, θmin = 3.6°
Absorption correction: numerical
(SADABS; Sheldrick, 2004)
h = 66
Tmin = 0.893, Tmax = 0.964k = 1111
12179 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.1323P]
where P = (Fo2 + 2Fc2)/3
2429 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C40H26N4γ = 91.751 (1)°
Mr = 562.65V = 704.19 (3) Å3
Triclinic, P1Z = 1
a = 5.7024 (1) ÅCu Kα radiation
b = 9.9534 (2) ŵ = 0.61 mm1
c = 12.9785 (3) ÅT = 100 K
α = 105.352 (1)°0.19 × 0.12 × 0.06 mm
β = 96.617 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2429 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2004)
2156 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.964Rint = 0.033
12179 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.091All H-atom parameters refined
S = 1.06Δρmax = 0.23 e Å3
2429 reflectionsΔρmin = 0.18 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.51854 (16)0.85128 (10)0.69940 (8)0.0221 (2)
N20.23046 (17)0.60236 (10)0.64109 (8)0.0224 (2)
C10.03603 (19)0.94087 (11)0.52202 (9)0.0209 (3)
C20.2496 (2)0.94755 (12)0.58600 (9)0.0226 (3)
C30.31629 (19)0.83612 (11)0.62942 (9)0.0211 (3)
C40.57593 (19)0.74558 (12)0.73939 (9)0.0212 (3)
C50.43238 (19)0.61520 (12)0.70434 (9)0.0211 (3)
C60.1661 (2)0.71321 (12)0.60385 (9)0.0217 (3)
C70.0511 (2)0.70597 (12)0.53726 (9)0.0231 (3)
C80.1142 (2)0.81609 (12)0.49890 (9)0.0225 (3)
C90.79004 (19)0.77207 (11)0.82117 (9)0.0219 (3)
C100.9637 (2)0.87320 (12)0.81830 (10)0.0239 (3)
C111.1675 (2)0.90121 (13)0.89186 (10)0.0269 (3)
C121.2013 (2)0.82934 (13)0.97005 (10)0.0288 (3)
C131.0272 (2)0.73173 (13)0.97578 (10)0.0281 (3)
C140.8232 (2)0.70364 (12)0.90232 (10)0.0252 (3)
C150.49998 (19)0.48375 (11)0.73197 (9)0.0215 (3)
C160.7014 (2)0.41920 (12)0.69865 (9)0.0240 (3)
C170.7507 (2)0.29096 (12)0.71734 (10)0.0248 (3)
C180.6025 (2)0.22840 (12)0.77110 (9)0.0244 (3)
C190.4035 (2)0.29355 (13)0.80581 (10)0.0268 (3)
C200.3503 (2)0.42037 (12)0.78536 (10)0.0247 (3)
H20.361 (3)1.0290 (16)0.6039 (12)0.035 (4)*
H70.153 (3)0.6200 (16)0.5199 (12)0.035 (4)*
H80.267 (2)0.8096 (13)0.4535 (11)0.021 (3)*
H100.938 (2)0.9233 (14)0.7633 (11)0.026 (3)*
H111.287 (3)0.9694 (15)0.8870 (12)0.033 (4)*
H121.344 (3)0.8484 (16)1.0224 (12)0.036 (4)*
H131.048 (2)0.6786 (16)1.0312 (13)0.037 (4)*
H140.698 (3)0.6366 (16)0.9090 (12)0.033 (4)*
H160.807 (2)0.4646 (15)0.6621 (12)0.029 (3)*
H170.888 (2)0.2451 (14)0.6924 (11)0.023 (3)*
H180.640 (2)0.1387 (15)0.7834 (11)0.028 (3)*
H190.296 (2)0.2499 (15)0.8440 (12)0.033 (4)*
H200.210 (3)0.4660 (15)0.8084 (12)0.032 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0212 (5)0.0209 (5)0.0245 (5)0.0010 (4)0.0015 (4)0.0073 (4)
N20.0241 (5)0.0195 (5)0.0240 (5)0.0010 (4)0.0019 (4)0.0070 (4)
C10.0227 (6)0.0196 (6)0.0205 (6)0.0010 (5)0.0037 (4)0.0052 (4)
C20.0228 (6)0.0193 (6)0.0258 (6)0.0015 (5)0.0015 (4)0.0073 (5)
C30.0204 (6)0.0208 (6)0.0216 (6)0.0006 (5)0.0027 (4)0.0049 (4)
C40.0219 (6)0.0196 (5)0.0231 (6)0.0019 (4)0.0047 (4)0.0067 (4)
C50.0204 (5)0.0208 (6)0.0224 (6)0.0010 (4)0.0035 (4)0.0060 (4)
C60.0243 (6)0.0189 (5)0.0217 (6)0.0012 (5)0.0038 (4)0.0051 (4)
