metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[bis­­(1H-benzimidazol-2-ylmeth­yl)amine]copper(II) dichloride methanol disolvate dihydrate

aSchool of Chemical and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China
*Correspondence e-mail: zy0340907@yahoo.com.cn

(Received 16 November 2007; accepted 5 December 2007; online 18 December 2007)

In the title compound, [Cu(C16H14N5)2]Cl2·2CH4O·2H2O, the cationic metal complex resides on a crystallographic centre of inversion, with the Cu2+ bonded to two bis­(1H-benzimidazol-2-ylmeth­yl)amines (IDB). The coordination geometry of the Cu2+ ion is distorted octa­hedral with an N6 ligand set. A three-dimensional framework structure is formed by means of hydrogen bonds and ππ inter­actions formed between imidazole and phenyl rings, and between phenyl and phenyl rings, with centroid-to-centroid distances of 3.690 (2)–3.977 (2) Å and interplanar spacings of 3.445 (2)–3.502 (2) Å.

Related literature

For related literature, see: Adams et al. (1990[Adams, H., Bailey, N. A., Carane, J. D. & Fenton, D. E. (1990). J. Chem. Soc. Dalton Trans. pp. 1727-1735.]); Qin et al. (2005[Qin, S.-D., Feng, S.-S., Zhang, H.-M., Yang, P. & Zhu, M.-L. (2005). Acta Cryst. E61, o1574-o1576.]); Santoro et al. (2000[Santoro, S. W., Joyce, G. F., Sakthivel, K., Gramatikova, S. & Barbas, C. F. (2000). J. Am. Chem. Soc. 122, 2433-2439.]); Suresh et al. (2006[Suresh, J., Alex Raja, V. P., Perumal, S. & Natarajan, S. (2006). Acta Cryst. E62, o3307-o3309.]); Yan et al. (2004[Yan, X.-X., Lu, L.-P. & Zhu, M.-L. (2004). Acta Cryst. C60, m221-m223.]); Yu et al. (2006[Yu, B.-B., Meng, X.-G. & Liao, Z.-R. (2006). Acta Cryst. E62, m1519-m1521.]). For the treatment of disordered solvent, see: Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C16H14N5)2]Cl2·2CH4O·2H2O

  • Mr = 725.13

  • Triclinic, [P \overline 1]

  • a = 9.653 (3) Å

  • b = 9.921 (3) Å

  • c = 10.316 (3) Å

  • α = 82.095 (5)°

  • β = 88.441 (5)°

  • γ = 87.073 (5)°

  • V = 977.1 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 292 (2) K

  • 0.23 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 9121 measured reflections

  • 3799 independent reflections

  • 2937 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.123

  • S = 0.97

  • 3799 reflections

  • 229 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O1 0.860 (10) 2.027 (15) 2.839 (4) 157 (3)
O1—H1B⋯Cl1 0.81 (4) 2.59 (4) 3.206 (4) 134 (5)
N1—H1C⋯Cl1i 0.855 (10) 2.455 (12) 3.296 (3) 168 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: Bruker SMART CCD (Bruker, 2001[Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazole (Im) and benzimidazole (Bzim) are common species having biological and biochemical structure and function (Santoro et al., 2000). Several compounds containing more than one benzimidazole moiety have been reported recently, e.g. Yan et al. (2004), Qin et al. (2005), and Yu et al. (2006). The title compound, (I), was prepared in a series of syntheses to produce new benzimidazole derivatives, and we report the crystal stucture herein.

The main geometric parameters of (I) are listed in Table 1, and the molecule structure is illustrated in Fig. 1. In (I), the Cu atom displays a distorted octahedral coordination geometry provided by two tridentate IDB ligands: one amine N atom and one benzimidazolyl N atom of each ligand make up the equatorial plane and another benzimidazolyl N atom of each ligand occupies the axial position. As shown in Table 2 and Fig. 2, the molecules are stablized by intermolecular Cl···H—N, Cl···H—O and O···H—N hydrogen bonds and π···π stacking, leading to the formation of a three dimension network.

Related literature top

For related literature, see: Adams et al. (1990); Qin et al. (2005); Santoro et al. (2000); Spek (2003); Suresh et al. (2006); Yan et al. (2004); Yu et al. (2006); Sheldrick (2003).

Experimental top

All reagents and solvents were used as obtained without further purification. Bis(benzimidazol-2-yl-methyl)amine (IDB) was prepared according to the method described by Adams et al. (1990). Compound (I) was synthesized by reaction of IDB (0.54 g, 2 mmol) and copper(II) chloride dihydrate (0.17 g, 1 mmol) in methanol (40 ml) at 333 K for 8 h. The resulting solution was filtered and purple crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of the filtrate at room temperature after one week (yield 55%).

Refinement top

All H atoms bonded to C atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, with Uiso(H) = 1.2Ueq(C). H atoms bonded to N atoms were located in a difference map and were refined with distance restraints of N—H = 0.86 (1)Å and Uiso(H) = 1.2Ueq(N). Similarly located water H atoms were refined with distance restraints of O—H = 0.82 (1) Å, H···H = 1.35 (1)Å and Uiso(H) = 1.5Ueq(O). During the refinement of the structure, electron-density peaks were located that were believed to be highly disordered solvent molecule molecules (possibly methanol and water solvent). Attempts made to model the solvent molecules were not successful. The SQUEEZE option in PLATON (Spek, 2003) indicated there was a solvent cavity of volume 209 Å3 containing approximately 18 electrons. In the final cycles of refinement, this contribution to the electron density was removed from the observed data. The density, the F(000) value, the molecular weight and the formula are given without taking into account the results obtained with the SQUEEZE option PLATON (Spek, 2003). Similar treatment of disordered solvent molecules were carried out by Suresh et al. (2006, and references therein).

Structure description top

Imidazole (Im) and benzimidazole (Bzim) are common species having biological and biochemical structure and function (Santoro et al., 2000). Several compounds containing more than one benzimidazole moiety have been reported recently, e.g. Yan et al. (2004), Qin et al. (2005), and Yu et al. (2006). The title compound, (I), was prepared in a series of syntheses to produce new benzimidazole derivatives, and we report the crystal stucture herein.

The main geometric parameters of (I) are listed in Table 1, and the molecule structure is illustrated in Fig. 1. In (I), the Cu atom displays a distorted octahedral coordination geometry provided by two tridentate IDB ligands: one amine N atom and one benzimidazolyl N atom of each ligand make up the equatorial plane and another benzimidazolyl N atom of each ligand occupies the axial position. As shown in Table 2 and Fig. 2, the molecules are stablized by intermolecular Cl···H—N, Cl···H—O and O···H—N hydrogen bonds and π···π stacking, leading to the formation of a three dimension network.

For related literature, see: Adams et al. (1990); Qin et al. (2005); Santoro et al. (2000); Spek (2003); Suresh et al. (2006); Yan et al. (2004); Yu et al. (2006); Sheldrick (2003).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Plot of the crystal packing showing the linkage of the molecules by H-bonding and ππ interactions shown as dashed lines.
Bis[bis(1H-benzimidazol-2-ylmethyl)amine]copper(II) dichloride methanol disolvate dihydrate top
Crystal data top
[Cu(C16H14N5)2]Cl2·2CH4O·2H2OZ = 1
Mr = 725.13F(000) = 375
Triclinic, P1Dx = 1.232 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.653 (3) ÅCell parameters from 3239 reflections
b = 9.921 (3) Åθ = 1.6–25.5°
c = 10.316 (3) ŵ = 0.74 mm1
α = 82.095 (5)°T = 292 K
β = 88.441 (5)°Block, purple
γ = 87.073 (5)°0.23 × 0.22 × 0.20 mm
V = 977.1 (5) Å3
Data collection top
CCD area-detector
diffractometer
2937 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.099
Graphite monochromatorθmax = 26.0°, θmin = 2.0°
φ and ω scansh = 1111
9121 measured reflectionsk = 1212
3799 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0459P)2]
where P = (Fo2 + 2Fc2)/3
3799 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.60 e Å3
6 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Cu(C16H14N5)2]Cl2·2CH4O·2H2Oγ = 87.073 (5)°
Mr = 725.13V = 977.1 (5) Å3
Triclinic, P1Z = 1
a = 9.653 (3) ÅMo Kα radiation
b = 9.921 (3) ŵ = 0.74 mm1
c = 10.316 (3) ÅT = 292 K
α = 82.095 (5)°0.23 × 0.22 × 0.20 mm
β = 88.441 (5)°
Data collection top
CCD area-detector
diffractometer
2937 reflections with I > 2σ(I)
9121 measured reflectionsRint = 0.099
3799 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0516 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.60 e Å3
3799 reflectionsΔρmin = 0.60 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50001.00000.02773 (17)
N10.4996 (3)0.5259 (2)0.7434 (2)0.0378 (6)
H1C0.530 (3)0.597 (2)0.696 (2)0.045*
N20.1441 (3)0.4115 (3)0.8191 (3)0.0434 (7)
H20.106 (3)0.406 (4)0.746 (2)0.052*
N30.3091 (2)0.4492 (2)0.9528 (2)0.0337 (6)
N40.6536 (3)0.1732 (3)0.8228 (3)0.0384 (6)
H40.678 (3)0.154 (3)0.7466 (17)0.046*
N50.5738 (2)0.3203 (2)0.9531 (2)0.0308 (5)
C10.0971 (3)0.3621 (3)0.9427 (3)0.0410 (8)
C20.0207 (4)0.2958 (4)0.9870 (4)0.0536 (10)
H2A0.08910.28040.92970.064*
C30.0330 (4)0.2534 (4)1.1187 (4)0.0652 (11)
H30.11170.20921.15200.078*
C40.0712 (4)0.2759 (4)1.2042 (4)0.0604 (10)
H4A0.06070.24521.29300.072*
C50.1892 (4)0.3426 (4)1.1598 (3)0.0467 (9)
H50.25770.35751.21720.056*
C60.2023 (3)0.3866 (3)1.0261 (3)0.0351 (7)
C70.2717 (3)0.4620 (3)0.8288 (3)0.0362 (7)
C80.3527 (4)0.5231 (3)0.7149 (3)0.0467 (9)
H8A0.34230.47130.64280.056*
H8B0.31640.61540.68780.056*
C90.5817 (4)0.4056 (3)0.7148 (3)0.0472 (9)
H9A0.67220.43310.68080.057*
H9B0.53650.36590.64720.057*
C100.6004 (3)0.3008 (3)0.8311 (3)0.0332 (7)
C110.6591 (3)0.1038 (3)0.9456 (3)0.0358 (7)
C120.7028 (4)0.0289 (3)0.9947 (4)0.0478 (9)
H120.73840.08940.93940.057*
C130.6915 (4)0.0673 (3)1.1271 (4)0.0512 (9)
H130.72050.15521.16230.061*
C140.6370 (4)0.0231 (3)1.2104 (3)0.0465 (8)
H140.62980.00621.29980.056*
C150.5939 (3)0.1543 (3)1.1627 (3)0.0392 (7)
H150.55650.21351.21830.047*
C160.6075 (3)0.1957 (3)1.0300 (3)0.0307 (6)
Cl10.37341 (12)0.23380 (10)0.47316 (9)0.0656 (3)
O10.6586 (3)0.0805 (3)0.5743 (3)0.0720 (9)
H1B0.624 (5)0.138 (3)0.520 (4)0.108*
H1A0.628 (5)0.009 (3)0.588 (5)0.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0332 (3)0.0220 (3)0.0305 (3)0.00342 (19)0.0075 (2)0.01034 (19)
N10.0506 (17)0.0288 (13)0.0344 (14)0.0086 (12)0.0034 (12)0.0028 (11)
N20.0460 (16)0.0366 (14)0.0493 (18)0.0054 (12)0.0220 (14)0.0071 (13)
N30.0357 (14)0.0305 (13)0.0373 (14)0.0051 (10)0.0075 (11)0.0104 (11)
N40.0492 (16)0.0336 (14)0.0354 (15)0.0016 (12)0.0020 (13)0.0164 (12)
N50.0380 (14)0.0249 (12)0.0316 (13)0.0010 (10)0.0036 (11)0.0108 (10)
C10.0386 (18)0.0319 (16)0.054 (2)0.0019 (13)0.0136 (16)0.0111 (14)
C20.039 (2)0.054 (2)0.070 (3)0.0086 (16)0.0110 (18)0.0128 (19)
C30.041 (2)0.072 (3)0.085 (3)0.0179 (19)0.008 (2)0.015 (2)
C40.057 (2)0.074 (3)0.052 (2)0.015 (2)0.0098 (18)0.013 (2)
C50.0430 (19)0.055 (2)0.046 (2)0.0066 (16)0.0051 (16)0.0175 (17)
C60.0345 (16)0.0269 (14)0.0467 (19)0.0031 (12)0.0068 (14)0.0152 (13)
C70.0421 (18)0.0271 (14)0.0407 (17)0.0034 (13)0.0115 (14)0.0070 (13)
C80.057 (2)0.0439 (19)0.0391 (18)0.0100 (16)0.0185 (17)0.0000 (15)
C90.069 (2)0.0408 (18)0.0341 (17)0.0025 (17)0.0002 (16)0.0120 (14)
C100.0404 (17)0.0268 (15)0.0350 (16)0.0049 (12)0.0030 (13)0.0116 (12)
C110.0361 (17)0.0305 (15)0.0433 (18)0.0044 (13)0.0023 (14)0.0124 (14)
C120.054 (2)0.0313 (17)0.059 (2)0.0059 (15)0.0006 (17)0.0131 (16)
C130.057 (2)0.0276 (17)0.067 (2)0.0062 (15)0.0059 (19)0.0015 (16)
C140.052 (2)0.0384 (18)0.047 (2)0.0027 (15)0.0065 (17)0.0012 (15)
C150.0443 (18)0.0322 (16)0.0427 (18)0.0009 (13)0.0058 (15)0.0106 (14)
C160.0293 (15)0.0256 (14)0.0387 (16)0.0028 (11)0.0048 (13)0.0082 (12)
Cl10.0962 (8)0.0549 (6)0.0461 (5)0.0196 (5)0.0092 (5)0.0009 (4)
O10.084 (2)0.076 (2)0.064 (2)0.0184 (18)0.0032 (16)0.0355 (17)
Geometric parameters (Å, º) top
Cu1—N12.624 (3)C3—H30.9300
Cu1—N3i2.024 (2)C4—C51.382 (5)
Cu1—N32.024 (2)C4—H4A0.9300
Cu1—N5i2.002 (2)C5—C61.392 (5)
Cu1—N52.002 (2)C5—H50.9300
N1—C91.459 (4)C7—C81.470 (5)
N1—C81.459 (4)C8—H8A0.9700
N1—H1C0.855 (10)C8—H8B0.9700
N2—C71.365 (4)C9—C101.484 (5)
N2—C11.375 (4)C9—H9A0.9700
N2—H20.858 (10)C9—H9B0.9700
N3—C71.326 (4)C11—C121.393 (4)
N3—C61.384 (4)C11—C161.408 (4)
N4—C101.354 (4)C12—C131.369 (5)
N4—C111.357 (4)C12—H120.9300
N4—H40.860 (10)C13—C141.400 (5)
N5—C101.316 (4)C13—H130.9300
N5—C161.402 (4)C14—C151.374 (4)
C1—C21.378 (5)C14—H140.9300
C1—C61.400 (4)C15—C161.379 (4)
C2—C31.370 (6)C15—H150.9300
C2—H2A0.9300O1—H1A0.778 (17)
C3—C41.401 (5)
N5i—Cu1—N5180.00 (13)C6—C5—H5121.1
N5i—Cu1—N3i88.03 (9)N3—C6—C5131.1 (3)
N5—Cu1—N3i91.97 (9)N3—C6—C1109.4 (3)
N5i—Cu1—N391.97 (9)C5—C6—C1119.4 (3)
N5—Cu1—N388.03 (9)N3—C7—N2110.7 (3)
N3i—Cu1—N3180.00 (12)N3—C7—C8126.1 (3)
N5i—Cu1—N1105.57 (9)N2—C7—C8123.2 (3)
N5—Cu1—N174.43 (9)N1—C8—C7112.1 (3)
N3i—Cu1—N1105.76 (9)N1—C8—H8A109.2
N3—Cu1—N174.24 (9)C7—C8—H8A109.2
C9—N1—C8114.0 (2)N1—C8—H8B109.2
C9—N1—Cu1102.82 (18)C7—C8—H8B109.2
C8—N1—Cu1102.97 (19)H8A—C8—H8B107.9
C9—N1—H1C109 (2)N1—C9—C10113.0 (3)
C8—N1—H1C106 (2)N1—C9—H9A109.0
Cu1—N1—H1C122 (2)C10—C9—H9A109.0
C7—N2—C1108.6 (2)N1—C9—H9B109.0
C7—N2—H2124 (2)C10—C9—H9B109.0
C1—N2—H2128 (2)H9A—C9—H9B107.8
C7—N3—C6106.4 (2)N5—C10—N4112.0 (3)
C7—N3—Cu1120.7 (2)N5—C10—C9125.3 (3)
C6—N3—Cu1132.5 (2)N4—C10—C9122.7 (3)
C10—N4—C11108.2 (2)N4—C11—C12133.0 (3)
C10—N4—H4118 (2)N4—C11—C16106.0 (3)
C11—N4—H4134 (2)C12—C11—C16120.9 (3)
C10—N5—C16105.9 (2)C13—C12—C11117.7 (3)
C10—N5—Cu1122.1 (2)C13—C12—H12121.2
C16—N5—Cu1131.95 (19)C11—C12—H12121.2
N2—C1—C2132.2 (3)C12—C13—C14121.3 (3)
N2—C1—C6104.9 (3)C12—C13—H13119.3
C2—C1—C6122.8 (3)C14—C13—H13119.3
C3—C2—C1117.4 (3)C15—C14—C13121.3 (3)
C3—C2—H2A121.3C15—C14—H14119.4
C1—C2—H2A121.3C13—C14—H14119.4
C2—C3—C4120.9 (4)C14—C15—C16118.2 (3)
C2—C3—H3119.5C14—C15—H15120.9
C4—C3—H3119.5C16—C15—H15120.9
C5—C4—C3121.7 (4)C15—C16—N5131.6 (3)
C5—C4—H4A119.1C15—C16—C11120.6 (3)
C3—C4—H4A119.1N5—C16—C11107.8 (3)
C4—C5—C6117.8 (3)H1B—O1—H1A120 (3)
C4—C5—H5121.1
N5i—Cu1—N1—C9167.82 (19)C6—N3—C7—N20.6 (3)
N5—Cu1—N1—C912.18 (19)Cu1—N3—C7—N2174.94 (19)
N3i—Cu1—N1—C975.4 (2)C6—N3—C7—C8179.9 (3)
N3—Cu1—N1—C9104.6 (2)Cu1—N3—C7—C85.8 (4)
N5i—Cu1—N1—C873.47 (19)C1—N2—C7—N30.7 (4)
N5—Cu1—N1—C8106.53 (19)C1—N2—C7—C8179.9 (3)
N3i—Cu1—N1—C8165.85 (18)C9—N1—C8—C790.9 (3)
N3—Cu1—N1—C814.15 (18)Cu1—N1—C8—C719.7 (3)
N5i—Cu1—N3—C7100.4 (2)N3—C7—C8—N120.5 (5)
N5—Cu1—N3—C779.6 (2)N2—C7—C8—N1160.3 (3)
N1—Cu1—N3—C75.3 (2)C8—N1—C9—C1095.4 (3)
N5i—Cu1—N3—C687.1 (3)Cu1—N1—C9—C1015.3 (3)
N5—Cu1—N3—C692.9 (3)C16—N5—C10—N42.0 (3)
N1—Cu1—N3—C6167.3 (3)Cu1—N5—C10—N4178.00 (18)
N3i—Cu1—N5—C1099.2 (2)C16—N5—C10—C9179.4 (3)
N3—Cu1—N5—C1080.8 (2)Cu1—N5—C10—C90.7 (4)
N1—Cu1—N5—C106.6 (2)C11—N4—C10—N51.6 (3)
N3i—Cu1—N5—C1680.8 (2)C11—N4—C10—C9179.0 (3)
N3—Cu1—N5—C1699.2 (2)N1—C9—C10—N513.7 (4)
N1—Cu1—N5—C16173.3 (3)N1—C9—C10—N4169.2 (3)
C7—N2—C1—C2176.6 (4)C10—N4—C11—C12179.4 (3)
C7—N2—C1—C60.5 (3)C10—N4—C11—C160.4 (3)
N2—C1—C2—C3176.8 (4)N4—C11—C12—C13178.7 (3)
C6—C1—C2—C30.2 (5)C16—C11—C12—C131.1 (5)
C1—C2—C3—C40.6 (6)C11—C12—C13—C140.5 (5)
C2—C3—C4—C50.7 (7)C12—C13—C14—C150.6 (5)
C3—C4—C5—C60.4 (6)C13—C14—C15—C160.9 (5)
C7—N3—C6—C5176.4 (3)C14—C15—C16—N5180.0 (3)
Cu1—N3—C6—C53.0 (5)C14—C15—C16—C112.5 (4)
C7—N3—C6—C10.3 (3)C10—N5—C16—C15176.0 (3)
Cu1—N3—C6—C1173.7 (2)Cu1—N5—C16—C153.9 (5)
C4—C5—C6—N3176.5 (3)C10—N5—C16—C111.7 (3)
C4—C5—C6—C10.1 (5)Cu1—N5—C16—C11178.31 (18)
N2—C1—C6—N30.1 (3)N4—C11—C16—C15177.2 (3)
C2—C1—C6—N3177.3 (3)C12—C11—C16—C152.6 (4)
N2—C1—C6—C5177.2 (3)N4—C11—C16—N50.8 (3)
C2—C1—C6—C50.2 (5)C12—C11—C16—N5179.3 (3)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O10.86 (1)2.03 (2)2.839 (4)157 (3)
O1—H1B···Cl10.81 (4)2.59 (4)3.206 (4)134 (5)
N1—H1C···Cl1ii0.86 (1)2.46 (1)3.296 (3)168 (3)
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C16H14N5)2]Cl2·2CH4O·2H2O
Mr725.13
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)9.653 (3), 9.921 (3), 10.316 (3)
α, β, γ (°)82.095 (5), 88.441 (5), 87.073 (5)
V3)977.1 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.23 × 0.22 × 0.20
Data collection
DiffractometerCCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9121, 3799, 2937
Rint0.099
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.123, 0.97
No. of reflections3799
No. of parameters229
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.60

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O10.860 (10)2.027 (15)2.839 (4)157 (3)
O1—H1B···Cl10.81 (4)2.59 (4)3.206 (4)134 (5)
N1—H1C···Cl1i0.855 (10)2.455 (12)3.296 (3)168 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationAdams, H., Bailey, N. A., Carane, J. D. & Fenton, D. E. (1990). J. Chem. Soc. Dalton Trans. pp. 1727–1735.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationQin, S.-D., Feng, S.-S., Zhang, H.-M., Yang, P. & Zhu, M.-L. (2005). Acta Cryst. E61, o1574–o1576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSantoro, S. W., Joyce, G. F., Sakthivel, K., Gramatikova, S. & Barbas, C. F. (2000). J. Am. Chem. Soc. 122, 2433–2439.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, J., Alex Raja, V. P., Perumal, S. & Natarajan, S. (2006). Acta Cryst. E62, o3307–o3309.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, X.-X., Lu, L.-P. & Zhu, M.-L. (2004). Acta Cryst. C60, m221–m223.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYu, B.-B., Meng, X.-G. & Liao, Z.-R. (2006). Acta Cryst. E62, m1519–m1521.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds