organic compounds
2,2,3,3′-Tetraphenyl-7,7′-biquinoxaline
aDepartment of Chemistry, Eastern Kentucky University, 521 Lancaster Avenue, Richmond, KY 40475, USA, bDepartment of Chemistry, The College of William and Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA, and cDepartamento de Quimica, Universidad San Francisco de Quito, Pampite & Robles - Cumbaya, Quito, Ecuador
*Correspondence e-mail: eric.dueno@eku.edu
In the 40H26N4, molecules reside on crystallographic centers of inversion and are linked via C—H⋯N interactions about inversion centers into one-dimensional chains: longer C—H⋯π(arene) interactions complete the intermolecular interactions.
of the title compound, CRelated literature
For the synthesis of quinoxalines, see: Kowalski et al. (2006); Kou et al. (2006); Baek & Tan (2006). For applications of quinoxalines see: Mollegaard et al. (2000); Aldakov et al. (2005); Kaiwar et al. (1997); Anzenbacher et al. (2000). For related literature, see: Brown et al. (2004); Bruno et al. (2002); Gibson et al. (2006); Page et al. (1998); Pascal & Ho (1993); Salvatore et al. (2006); Simpson & Gordon (1995); Willett et al. (2001); Wozniak et al. (1993); Wu et al. (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: XSHELL (Bruker, 2004); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).
Supporting information
https://doi.org/10.1107/S1600536807033521/gg2021sup1.cif
contains datablocks I, global, publication_text. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807033521/gg2021Isup2.hkl
A 50 ml round-bottomed flask was charged with biphenyl-3,3',4,4'-tetramine (214 mg, 1 mmol), benzil (420 mg, 2 mmol), iodine (51 mg, 0.2 mmol), and acetonitrile (15 ml). The reaction was monitored by
until complete consumption of the starting materials (15 min). The resulting amber solution was concentrated to dryness under reduced pressure. The dark-brown crude product was then subjected to flash using silica gel (eluent: 9:1 hexane–EtOAc) in order to remove residual iodine. The pale-yellow solution was evaporated to dryness under reduced pressure to give (I) (yield 0.413 mg, 74%), as a white powder (m.p. 573 K). This powder was then crystallized from a minimal amount of toluene, and afforded (I) as pale-yellow cubes.H atoms were placed in idealized positions (C—H = 0.96 – 1.00 A) and allowed to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C).
Data collection: APEX2 (Bruker, 2004); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: XSHELL (Bruker, 2004); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).Fig. 1. ORTEP (Farrugia, 1997) drawing of (I). Displacement ellipsoids have been drawn at the 50% probability level. Unlabeled atoms are related to labeled atoms by symmetry (code –x,-y,-z). H atoms have been omitted for clarity. | |
Fig. 2. Mercury (Bruno et al., 2002) packing diagram of (I) along the b axis showing short contact interactions. |
C40H26N4 | Z = 1 |
Mr = 562.65 | F(000) = 294 |
Triclinic, P1 | Dx = 1.327 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54178 Å |
a = 5.7024 (1) Å | Cell parameters from 585 reflections |
b = 9.9534 (2) Å | θ = 3.6–67.0° |
c = 12.9785 (3) Å | µ = 0.61 mm−1 |
α = 105.352 (1)° | T = 100 K |
β = 96.617 (1)° | Block, colourless |
γ = 91.751 (1)° | 0.19 × 0.12 × 0.06 mm |
V = 704.19 (3) Å3 |
Bruker SMART APEXII CCD diffractometer | 2429 independent reflections |
Radiation source: fine-focus sealed tube | 2156 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ω and ψ scans | θmax = 67.0°, θmin = 3.6° |
Absorption correction: numerical (SADABS; Sheldrick, 2004) | h = −6→6 |
Tmin = 0.893, Tmax = 0.964 | k = −11→11 |
12179 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | All H-atom parameters refined |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0496P)2 + 0.1323P] where P = (Fo2 + 2Fc2)/3 |
2429 reflections | (Δ/σ)max < 0.001 |
251 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C40H26N4 | γ = 91.751 (1)° |
Mr = 562.65 | V = 704.19 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.7024 (1) Å | Cu Kα radiation |
b = 9.9534 (2) Å | µ = 0.61 mm−1 |
c = 12.9785 (3) Å | T = 100 K |
α = 105.352 (1)° | 0.19 × 0.12 × 0.06 mm |
β = 96.617 (1)° |
Bruker SMART APEXII CCD diffractometer | 2429 independent reflections |
Absorption correction: numerical (SADABS; Sheldrick, 2004) | 2156 reflections with I > 2σ(I) |
Tmin = 0.893, Tmax = 0.964 | Rint = 0.033 |
12179 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.091 | All H-atom parameters refined |
S = 1.06 | Δρmax = 0.23 e Å−3 |
2429 reflections | Δρmin = −0.18 e Å−3 |
251 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.51854 (16) | 0.85128 (10) | 0.69940 (8) | 0.0221 (2) | |
N2 | 0.23046 (17) | 0.60236 (10) | 0.64109 (8) | 0.0224 (2) | |
C1 | 0.03603 (19) | 0.94087 (11) | 0.52202 (9) | 0.0209 (3) | |
C2 | 0.2496 (2) | 0.94755 (12) | 0.58600 (9) | 0.0226 (3) | |
C3 | 0.31629 (19) | 0.83612 (11) | 0.62942 (9) | 0.0211 (3) | |
C4 | 0.57593 (19) | 0.74558 (12) | 0.73939 (9) | 0.0212 (3) | |
C5 | 0.43238 (19) | 0.61520 (12) | 0.70434 (9) | 0.0211 (3) | |
C6 | 0.1661 (2) | 0.71321 (12) | 0.60385 (9) | 0.0217 (3) | |
C7 | −0.0511 (2) | 0.70597 (12) | 0.53726 (9) | 0.0231 (3) | |
C8 | −0.1142 (2) | 0.81609 (12) | 0.49890 (9) | 0.0225 (3) | |
C9 | 0.79004 (19) | 0.77207 (11) | 0.82117 (9) | 0.0219 (3) | |
C10 | 0.9637 (2) | 0.87320 (12) | 0.81830 (10) | 0.0239 (3) | |
C11 | 1.1675 (2) | 0.90121 (13) | 0.89186 (10) | 0.0269 (3) | |
C12 | 1.2013 (2) | 0.82934 (13) | 0.97005 (10) | 0.0288 (3) | |
C13 | 1.0272 (2) | 0.73173 (13) | 0.97578 (10) | 0.0281 (3) | |
C14 | 0.8232 (2) | 0.70364 (12) | 0.90232 (10) | 0.0252 (3) | |
C15 | 0.49998 (19) | 0.48375 (11) | 0.73197 (9) | 0.0215 (3) | |
C16 | 0.7014 (2) | 0.41920 (12) | 0.69865 (9) | 0.0240 (3) | |
C17 | 0.7507 (2) | 0.29096 (12) | 0.71734 (10) | 0.0248 (3) | |
C18 | 0.6025 (2) | 0.22840 (12) | 0.77110 (9) | 0.0244 (3) | |
C19 | 0.4035 (2) | 0.29355 (13) | 0.80581 (10) | 0.0268 (3) | |
C20 | 0.3503 (2) | 0.42037 (12) | 0.78536 (10) | 0.0247 (3) | |
H2 | 0.361 (3) | 1.0290 (16) | 0.6039 (12) | 0.035 (4)* | |
H7 | −0.153 (3) | 0.6200 (16) | 0.5199 (12) | 0.035 (4)* | |
H8 | −0.267 (2) | 0.8096 (13) | 0.4535 (11) | 0.021 (3)* | |
H10 | 0.938 (2) | 0.9233 (14) | 0.7633 (11) | 0.026 (3)* | |
H11 | 1.287 (3) | 0.9694 (15) | 0.8870 (12) | 0.033 (4)* | |
H12 | 1.344 (3) | 0.8484 (16) | 1.0224 (12) | 0.036 (4)* | |
H13 | 1.048 (2) | 0.6786 (16) | 1.0312 (13) | 0.037 (4)* | |
H14 | 0.698 (3) | 0.6366 (16) | 0.9090 (12) | 0.033 (4)* | |
H16 | 0.807 (2) | 0.4646 (15) | 0.6621 (12) | 0.029 (3)* | |
H17 | 0.888 (2) | 0.2451 (14) | 0.6924 (11) | 0.023 (3)* | |
H18 | 0.640 (2) | 0.1387 (15) | 0.7834 (11) | 0.028 (3)* | |
H19 | 0.296 (2) | 0.2499 (15) | 0.8440 (12) | 0.033 (4)* | |
H20 | 0.210 (3) | 0.4660 (15) | 0.8084 (12) | 0.032 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0212 (5) | 0.0209 (5) | 0.0245 (5) | 0.0010 (4) | 0.0015 (4) | 0.0073 (4) |
N2 | 0.0241 (5) | 0.0195 (5) | 0.0240 (5) | 0.0010 (4) | 0.0019 (4) | 0.0070 (4) |
C1 | 0.0227 (6) | 0.0196 (6) | 0.0205 (6) | 0.0010 (5) | 0.0037 (4) | 0.0052 (4) |
C2 | 0.0228 (6) | 0.0193 (6) | 0.0258 (6) | −0.0015 (5) | 0.0015 (4) | 0.0073 (5) |
C3 | 0.0204 (6) | 0.0208 (6) | 0.0216 (6) | 0.0006 (5) | 0.0027 (4) | 0.0049 (4) |
C4 | 0.0219 (6) | 0.0196 (5) | 0.0231 (6) | 0.0019 (4) | 0.0047 (4) | 0.0067 (4) |
C5 | 0.0204 (5) | 0.0208 (6) | 0.0224 (6) | 0.0010 (4) | 0.0035 (4) | 0.0060 (4) |
C6 | 0.0243 (6) | 0.0189 (5) | 0.0217 (6) | 0.0012 (5) | 0.0038 (4) | 0.0051 (4) |
C7 | 0.0238 (6) | 0.0199 (6) | 0.0244 (6) | −0.0024 (5) | 0.0005 (4) | 0.0053 (4) |
C8 | 0.0224 (6) | 0.0217 (6) | 0.0227 (6) | −0.0013 (5) | 0.0003 (4) | 0.0058 (4) |
C9 | 0.0207 (6) | 0.0187 (5) | 0.0249 (6) | 0.0033 (4) | 0.0025 (4) | 0.0034 (4) |
C10 | 0.0247 (6) | 0.0207 (6) | 0.0260 (6) | 0.0034 (5) | 0.0037 (5) | 0.0057 (5) |
C11 | 0.0227 (6) | 0.0256 (6) | 0.0302 (7) | −0.0002 (5) | 0.0041 (5) | 0.0036 (5) |
C12 | 0.0224 (6) | 0.0343 (7) | 0.0261 (6) | 0.0014 (5) | −0.0025 (5) | 0.0042 (5) |
C13 | 0.0279 (6) | 0.0295 (6) | 0.0270 (6) | 0.0038 (5) | 0.0002 (5) | 0.0087 (5) |
C14 | 0.0248 (6) | 0.0235 (6) | 0.0262 (6) | 0.0008 (5) | 0.0015 (5) | 0.0058 (5) |
C15 | 0.0218 (6) | 0.0185 (5) | 0.0225 (6) | −0.0011 (4) | −0.0023 (4) | 0.0050 (4) |
C16 | 0.0240 (6) | 0.0229 (6) | 0.0258 (6) | 0.0002 (5) | 0.0034 (5) | 0.0077 (5) |
C17 | 0.0238 (6) | 0.0225 (6) | 0.0264 (6) | 0.0041 (5) | 0.0008 (5) | 0.0045 (5) |
C18 | 0.0285 (6) | 0.0180 (5) | 0.0253 (6) | 0.0009 (5) | −0.0048 (5) | 0.0069 (4) |
C19 | 0.0260 (6) | 0.0259 (6) | 0.0310 (7) | −0.0011 (5) | 0.0017 (5) | 0.0131 (5) |
C20 | 0.0206 (6) | 0.0248 (6) | 0.0296 (6) | 0.0023 (5) | 0.0030 (5) | 0.0089 (5) |
N1—C4 | 1.3245 (15) | C10—H10 | 0.974 (14) |
N1—C3 | 1.3613 (14) | C11—C12 | 1.3880 (18) |
N2—C5 | 1.3166 (15) | C11—H11 | 0.966 (15) |
N2—C6 | 1.3609 (15) | C12—C13 | 1.3899 (18) |
C1—C2 | 1.3819 (16) | C12—H12 | 0.978 (15) |
C1—C8 | 1.4301 (16) | C13—C14 | 1.3870 (17) |
C1—C1i | 1.488 (2) | C13—H13 | 0.998 (15) |
C2—C3 | 1.4141 (16) | C14—H14 | 0.988 (15) |
C2—H2 | 0.976 (15) | C15—C16 | 1.3898 (17) |
C3—C6 | 1.4129 (16) | C15—C20 | 1.3936 (16) |
C4—C5 | 1.4484 (16) | C16—C17 | 1.3918 (16) |
C4—C9 | 1.4900 (15) | C16—H16 | 0.976 (14) |
C5—C15 | 1.4955 (15) | C17—C18 | 1.3865 (17) |
C6—C7 | 1.4143 (16) | C17—H17 | 0.962 (14) |
C7—C8 | 1.3604 (16) | C18—C19 | 1.3852 (18) |
C7—H7 | 0.977 (15) | C18—H18 | 0.973 (14) |
C8—H8 | 0.986 (13) | C19—C20 | 1.3922 (16) |
C9—C14 | 1.3967 (17) | C19—H19 | 0.990 (15) |
C9—C10 | 1.4010 (16) | C20—H20 | 0.971 (15) |
C10—C11 | 1.3868 (17) | ||
C4—N1—C3 | 118.29 (10) | C9—C10—H10 | 118.5 (8) |
C5—N2—C6 | 117.97 (10) | C12—C11—C10 | 120.12 (11) |
C2—C1—C8 | 117.90 (10) | C12—C11—H11 | 120.4 (8) |
C2—C1—C1i | 121.33 (13) | C10—C11—H11 | 119.4 (8) |
C8—C1—C1i | 120.76 (12) | C11—C12—C13 | 119.59 (11) |
C1—C2—C3 | 121.34 (11) | C11—C12—H12 | 120.8 (9) |
C1—C2—H2 | 122.0 (8) | C13—C12—H12 | 119.6 (9) |
C3—C2—H2 | 116.6 (9) | C14—C13—C12 | 120.35 (11) |
N1—C3—C6 | 120.83 (10) | C14—C13—H13 | 118.8 (9) |
N1—C3—C2 | 119.57 (10) | C12—C13—H13 | 120.9 (9) |
C6—C3—C2 | 119.52 (10) | C13—C14—C9 | 120.67 (11) |
N1—C4—C5 | 120.22 (10) | C13—C14—H14 | 119.5 (8) |
N1—C4—C9 | 115.70 (10) | C9—C14—H14 | 119.8 (8) |
C5—C4—C9 | 124.07 (10) | C16—C15—C20 | 119.65 (10) |
N2—C5—C4 | 121.55 (10) | C16—C15—C5 | 120.82 (10) |
N2—C5—C15 | 114.09 (10) | C20—C15—C5 | 119.38 (10) |
C4—C5—C15 | 124.33 (10) | C15—C16—C17 | 119.93 (11) |
N2—C6—C3 | 120.68 (10) | C15—C16—H16 | 119.3 (8) |
N2—C6—C7 | 120.32 (10) | C17—C16—H16 | 120.8 (8) |
C3—C6—C7 | 118.99 (10) | C18—C17—C16 | 120.38 (11) |
C8—C7—C6 | 120.36 (11) | C18—C17—H17 | 119.8 (8) |
C8—C7—H7 | 121.6 (9) | C16—C17—H17 | 119.8 (8) |
C6—C7—H7 | 118.1 (9) | C19—C18—C17 | 119.78 (11) |
C7—C8—C1 | 121.85 (11) | C19—C18—H18 | 121.0 (8) |
C7—C8—H8 | 119.2 (7) | C17—C18—H18 | 119.2 (8) |
C1—C8—H8 | 119.0 (7) | C18—C19—C20 | 120.18 (11) |
C14—C9—C10 | 118.36 (11) | C18—C19—H19 | 120.6 (8) |
C14—C9—C4 | 123.20 (10) | C20—C19—H19 | 119.2 (8) |
C10—C9—C4 | 118.42 (10) | C15—C20—C19 | 120.05 (11) |
C11—C10—C9 | 120.85 (11) | C15—C20—H20 | 119.3 (8) |
C11—C10—H10 | 120.7 (8) | C19—C20—H20 | 120.7 (8) |
C8—C1—C2—C3 | −1.34 (17) | N1—C4—C9—C14 | 152.27 (11) |
C1i—C1—C2—C3 | 178.88 (12) | C5—C4—C9—C14 | −26.95 (17) |
C4—N1—C3—C6 | 2.79 (16) | N1—C4—C9—C10 | −25.98 (15) |
C4—N1—C3—C2 | 179.56 (10) | C5—C4—C9—C10 | 154.81 (11) |
C1—C2—C3—N1 | −174.44 (10) | C14—C9—C10—C11 | 2.26 (17) |
C1—C2—C3—C6 | 2.37 (17) | C4—C9—C10—C11 | −179.41 (10) |
C3—N1—C4—C5 | 3.29 (16) | C9—C10—C11—C12 | −0.35 (18) |
C3—N1—C4—C9 | −175.95 (9) | C10—C11—C12—C13 | −1.57 (19) |
C6—N2—C5—C4 | 3.88 (16) | C11—C12—C13—C14 | 1.55 (19) |
C6—N2—C5—C15 | −174.05 (9) | C12—C13—C14—C9 | 0.41 (18) |
N1—C4—C5—N2 | −6.97 (17) | C10—C9—C14—C13 | −2.28 (17) |
C9—C4—C5—N2 | 172.21 (10) | C4—C9—C14—C13 | 179.47 (10) |
N1—C4—C5—C15 | 170.75 (10) | N2—C5—C15—C16 | 115.78 (12) |
C9—C4—C5—C15 | −10.07 (17) | C4—C5—C15—C16 | −62.09 (15) |
C5—N2—C6—C3 | 2.27 (16) | N2—C5—C15—C20 | −59.79 (14) |
C5—N2—C6—C7 | −178.84 (10) | C4—C5—C15—C20 | 122.33 (12) |
N1—C3—C6—N2 | −5.86 (17) | C20—C15—C16—C17 | 0.92 (17) |
C2—C3—C6—N2 | 177.37 (10) | C5—C15—C16—C17 | −174.64 (10) |
N1—C3—C6—C7 | 175.23 (10) | C15—C16—C17—C18 | −1.36 (18) |
C2—C3—C6—C7 | −1.54 (16) | C16—C17—C18—C19 | 0.39 (17) |
N2—C6—C7—C8 | −179.17 (10) | C17—C18—C19—C20 | 1.01 (18) |
C3—C6—C7—C8 | −0.26 (17) | C16—C15—C20—C19 | 0.46 (18) |
C6—C7—C8—C1 | 1.31 (18) | C5—C15—C20—C19 | 176.09 (10) |
C2—C1—C8—C7 | −0.51 (17) | C18—C19—C20—C15 | −1.44 (18) |
C1i—C1—C8—C7 | 179.27 (13) |
Symmetry code: (i) −x, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···C18ii | 0.977 (15) | 2.722 (15) | 3.5521 (16) | 143.1 (12) |
C7—H7···N2iii | 0.979 (15) | 2.593 (16) | 3.3635 (15) | 135.6 (11) |
C10—H10···C3iv | 0.974 (13) | 2.935 (12) | 3.2994 (15) | 103.4 (8) |
C10—H10···C6iv | 0.974 (13) | 2.974 (13) | 3.1801 (15) | 93.1 (8) |
C11—H11···N1iv | 0.963 (15) | 2.893 (14) | 3.3233 (14) | 108.3 (10) |
C12—H12···C18v | 0.975 (15) | 2.959 (15) | 3.6146 (16) | 125.6 (10) |
C13—H13···C18v | 0.999 (15) | 2.978 (15) | 3.6141 (16) | 122.5 (10) |
C16—H16···N2iv | 0.978 (14) | 2.815 (14) | 3.7256 (14) | 155.2 (11) |
C17—H17···C1vi | 0.969 (13) | 2.993 (14) | 3.7019 (16) | 131.0 (9) |
C17—H17···C8vi | 0.969 (13) | 2.860 (14) | 3.6338 (15) | 137.5 (9) |
C18—H18···N1vii | 0.975 (14) | 2.808 (14) | 3.6217 (14) | 141.5 (10) |
Symmetry codes: (ii) x, y+1, z; (iii) −x, −y+1, −z+1; (iv) x+1, y, z; (v) −x+2, −y+1, −z+2; (vi) −x+1, −y+1, −z+1; (vii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C40H26N4 |
Mr | 562.65 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 5.7024 (1), 9.9534 (2), 12.9785 (3) |
α, β, γ (°) | 105.352 (1), 96.617 (1), 91.751 (1) |
V (Å3) | 704.19 (3) |
Z | 1 |
Radiation type | Cu Kα |
µ (mm−1) | 0.61 |
Crystal size (mm) | 0.19 × 0.12 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD |
Absorption correction | Numerical (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.893, 0.964 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12179, 2429, 2156 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.091, 1.06 |
No. of reflections | 2429 |
No. of parameters | 251 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.23, −0.18 |
Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SAINT-Plus, SHELXS97 (Sheldrick, 1997), XSHELL (Bruker, 2004), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···C18i | 0.977 (15) | 2.722 (15) | 3.5521 (16) | 143.1 (12) |
C7—H7···N2ii | 0.979 (15) | 2.593 (16) | 3.3635 (15) | 135.6 (11) |
C10—H10···C3iii | 0.974 (13) | 2.935 (12) | 3.2994 (15) | 103.4 (8) |
C10—H10···C6iii | 0.974 (13) | 2.974 (13) | 3.1801 (15) | 93.1 (8) |
C11—H11···N1iii | 0.963 (15) | 2.893 (14) | 3.3233 (14) | 108.3 (10) |
C12—H12···C18iv | 0.975 (15) | 2.959 (15) | 3.6146 (16) | 125.6 (10) |
C13—H13···C18iv | 0.999 (15) | 2.978 (15) | 3.6141 (16) | 122.5 (10) |
C16—H16···N2iii | 0.978 (14) | 2.815 (14) | 3.7256 (14) | 155.2 (11) |
C17—H17···C1v | 0.969 (13) | 2.993 (14) | 3.7019 (16) | 131.0 (9) |
C17—H17···C8v | 0.969 (13) | 2.860 (14) | 3.6338 (15) | 137.5 (9) |
C18—H18···N1vi | 0.975 (14) | 2.808 (14) | 3.6217 (14) | 141.5 (10) |
Symmetry codes: (i) x, y+1, z; (ii) −x, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+2, −y+1, −z+2; (v) −x+1, −y+1, −z+1; (vi) x, y−1, z. |
Acknowledgements
EED acknowledges the National Science Foundation for primary support of this research (EPSCOR grant No. 450901). RDP is indebted to the NSF (CHE-0443345) and the College of William and Mary for the purchase of the X-ray diffractometer.
References
Aldakov, D., Palacios, M. A. & Anzenbacher, P. Jr (2005). Chem. Mater. 17, 5238–5241. Web of Science CSD CrossRef CAS Google Scholar
Anzenbacher, P. Jr, Try, A. C., Miyaji, H., Jursikova, K., Lynch, V. M., Marquez, M. & Sessler, J. L. (2000). J. Am. Chem. Soc. 122, 10268–10272. CSD CrossRef CAS Google Scholar
Baek, J.-B. & Tan, L.-S. (2006). Macromolecules, 39, 2794–2803. Web of Science CrossRef CAS Google Scholar
Brown, D. J., Taylor, E. C. & Wipf, P. (2004). The Chemistry of Heterocyclic Compounds, Vol. 61, Quinoxalines, Suppl. II, pp. 100–105. New York: Wiley. Google Scholar
Bruker (2004). APEX2 (Version 2.0), SAINT-Plus (Version 7.12A) and XSHELL (Version 6.3.1). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gibson, R. J. P., Kass, J. P., Zambrano, C. H., Fronczek, F. R. & Dueno, E. E. (2006). Acta Cryst. E62, o2947–o2948. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kaiwar, S. P., Vodacek, A., Blough, N. V. & Pilato, R. S. (1997). J. Am. Chem. Soc. 119, 3311–3316. CSD CrossRef CAS Web of Science Google Scholar
Kou, B.-B., Zhang, F., Yang, T.-M. & Liu, G. (2006). J. Comb. Chem. 8, 841–847. Web of Science CrossRef PubMed CAS Google Scholar
Kowalski, J. A., Leonard, S. F. & Lee, G. E. Jr (2006). J. Comb. Chem. 8, 774–779. Web of Science CrossRef PubMed CAS Google Scholar
Mollegaard, N. E., Bailly, C., Waring, M. J. & Nielsen, P. E. (2000). Biochemistry, 39, 9502–9507. Web of Science CrossRef PubMed CAS Google Scholar
Page, S. E., Gordon, K. C. & Burrell, A. K. (1998). Inorg. Chem. 37, 4452–4459. Web of Science CrossRef PubMed CAS Google Scholar
Pascal, R. A. Jr & Ho, D. M. (1993). J. Am. Chem. Soc. 115, 8507–8508. CSD CrossRef CAS Web of Science Google Scholar
Salvatore, R. N., Kass, J. P., Gibson, R. J. P., Zambrano, C. H., Pike, R. D. & Dueno, E. E. (2006). Acta Cryst. E62, o4547–o4548. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Simpson, T. J. & Gordon, K. C. (1995). Inorg. Chem. 34, 6323–6329. CrossRef CAS Web of Science Google Scholar
Willett, R. D., Jeitler, R. J. & Twamley, B. (2001). Inorg. Chem. 40, 6502–6505. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wozniak, K., Krygowski, T. M., Grech, E., Kolodziejski, W. & Klinowski, J. (1993). J. Phys. Chem. 97, 1862–1867. CSD CrossRef CAS Web of Science Google Scholar
Wu, C. D., Lu, C.-Z., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. 41, 5636–5637. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinoxalines and their derivatives have received considerable attention in the past several years due to their electronic properties (Page et al., 1998; Simpson & Gordon, 1995), H-bonding ability (Pascal et al., 1993; Wozniak et al., 1993), and their capacity to coordinate to metals forming interesting three-dimensional structures (Wu et al., 2002; Willett et al., 2001). During our investigations, we have prepared a number of substituted quinoxalines and phenazines, some of which coordinate to metal salts forming novel structures (Dueno, et al., unpublished). Our current work involves the synthesis of new nitrogen heterocycles (Gibson, et al., 2006; Salvatore, et al., 2006) which may lead to novel three dimensional structures upon coordination to metal salts. Here, we report the crystal structure of 2,2',3,3'-Tetraphenyl-7,7'-biquinoxaline (I), (Figure 1).
The structure of (I) has bond distances and angles that are unexceptional, as all fall within ranges found in the literature for similar nitrogen heterocycles (Brown et al., 2004). The one molecule present in the asymmetric unit cell lies on an inversion center, so that half the molecule is related to its counterpart by symmetry (symmetry code, -x,-y,-z). As expected, the steric bulk of the phenyl substituents prevents them from being coplanar with the quinoxaline rings: the dihedral angle N2—C5—C15—C20 (phenyl ring 1) is 59.80 (11)°, and the dihedral angle N1—C4—C9—C10 (phenyl ring 2) is 25.98 (11)°. An interesting feature worth mentioning is that the two rings that make up the quinoxaline unit are not perfectly planar, for the angle between the N containing ring and the carbon-only ring is 3.50 (11)° (based on a least squares mean planes of N1—C4—C5—N2—C6—C3 and C1—C2—C3—C6—C7—C8). It is conceivable that this deviation from a planar structure is due to Van der Waals repulsion interactions between the aromatic substituents. Another interesting aspect of this molecule is that the packing diagram shows short contact interactions between phenyl substituents on one molecule and the quinoxaline ring of an adjacent molecule. Intermolecular distances range from 3.181 (2) Å (C10—C6) to 3.376 (2) Å (C11—C4), which suggests some degree of σ(CH)···π interaction (Figure 2).