C70.0238 (6)0.0199 (6)0.0244 (6)0.0024 (5)0.0005 (4)0.0053 (4)
C80.0224 (6)0.0217 (6)0.0227 (6)0.0013 (5)0.0003 (4)0.0058 (4)
C90.0207 (6)0.0187 (5)0.0249 (6)0.0033 (4)0.0025 (4)0.0034 (4)
C100.0247 (6)0.0207 (6)0.0260 (6)0.0034 (5)0.0037 (5)0.0057 (5)
C110.0227 (6)0.0256 (6)0.0302 (7)0.0002 (5)0.0041 (5)0.0036 (5)
C120.0224 (6)0.0343 (7)0.0261 (6)0.0014 (5)0.0025 (5)0.0042 (5)
C130.0279 (6)0.0295 (6)0.0270 (6)0.0038 (5)0.0002 (5)0.0087 (5)
C140.0248 (6)0.0235 (6)0.0262 (6)0.0008 (5)0.0015 (5)0.0058 (5)
C150.0218 (6)0.0185 (5)0.0225 (6)0.0011 (4)0.0023 (4)0.0050 (4)
C160.0240 (6)0.0229 (6)0.0258 (6)0.0002 (5)0.0034 (5)0.0077 (5)
C170.0238 (6)0.0225 (6)0.0264 (6)0.0041 (5)0.0008 (5)0.0045 (5)
C180.0285 (6)0.0180 (5)0.0253 (6)0.0009 (5)0.0048 (5)0.0069 (4)
C190.0260 (6)0.0259 (6)0.0310 (7)0.0011 (5)0.0017 (5)0.0131 (5)
C200.0206 (6)0.0248 (6)0.0296 (6)0.0023 (5)0.0030 (5)0.0089 (5)
Geometric parameters (Å, º) top
N1—C41.3245 (15)C10—H100.974 (14)
N1—C31.3613 (14)C11—C121.3880 (18)
N2—C51.3166 (15)C11—H110.966 (15)
N2—C61.3609 (15)C12—C131.3899 (18)
C1—C21.3819 (16)C12—H120.978 (15)
C1—C81.4301 (16)C13—C141.3870 (17)
C1—C1i1.488 (2)C13—H130.998 (15)
C2—C31.4141 (16)C14—H140.988 (15)
C2—H20.976 (15)C15—C161.3898 (17)
C3—C61.4129 (16)C15—C201.3936 (16)
C4—C51.4484 (16)C16—C171.3918 (16)
C4—C91.4900 (15)C16—H160.976 (14)
C5—C151.4955 (15)C17—C181.3865 (17)
C6—C71.4143 (16)C17—H170.962 (14)
C7—C81.3604 (16)C18—C191.3852 (18)
C7—H70.977 (15)C18—H180.973 (14)
C8—H80.986 (13)C19—C201.3922 (16)
C9—C141.3967 (17)C19—H190.990 (15)
C9—C101.4010 (16)C20—H200.971 (15)
C10—C111.3868 (17)
C4—N1—C3118.29 (10)C9—C10—H10118.5 (8)
C5—N2—C6117.97 (10)C12—C11—C10120.12 (11)
C2—C1—C8117.90 (10)C12—C11—H11120.4 (8)
C2—C1—C1i121.33 (13)C10—C11—H11119.4 (8)
C8—C1—C1i120.76 (12)C11—C12—C13119.59 (11)
C1—C2—C3121.34 (11)C11—C12—H12120.8 (9)
C1—C2—H2122.0 (8)C13—C12—H12119.6 (9)
C3—C2—H2116.6 (9)C14—C13—C12120.35 (11)
N1—C3—C6120.83 (10)C14—C13—H13118.8 (9)
N1—C3—C2119.57 (10)C12—C13—H13120.9 (9)
C6—C3—C2119.52 (10)C13—C14—C9120.67 (11)
N1—C4—C5120.22 (10)C13—C14—H14119.5 (8)
N1—C4—C9115.70 (10)C9—C14—H14119.8 (8)
C5—C4—C9124.07 (10)C16—C15—C20119.65 (10)
N2—C5—C4121.55 (10)C16—C15—C5120.82 (10)
N2—C5—C15114.09 (10)C20—C15—C5119.38 (10)
C4—C5—C15124.33 (10)C15—C16—C17119.93 (11)
N2—C6—C3120.68 (10)C15—C16—H16119.3 (8)
N2—C6—C7120.32 (10)C17—C16—H16120.8 (8)
C3—C6—C7118.99 (10)C18—C17—C16120.38 (11)
C8—C7—C6120.36 (11)C18—C17—H17119.8 (8)
C8—C7—H7121.6 (9)C16—C17—H17119.8 (8)
C6—C7—H7118.1 (9)C19—C18—C17119.78 (11)
C7—C8—C1121.85 (11)C19—C18—H18121.0 (8)
C7—C8—H8119.2 (7)C17—C18—H18119.2 (8)
C1—C8—H8119.0 (7)C18—C19—C20120.18 (11)
C14—C9—C10118.36 (11)C18—C19—H19120.6 (8)
C14—C9—C4123.20 (10)C20—C19—H19119.2 (8)
C10—C9—C4118.42 (10)C15—C20—C19120.05 (11)
C11—C10—C9120.85 (11)C15—C20—H20119.3 (8)
C11—C10—H10120.7 (8)C19—C20—H20120.7 (8)
C8—C1—C2—C31.34 (17)N1—C4—C9—C14152.27 (11)
C1i—C1—C2—C3178.88 (12)C5—C4—C9—C1426.95 (17)
C4—N1—C3—C62.79 (16)N1—C4—C9—C1025.98 (15)
C4—N1—C3—C2179.56 (10)C5—C4—C9—C10154.81 (11)
C1—C2—C3—N1174.44 (10)C14—C9—C10—C112.26 (17)
C1—C2—C3—C62.37 (17)C4—C9—C10—C11179.41 (10)
C3—N1—C4—C53.29 (16)C9—C10—C11—C120.35 (18)
C3—N1—C4—C9175.95 (9)C10—C11—C12—C131.57 (19)
C6—N2—C5—C43.88 (16)C11—C12—C13—C141.55 (19)
C6—N2—C5—C15174.05 (9)C12—C13—C14—C90.41 (18)
N1—C4—C5—N26.97 (17)C10—C9—C14—C132.28 (17)
C9—C4—C5—N2172.21 (10)C4—C9—C14—C13179.47 (10)
N1—C4—C5—C15170.75 (10)N2—C5—C15—C16115.78 (12)
C9—C4—C5—C1510.07 (17)C4—C5—C15—C1662.09 (15)
C5—N2—C6—C32.27 (16)N2—C5—C15—C2059.79 (14)
C5—N2—C6—C7178.84 (10)C4—C5—C15—C20122.33 (12)
N1—C3—C6—N25.86 (17)C20—C15—C16—C170.92 (17)
C2—C3—C6—N2177.37 (10)C5—C15—C16—C17174.64 (10)
N1—C3—C6—C7175.23 (10)C15—C16—C17—C181.36 (18)
C2—C3—C6—C71.54 (16)C16—C17—C18—C190.39 (17)
N2—C6—C7—C8179.17 (10)C17—C18—C19—C201.01 (18)
C3—C6—C7—C80.26 (17)C16—C15—C20—C190.46 (18)
C6—C7—C8—C11.31 (18)C5—C15—C20—C19176.09 (10)
C2—C1—C8—C70.51 (17)C18—C19—C20—C151.44 (18)
C1i—C1—C8—C7179.27 (13)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···C18ii0.977 (15)2.722 (15)3.5521 (16)143.1 (12)
C7—H7···N2iii0.979 (15)2.593 (16)3.3635 (15)135.6 (11)
C10—H10···C3iv0.974 (13)2.935 (12)3.2994 (15)103.4 (8)
C10—H10···C6iv0.974 (13)2.974 (13)3.1801 (15)93.1 (8)
C11—H11···N1iv0.963 (15)2.893 (14)3.3233 (14)108.3 (10)
C12—H12···C18v0.975 (15)2.959 (15)3.6146 (16)125.6 (10)
C13—H13···C18v0.999 (15)2.978 (15)3.6141 (16)122.5 (10)
C16—H16···N2iv0.978 (14)2.815 (14)3.7256 (14)155.2 (11)
C17—H17···C1vi0.969 (13)2.993 (14)3.7019 (16)131.0 (9)
C17—H17···C8vi0.969 (13)2.860 (14)3.6338 (15)137.5 (9)
C18—H18···N1vii0.975 (14)2.808 (14)3.6217 (14)141.5 (10)
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y, z; (v) x+2, y+1, z+2; (vi) x+1, y+1, z+1; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC40H26N4
Mr562.65
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.7024 (1), 9.9534 (2), 12.9785 (3)
α, β, γ (°)105.352 (1), 96.617 (1), 91.751 (1)
V3)704.19 (3)
Z1
Radiation typeCu Kα
µ (mm1)0.61
Crystal size (mm)0.19 × 0.12 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionNumerical
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.893, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
12179, 2429, 2156
Rint0.033
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.06
No. of reflections2429
No. of parameters251
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SAINT-Plus, SHELXS97 (Sheldrick, 1997), XSHELL (Bruker, 2004), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···C18i0.977 (15)2.722 (15)3.5521 (16)143.1 (12)
C7—H7···N2ii0.979 (15)2.593 (16)3.3635 (15)135.6 (11)
C10—H10···C3iii0.974 (13)2.935 (12)3.2994 (15)103.4 (8)
C10—H10···C6iii0.974 (13)2.974 (13)3.1801 (15)93.1 (8)
C11—H11···N1iii0.963 (15)2.893 (14)3.3233 (14)108.3 (10)
C12—H12···C18iv0.975 (15)2.959 (15)3.6146 (16)125.6 (10)
C13—H13···C18iv0.999 (15)2.978 (15)3.6141 (16)122.5 (10)
C16—H16···N2iii0.978 (14)2.815 (14)3.7256 (14)155.2 (11)
C17—H17···C1v0.969 (13)2.993 (14)3.7019 (16)131.0 (9)
C17—H17···C8v0.969 (13)2.860 (14)3.6338 (15)137.5 (9)
C18—H18···N1vi0.975 (14)2.808 (14)3.6217 (14)141.5 (10)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y, z; (iv) x+2, y+1, z+2; (v) x+1, y+1, z+1; (vi) x, y1, z.
 

Acknowledgements

EED acknowledges the National Science Foundation for primary support of this research (EPSCOR grant No. 450901). RDP is indebted to the NSF (CHE-0443345) and the College of William and Mary for the purchase of the X-ray diffractometer.

References

First citationAldakov, D., Palacios, M. A. & Anzenbacher, P. Jr (2005). Chem. Mater. 17, 5238–5241.  Web of Science CSD CrossRef CAS Google Scholar
First citationAnzenbacher, P. Jr, Try, A. C., Miyaji, H., Jursikova, K., Lynch, V. M., Marquez, M. & Sessler, J. L. (2000). J. Am. Chem. Soc. 122, 10268–10272.  CSD CrossRef CAS Google Scholar
First citationBaek, J.-B. & Tan, L.-S. (2006). Macromolecules, 39, 2794–2803.  Web of Science CrossRef CAS Google Scholar
First citationBrown, D. J., Taylor, E. C. & Wipf, P. (2004). The Chemistry of Heterocyclic Compounds, Vol. 61, Quinoxalines, Suppl. II, pp. 100–105. New York: Wiley.  Google Scholar
First citationBruker (2004). APEX2 (Version 2.0), SAINT-Plus (Version 7.12A) and XSHELL (Version 6.3.1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGibson, R. J. P., Kass, J. P., Zambrano, C. H., Fronczek, F. R. & Dueno, E. E. (2006). Acta Cryst. E62, o2947–o2948.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaiwar, S. P., Vodacek, A., Blough, N. V. & Pilato, R. S. (1997). J. Am. Chem. Soc. 119, 3311–3316.  CSD CrossRef CAS Web of Science Google Scholar
First citationKou, B.-B., Zhang, F., Yang, T.-M. & Liu, G. (2006). J. Comb. Chem. 8, 841–847.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKowalski, J. A., Leonard, S. F. & Lee, G. E. Jr (2006). J. Comb. Chem. 8, 774–779.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMollegaard, N. E., Bailly, C., Waring, M. J. & Nielsen, P. E. (2000). Biochemistry, 39, 9502–9507.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPage, S. E., Gordon, K. C. & Burrell, A. K. (1998). Inorg. Chem. 37, 4452–4459.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPascal, R. A. Jr & Ho, D. M. (1993). J. Am. Chem. Soc. 115, 8507–8508.  CSD CrossRef CAS Web of Science Google Scholar
First citationSalvatore, R. N., Kass, J. P., Gibson, R. J. P., Zambrano, C. H., Pike, R. D. & Dueno, E. E. (2006). Acta Cryst. E62, o4547–o4548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSimpson, T. J. & Gordon, K. C. (1995). Inorg. Chem. 34, 6323–6329.  CrossRef CAS Web of Science Google Scholar
First citationWillett, R. D., Jeitler, R. J. & Twamley, B. (2001). Inorg. Chem. 40, 6502–6505.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWozniak, K., Krygowski, T. M., Grech, E., Kolodziejski, W. & Klinowski, J. (1993). J. Phys. Chem. 97, 1862–1867.  CSD CrossRef CAS Web of Science Google Scholar
First citationWu, C. D., Lu, C.-Z., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. 41, 5636–5637.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds