organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bis(benzimidazol-1-yl)biphen­yl

aDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: tlhu@nankai.edu.cn

(Received 15 November 2007; accepted 26 November 2007; online 6 December 2007)

The mol­ecule of the title compound, C26H18N4, resides on a crystallographic inversion centre with a dihedral angle of 44.94 (5)° between the benzimidazole ring system and the benzene ring. The primary hydrogen bond is C—H⋯N and inversion-related pairs of these generate a chain of rings along the c-axis direction; ππ stacking involving the benzimidazole groups with inter­planar separations of ca 3.4 Å complete the inter­actions.

Related literature

For related literature, see: Bu et al. (2007[Bu, X. H., Li, L., Hu, T. L., Li, J. R., Wang, D. Z. & Zeng, Y. F. (2007). CrystEngComm, 9, 412-420.]); Buchwald et al. (2001[Buchwald, S. L., Klapars, A., Antilla, J. C. & Huang, X. H. (2001). J. Am. Chem. Soc. 123, 7727-7729.]); Cristau et al. (2004[Cristau, H. J., Cellier, P. P., Spindler, J. F. & Taillefer, M. (2004). Chem. Eur. J. 10, 5607-5622.]); Su et al. (2003[Su, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & zur Loye, H. C. (2003). J. Am. Chem. Soc. 125, 8595-8613.]).

[Scheme 1]

Experimental

Crystal data
  • C26H18N4

  • Mr = 386.44

  • Monoclinic, C 2/c

  • a = 19.628 (4) Å

  • b = 6.8964 (14) Å

  • c = 13.760 (3) Å

  • β = 90.74 (3)°

  • V = 1862.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.26 × 0.22 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.904, Tmax = 1.000 (expected range = 0.897–0.992)

  • 9091 measured reflections

  • 1644 independent reflections

  • 1415 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.103

  • S = 1.10

  • 1644 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N1i 0.93 2.61 3.425 (2) 147
Symmetry code: (i) [x, -y+2, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, benzimidazole derivatives have been found a wide range of application in the area of coordination chemistry, because they exhibit a strong networking ability (Bu et al., 2007; Su et al., 2003). The title compound has been designed for building polymer architectures. We report here the structure and conformation, towards an understanding of the ligand coordination. As shown in Fig. 1, the title compound has trans-conformation and therefore a tendency to trans-coordination. The molecule resides on an inversion centre, and the dihedral angle between the benzimidazole ring and the phenyl ring is 40.97 (17)°. There are weak H-bonding interactions in the crystal structure of (I) (C6—H6···N1B, 3.425 (17) Å, C—H···N of 146.82 (13)°, B= x,-y + 2,z + 1/2) (Fig. 2).

Related literature top

For related literature, see: Bu et al. (2007); Buchwald et al. (2001); Cristau et al. (2004); Su et al. (2003).

Experimental top

The ligand 4,4'-di(benzimidazol-1-yl)biphenyl was prepared by a modified method (Buchwald et al., 2001; Cristau et al., 2004). A mixture of 4,4'-dibromobiphenyl (3.75 g, 12.0 mmol), benzimidazole (7.08 g, 60.0 mmol), CuI (0.47 g, 2.5 mmol), 1,10-phenanthroline (1.19 g, 6.0 mmol), and K2CO3 (13.27 g, 96.0 mmol) was suspended in DMF (120 ml) and refluxed for 4 days to afford (I) as light-yellow powder, yield: 30% (based on 4,4'-dibromobiphenyl). M.p.: 566 K. MS (ESI): m/z=387.45. Anal calcd for C26H18N4: C, 80.81%; H, 4.69%; N, 14.50%. Found: C, 80.56%; H, 4.48%; N, 14.31%. Single crystals were obtained by recrystallizing from a mixture of CHCl3 and CH3OH (1:1).

Refinement top

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93Å and Uiso(H) = 1.2Ueq.

Structure description top

In recent years, benzimidazole derivatives have been found a wide range of application in the area of coordination chemistry, because they exhibit a strong networking ability (Bu et al., 2007; Su et al., 2003). The title compound has been designed for building polymer architectures. We report here the structure and conformation, towards an understanding of the ligand coordination. As shown in Fig. 1, the title compound has trans-conformation and therefore a tendency to trans-coordination. The molecule resides on an inversion centre, and the dihedral angle between the benzimidazole ring and the phenyl ring is 40.97 (17)°. There are weak H-bonding interactions in the crystal structure of (I) (C6—H6···N1B, 3.425 (17) Å, C—H···N of 146.82 (13)°, B= x,-y + 2,z + 1/2) (Fig. 2).

For related literature, see: Bu et al. (2007); Buchwald et al. (2001); Cristau et al. (2004); Su et al. (2003).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius [symmetry code: (A) -x + 1,-y + 2,-z + 1].
[Figure 2] Fig. 2. The crystal packing for (I) [symmetry code: (B) x,-y + 2,z + 1/2].
4,4'-Bis(benzimidazol-1-yl)biphenyl top
Crystal data top
C26H18N4F(000) = 808
Mr = 386.44Dx = 1.378 Mg m3
Monoclinic, C2/cMelting point: 566 K
Hall symbol: -c 2ycMo Kα radiation, λ = 0.71073 Å
a = 19.628 (4) ÅCell parameters from 2932 reflections
b = 6.8964 (14) Åθ = 2.6–28.7°
c = 13.760 (3) ŵ = 0.08 mm1
β = 90.74 (3)°T = 293 K
V = 1862.4 (7) Å3Block, colorless
Z = 40.26 × 0.22 × 0.10 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1644 independent reflections
Radiation source: fine-focus sealed tube1415 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 2323
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 88
Tmin = 0.904, Tmax = 1.000l = 1616
9091 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0718P)2 + 0.0391P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
1644 reflectionsΔρmax = 0.18 e Å3
137 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.032 (4)
Crystal data top
C26H18N4V = 1862.4 (7) Å3
Mr = 386.44Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.628 (4) ŵ = 0.08 mm1
b = 6.8964 (14) ÅT = 293 K
c = 13.760 (3) Å0.26 × 0.22 × 0.10 mm
β = 90.74 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
1644 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1415 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 1.000Rint = 0.037
9091 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.10Δρmax = 0.18 e Å3
1644 reflectionsΔρmin = 0.17 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.22326 (5)0.98108 (14)0.82891 (7)0.0259 (3)
N20.28767 (5)0.99037 (13)0.69471 (7)0.0196 (3)
C10.28458 (6)0.99959 (16)0.79430 (8)0.0233 (3)
H10.32291.01750.83370.028*
C20.18197 (6)0.95587 (16)0.74690 (8)0.0217 (3)
C30.11196 (6)0.91962 (17)0.74020 (9)0.0271 (3)
H30.08540.91340.79560.033*
C40.08336 (6)0.89337 (17)0.64895 (9)0.0289 (4)
H40.03690.86940.64290.035*
C50.12330 (6)0.90221 (16)0.56532 (9)0.0269 (3)
H50.10250.88450.50490.032*
C60.19250 (6)0.93632 (16)0.56982 (8)0.0221 (3)
H60.21890.94100.51420.027*
C70.22077 (6)0.96335 (15)0.66211 (9)0.0197 (3)
C80.34804 (6)0.99569 (15)0.63884 (8)0.0191 (3)
C90.35123 (6)1.10302 (16)0.55419 (8)0.0239 (3)
H90.31361.17410.53310.029*
C100.41052 (6)1.10460 (16)0.50080 (9)0.0234 (3)
H100.41181.17700.44380.028*
C110.46851 (6)1.00092 (15)0.52969 (8)0.0195 (3)
C120.46409 (6)0.89818 (18)0.61685 (8)0.0268 (3)
H120.50210.83050.63960.032*
C130.40515 (6)0.89417 (18)0.67017 (8)0.0256 (3)
H130.40370.82290.72750.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0289 (6)0.0284 (6)0.0204 (6)0.0051 (4)0.0060 (5)0.0016 (4)
N20.0212 (6)0.0207 (5)0.0170 (6)0.0025 (4)0.0038 (4)0.0006 (4)
C10.0271 (7)0.0255 (6)0.0172 (7)0.0033 (5)0.0019 (5)0.0006 (5)
C20.0255 (6)0.0185 (6)0.0211 (7)0.0009 (5)0.0058 (5)0.0011 (5)
C30.0249 (7)0.0249 (7)0.0318 (8)0.0006 (5)0.0103 (5)0.0007 (5)
C40.0213 (6)0.0244 (7)0.0409 (8)0.0001 (5)0.0012 (6)0.0000 (5)
C50.0279 (7)0.0235 (7)0.0292 (7)0.0013 (5)0.0044 (5)0.0002 (5)
C60.0267 (6)0.0191 (6)0.0206 (7)0.0014 (5)0.0015 (5)0.0008 (5)
C70.0212 (6)0.0155 (6)0.0226 (7)0.0004 (4)0.0025 (5)0.0011 (4)
C80.0203 (6)0.0191 (6)0.0178 (6)0.0045 (4)0.0034 (5)0.0033 (4)
C90.0256 (6)0.0217 (7)0.0245 (7)0.0049 (5)0.0046 (5)0.0031 (5)
C100.0298 (7)0.0203 (6)0.0203 (6)0.0009 (5)0.0059 (5)0.0037 (5)
C110.0196 (7)0.0204 (6)0.0185 (7)0.0070 (4)0.0003 (5)0.0025 (4)
C120.0166 (6)0.0412 (8)0.0227 (7)0.0021 (5)0.0016 (5)0.0071 (5)
C130.0218 (6)0.0369 (7)0.0181 (7)0.0055 (5)0.0012 (5)0.0078 (5)
Geometric parameters (Å, º) top
C9—C81.3822 (16)C5—C61.3790 (17)
C9—C101.3842 (16)C5—C41.4021 (18)
C9—H90.9300C5—H50.9300
N2—C11.3740 (15)C4—C31.3806 (18)
N2—C71.3945 (15)C4—H40.9300
N2—C81.4212 (15)C13—C121.3781 (16)
C10—C111.3974 (17)C13—C81.3856 (17)
C10—H100.9300C13—H130.9300
N1—C11.3063 (16)C12—H120.9300
N1—C21.3916 (16)C2—C31.3986 (17)
C11—C121.3967 (17)C3—H30.9300
C11—C11i1.491 (2)C6—H60.9300
C7—C61.3918 (17)C1—H10.9300
C7—C21.4024 (17)
C8—C9—C10119.93 (11)C12—C13—C8120.37 (11)
C8—C9—H9120.0C12—C13—H13119.8
C10—C9—H9120.0C8—C13—H13119.8
C1—N2—C7105.87 (10)C13—C12—C11121.94 (11)
C1—N2—C8125.89 (11)C13—C12—H12119.0
C7—N2—C8128.14 (10)C11—C12—H12119.0
C9—C10—C11122.16 (11)N1—C2—C3129.57 (11)
C9—C10—H10118.9N1—C2—C7110.69 (10)
C11—C10—H10118.9C3—C2—C7119.70 (11)
C1—N1—C2104.25 (10)C4—C3—C2118.10 (12)
C12—C11—C10116.39 (11)C4—C3—H3120.9
C12—C11—C11i121.83 (13)C2—C3—H3120.9
C10—C11—C11i121.78 (13)C9—C8—C13119.18 (11)
C6—C7—N2132.38 (11)C9—C8—N2121.11 (10)
C6—C7—C2122.66 (11)C13—C8—N2119.70 (11)
N2—C7—C2104.86 (10)C5—C6—C7116.40 (11)
C6—C5—C4122.10 (12)C5—C6—H6121.8
C6—C5—H5118.9C7—C6—H6121.8
C4—C5—H5118.9N1—C1—N2114.33 (12)
C3—C4—C5121.03 (11)N1—C1—H1122.8
C3—C4—H4119.5N2—C1—H1122.8
C5—C4—H4119.5
C8—C9—C10—C110.30 (18)C5—C4—C3—C20.17 (17)
C9—C10—C11—C121.33 (17)N1—C2—C3—C4177.73 (11)
C9—C10—C11—C11i178.27 (12)C7—C2—C3—C40.38 (16)
C1—N2—C7—C6177.15 (12)C10—C9—C8—C131.41 (16)
C8—N2—C7—C60.74 (18)C10—C9—C8—N2179.55 (10)
C1—N2—C7—C20.74 (11)C12—C13—C8—C90.85 (17)
C8—N2—C7—C2175.68 (10)C12—C13—C8—N2179.90 (10)
C6—C5—C4—C30.30 (18)C1—N2—C8—C9138.05 (12)
C8—C13—C12—C110.85 (18)C7—N2—C8—C946.20 (15)
C10—C11—C12—C131.90 (17)C1—N2—C8—C1340.98 (16)
C11i—C11—C12—C13177.70 (12)C7—N2—C8—C13134.76 (12)
C1—N1—C2—C3176.54 (12)C4—C5—C6—C70.53 (17)
C1—N1—C2—C71.00 (12)N2—C7—C6—C5176.21 (11)
C6—C7—C2—N1177.95 (10)C2—C7—C6—C50.32 (16)
N2—C7—C2—N11.09 (12)C2—N1—C1—N20.52 (13)
C6—C7—C2—C30.13 (17)C7—N2—C1—N10.14 (13)
N2—C7—C2—C3176.73 (10)C8—N2—C1—N1176.38 (9)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N1ii0.932.613.425 (2)147
Symmetry code: (ii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H18N4
Mr386.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)19.628 (4), 6.8964 (14), 13.760 (3)
β (°) 90.74 (3)
V3)1862.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.26 × 0.22 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.904, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9091, 1644, 1415
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.10
No. of reflections1644
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL (Bruker, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···N1i0.932.613.425 (2)147
Symmetry code: (i) x, y+2, z+1/2.
 

Acknowledgements

The authors thank Nankai University for supporting this work.

References

First citationBruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBu, X. H., Li, L., Hu, T. L., Li, J. R., Wang, D. Z. & Zeng, Y. F. (2007). CrystEngComm, 9, 412–420.  Google Scholar
First citationBuchwald, S. L., Klapars, A., Antilla, J. C. & Huang, X. H. (2001). J. Am. Chem. Soc. 123, 7727–7729.  Web of Science PubMed Google Scholar
First citationCristau, H. J., Cellier, P. P., Spindler, J. F. & Taillefer, M. (2004). Chem. Eur. J. 10, 5607–5622.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSu, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & zur Loye, H. C. (2003). J. Am. Chem. Soc. 125, 8595–8613.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds